CO 2 O 2 LA FOTOSINTESI



Documenti analoghi
Autotrofismo ed Eterotrofismo (I)

La fotosintesi: energia dal Sole

FOTOSINTESI: LA FASE LUMINOSA

Ecolezione: La fotosintesi artificiale. A cura di : Roberto Meneghetti e Alex Mazzon classe 2 A IPAA Corazzin-ISISS Cerletti

Helena Curtis N. Sue Barnes

unità C2. Le trasformazioni energetiche nelle cellule

La catena alimentare. Sommario

Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti

CARBOSSILAZIONE/OSSIGENAZIONE

Gli organismi viventi

Metabolismo: Introduzione

La scuola integra culture. Scheda3c

ALIMENTAZIONE NELL UOMO

SISTEMI ENERGETICI. L ATP privato di uno dei suoi 3 radicali fosforici diventa ADP (adenosindifosfato).

A livello della loro struttura chimica, come i grassi, anche i carboidrati sono composti ternari, formati cioè da tre molecole:

Respirazione cellulare

Tecnologia e Tradizione nella produzione del vino

Trasformazioni materia

OSSIGENO DISCIOLTO ED EUTROFIZZAZIONE

LE ENERGIE RINNOVABILI

GLUCONEOGENESI. Sintesi (GENESI) di nuove (NEO) molecole di glucosio

Celle a combustibile Fuel cells (FC)

BIOLOGIA GENERALE ottobre 2007

FUNZIONI DEI MITOCONDRI

L ambiente è costituito da: una componente abiotica - (aria, acqua, terra, rocce, ecc.)

Ciao, il mio nome è Sheppy e aiuterò il professore nella sua lezione! Salve, io sono il prof KinderCovi e oggi vi accompagnerò nel mondo dellʼacqua

ENERGIE RINNOVABILI PRESENTAZIONE DI: BUSSETTI TAGLIABUE

CELLULE EUCARIOTICHE

COME SI SONO PRODOTTE? Tutte le fonti di energia rinnovabili ed esauribili, oggi a nostra disposizione si sono generate dal sole.

ACQUA, ARIA E TERRENO

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA

SCUOLA PRIMARIA CURRICOLO DI SCIENZE CLASSE PRIMA. INDICATORI COMPETENZE ABILITA CONOSCENZE 1. Esplorare e descrivere oggetti e materiali

IDROGENO IN PRATICA. del gruppo degli allievi del Volta. Laboratorio di chimica I.T. I. Volta

CATENE ALIMENTARI E RETI ALIMENTARI

OpenLab presenta: Biotecnologie e risorse rinnovabili: un approccio innovativo alla risoluzione di un problema globale

CO 2 aq l anidride carbonica disciolta, reagendo con l'acqua, forma acido carbonico secondo la reazione:

I confini dell Ecologia

CICLO DELL ACQUA. Marco Carozzi

Protocollo dei saperi imprescindibili

Azione 1- Italiano come L2-La lingua per studiare

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione

Scuola Media Piancavallo 2

SCIENZE SCUOLA PRIMARIA

Tecniche di microscopia

LE PIANTE. acqua anidride carbonica

Base di lavoro. Idea principale

Progetto macchina con tetto fotovoltaico

INTERVENTO DI CLAUDIA RICCARDI PLASMAPROMETEO - Dipartimento di Fisica Università degli Studi di Milano - Bicocca

Giovanni Di Bonaventura, Ph.D., B.Sc. Università di Chieti-Pescara

La catalasi: un enzima in azione

La fotosintesi. Le piante producono ossigeno gassoso scindendo le molecole d acqua.

Home indietro avanti info. Energia solare. 1. Che cos è 2. Come viene sfruttata. Scuola media G. Carducci

La digestione degli alimenti

Mangiamo perché abbiamo bisogno di energia, di materiali con cui costruire il nostro corpo, di materiali per riparare parti del nostro corpo, di

Corso di Laurea in Farmacia Insegnamento di BIOCHIMICA Angela Chambery

Fissazione dell azoto atmosferico. Conversione di N 2. in Ammoniaca: N H 2 2 NH 3

Istituto Comprensivo Casalgrande (R.E.) PROGETTAZIONE DI ISTITUTO. "SCIENZE" - Scuola primaria. Obiettivi formativi di Istituto

I G L U C I D I ASPETTI GENERALI

Acqua azzurra, acqua chiara. Istituto Comprensivo della Galilla Scuola Media Dessì - Ballao

Flussi di energia negli ecosistemi

«Macromolecole» Lipidi

PMI Day 2015 Quinta Giornata Nazionale delle Piccole e Medie Imprese 13 novembre Centrale Turbo Gas di Gissi

Unità fondamentale di tutti gli organismi viventi.

FOTOSINTESI CLOROFILLIANA

PANNELLI SOLARI TERMICI PANNELLI SOLARI FOTOVOLTAICI

Condizioni ambientali e risorse

CURRICOLO SCUOLA PRIMARIA SCIENZE COMPETENZE

Università degli Studi di Catania Dipartimento di Metodologie Fisiche e Chimiche per l Ingegneria

Affinché un incendio si sviluppi, è necessario che si verifichino tre condizioni indicate nel "cerchio del fuoco".

Acidi e basi. HCl H + + Cl - (acido cloridrico) NaOH Na + + OH - (idrossido di sodio; soda caustica)

-assicurare il fabbisogno plastico necessario alla riparazione protezione e ricambio dei tessuti.

Capitolo 7. Le soluzioni

ENERGIA NELLE REAZIONI CHIMICHE

Mais, riso, patate, granozucchero di canna o barbabietola Latte da zucchero Polisaccaride Amido - - Disaccaride Maltosio Saccarosio Lattosio

Capitolo 7 La fotosintesi

DIPARTIMENTO DI SCIENZE INTEGRATE CHIMICA FISICA SCIENZE DELLA TERRA - BIOLOGIA

Giochi delle Scienze Sperimentali 2013

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.

Genova TIPOLOGIE DI LAMPADE

GAS NATURALE O METANO

Perché il logaritmo è così importante?

Progetto OSSERVO E MISURO.L ACQUA Per scuola sec di 1 grado e biennio di scuola sec. di 2 grado

Le Biomolecole I parte. Lezioni d'autore di Giorgio Benedetti


Tipi di reazioni. Reazioni chimiche. Di dissociazione. Di sintesi. Di semplice scambio. Di doppio scambio. Reazioni complesse

Oggi si possono elencare tre tecnologie principali che consentono di trasformare in energia utilizzabile (termica o elettrica) l energia del sole :

Quando si parla di inquinamento dell'acqua, si intende sia l'inquinamento dell'acqua superficiale (fiumi, laghi, mare) sia dell'acqua presente sotto

I collettori solari termici

Niccolò Taddei Biochimica

Valitutti, Taddei, Kreuzer, Massey, Sadava, Hills, Heller, Berenbaum

Colora tu l avventura Alla scoperta dell energia

Istituto F. Algarotti. Programma di Scienze. Classe 1 A FM

Il Sistema Respiratorio. Fisica Medica

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

Da dove prendono energia le cellule animali?

FISIOLOGIA VEGETALE. Le risposte delle piante all ambiente

FORMAZIONE DEI GRUPPI DI LAVORO

L Ecosistema-catene alimentarireti alimentari

EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA

CORSO DI TECNOLOGIA INS. MARIO DI PRINZIO INS. DI SOSTEGNO SABRINA DI CELMA

Transcript:

CO 2 O 2 LA FOTOSINTESI

Autotrofismo ed Eterotrofismo (I) Si definiscono come organismi autotrofi (dal greco "autos"= da se stesso e "trophos"= alimentazione) quelli capaci di nutrirsi utilizzando solamente semplici sostanze inorganiche, come avviene per le Piante che necessitano solo di anidride carbonica ricavata dall'aria, di acqua e sali minerali assorbiti dal terreno. Le piante sono fotoautotrofe perché utilizzano il Sole come fonte di energia; in casi molto più rari, come accade per alcuni batteri, l'organismo ricava l'energia necessaria dall'ossidazione di sostanze inorganiche (chemioautotrofia).

Autotrofismo ed Eterotrofismo (II) Gli organismi eterotrofi (dal greco "héteros"= altro, differente) si nutrono di sostanze organiche prodotte dagli organismi autotrofi: è tipico il caso degli Animali che si alimentano direttamente (erbivori) o indirettamente (carnivori) di vegetali. Un caso importante di eterotrofismo è quello dei decompositori capaci di nutrirsi di detriti organici di animali e piante presenti nel terreno.

ECOSISTEMA (I)

ECOSISTEMA(II)Fattori Abiotici Luce e calore Acqua Latitudine Altitudine Precipitazioni Temperatura Vento Suolo Pressione atmosferica

ECOSISTEMA(III)Fattori Biotici Produttori (vegetali autotrofi) Consumatori primari (animali erbivori) Consumatori secondari (animali carnivori) Microrganismi saprofagi (trasformatori o bioriduttori)

ECOSISTEMA(IV) Ad ogni livello la biomassa totale diminuisce e questo, in termini energetici, significa che il numero di calorie prodotte, ad ogni livello, è inferiore dai produttori ai consumatori. Le sostanze morte di un determinato ecosistema vengono decomposte da organismi chiamati trasformatori, ma spesso ciò non accade in città perché gli oggetti buttati per terra nei luoghi pubblici (cartacce, lattine, bottiglie vuote) sono troppi e spesso non biodegradabili.

Influenza sull ambiente Sulla terra sono presenti due fattori che hanno permesso lo sviluppo di innumerevoli forme di vita: 1. la presenza dell'acqua allo stato liquido, 2. la presenza dell'ossigeno nell'atmosfera.

Questa reazione chimica riassuntiva indica solo i componenti di partenza più importanti necessari per la fotosintesi ed alcuni dei composti finali. 6CO 2 + 6H 2 O + energia C 6 H 12 O 6 + 6O 2 Anidride Carbonica Ricavata dall'aria Acqua assorbita dalle radici Glucosio Ossigeno Gassoso

I parametri luminosi fondamentali Radianza (o Irradianza): quantità di energia che colpisce l unità di superficie nell unita di tempo (W m -2 o J s -1 m -2 ). Radianza fotonica: moli di fotoni che colpiscono l unità di superficie nell unita di tempo (moli s -1 m -2 o E s -1 m -2 ).

Le clorofille Quando la luce incontra la materia, può essere riflessa, trasmessa o assorbita. Le sostanze capaci di assorbire la luce visibile sono dette pigmenti. Le clorofille, appartengono alla famiglia delle metalloporfirine. Possiedono un anello tetrapirrolico ciclico con un atomo di Mg coordinato al centro. Possiedono un quinto anello aliciclico ciclopentanonico. Presentano un alcool alifatico isoprenoide (fitolo) esterificato al C7

Clorofilla a: è il pigmento che, nelle reazioni alla luce della fotosintesi, assorbe l' energia luminosa della luce solare per trasformarla in energia chimica contenuta negli zuccheri prodotti. in tutti gli organismi con fotosintesi ossigenica (nei complessi antenna e nei centri di reazione) Clorofilla b: negli organismi fotosintetici verdi (piante vascolari, briofite, alghe verdi, Euglenoidi). Clorofille c 1, c 2 pigmenti accessori in diversi gruppi algali (Diatomee, Feofite).

ed i suoi amici : pigmenti accessori

I carotenoidi assicurano l assorbimento della luce in ambiti spettrali non adeguatamente coperti dalle clorofille Fanno parte del complesso antenna I carotenoidi sono importanti nella protezione degli apparati fotosintetici dai danni fotoossidativi [Deeccitano la clorofilla tripletto; Deeccitano l ossigeno singoletto ( 1 O 2 )]

1 FASE detta LUCE DIPENDENTE: in questa fase l energia luminosa è trasformata in chimica, rappresentata dall ATP e dal NADPH. Contemporaneamente alla riduzione del NADPH, l acqua si scinde e libera ossigeno molecolare. 2 FASE detta LUCE INDIPENDENTE: L energia chimica conservata nell ATP e nel NADPH e viene utilizzata per ridurre il carbonio dell anidride carbonica a glucosio. La fotosintesi può quindi essere definita come una reazione di ossido-riduzione, in cui il carbonio della CO2 viene ridotto a materiale organico a spese dell'acqua che viene ossidata ad ossigeno che si libera come gas.

Alla base di tutta la complessa serie di reazioni che portano ad ottenere l equazione, troviamo la scissione dell'acqua nei suoi componenti. 2 H 2 O => O 2 + 4 H + + 4 e - L'ossigeno viene liberato sotto forma di gas O 2 (l'ossigeno molecolare dell'aria), mentre l'idrogeno (sotto forma di ioni H + ed elettroni) è poi utilizzato nelle reazioni successive per trasformare la CO 2 in carboidrati. L'acqua è una molecola stabile, quindi poco reattiva, e il processo della sua scissione è una reazione fortemente endoergonica, che per avvenire ha bisogno di essere alimentata dall'energia solare (si parla infatti di "fotolisi", ossia "scissione per mezzo della luce").

Per mezzo della fotolisi, l energia radiante della luce solare viene convertita in energia chimica, dato che le molecole di idrogeno e di ossigeno contengono una quantità maggiore di energia chimica rispetto alla molecola d acqua da cui sono derivate. La clorofilla, a normali temperature e con l energia della luce visibile, scinde le molecole d acqua, svolgendo un lavoro che, in condizioni ordinarie, richiede temperature di circa 2000 C o una forte corrente elettrica.

FOTOSINTESI (Reazioni dipendenti dalla luce) Nel cloroplasto si verifica un primo gruppo di reazioni, dipendenti dalla luce che hanno lo scopo di accumulare l'energia solare in apposite molecole. L'energia luminosa viene assorbita da due gruppi di pigmenti chiamati fotosistema I (PS I) e fotosistema II (PS II). Le molecole di clorofilla cedono elettroni carichi di energia. L'acqua viene separata in ossigeno, protoni ed elettroni. Gli elettroni persi dall'acqua rimpiazzano quelli persi dai fotosistemi II e I.

FOTOSINTESI (Reazioni dipendenti dalla luce) L'energia del sole viene usata per formare ATP a partire da ADP e fosfato. Una molecola trasportatrice di idrogeno NADP+ si combina con gli elettroni e i protoni dell'acqua formando NADPH e liberando ossigeno sotto forma di gas. L'energia della luce del sole è stata accumulata in due molecole ricche di energia : ATP e NADPH che saranno utilizzate nel ciclo di Calvin

I pigmenti fotosintetici organizzati con proteine e altre molecole formano i fotosistemi. Costituiscono i complessi antenna e il centro di reazione. Il centro di reazione è il sito del fotosistema dove si trova il pigmento fotoossidabile (dimero di clorofilla a). I complessi antenna captano la luce e trasferiscono l energia al centro di reazione dove avviene la reazione fotochimica primaria.

Incanalamento delle eccitazioni dal sistema antenna verso il centro di reazione (A). Lo stato energetico eccitato dei pigmenti aumenta con la distanza dal centro di reazione; cioè, i pigmenti che sono più vicini al centro di reazione posseggono minor energia di quelli che ne sono più lontani. Questo gradiente energetico, assicura che il trasferimento di eccitazione verso il centro di reazione sia energeticamente favorevole e che venga sfavorito il trasferimento di eccitazione in direzione inversa verso le parti periferiche dell antenna. (B) Durante questo processo una parte di energia è persa nell ambiente sotto forma di calore, ma fondamentalmente, tutta l eccitazione assorbita dai complessi antenna viene donata al centro di reazione.

FOTOSINTESI (Ciclo di Calvin) Nelle reazioni fotochimiche (cioè reazioni che dipendono dalla luce) l'energia luminosa prodotta dal sole viene assorbita e trasformata in energia chimica, cioè in molecole ricche di energia a vita breve. Queste molecole nel ciclo di Calvin vengono poi combinate utilizzando l'anidride carbonica ricavata dall'aria per costruire zuccheri a tre atomi di carbonio e l energia viene trasformata in energia chimica accumulata negli zuccheri.

Ciclo di Calvin: formazione degli zuccheri Le reazioni del ciclo di Calvin avvengono nello stroma dei cloroplasti. Gli zuccheri, di cui la pianta ha bisogno si formano nel ciclo di Calvin, l'energia necessaria è già disponibile, accumulata nell'atp e NADPH durante le reazioni dipendenti dalla luce. L'anidride carbonica si combina con una molecola a 5 atomi di carbonio formandone una a 6 atomi che si spacca in due molecole, a 3 atomi. Ciascuna di esse cattura un idrogeno da NADPH e un gruppo fosfato dall'atp formando la fosfogliceraldeide (PGAL).

Il problema della carenza di CO 2 viene risolto da alcune piante grazie a una via alternativa per catturare questo gas. In queste piante la prima tappa della fissazione del carbonio consiste nel legame tra l'anidride carbonica e un composto chiamato acido fosfoenolpiruvico (PEP), e nella formazione di un composto a quattro atomi di carbonio, l'acido ossalacetico. Le piante che utilizzano questa via sono comunemente chiamate piante C4, per distinguerle dalle piante C3 in cui inizialmente il carbonio viene catturato per formare un composto a tre atomi di carbonio, l'acido fosfoglicerico (PGA).

La PEP-carbossilasi, l'enzima che catalizza la sintesi di acido ossalacetico nelle piante C4, ha un' affinità maggiore per l'anidride carbonica rispetto alla RuDP-carbossilasi, l'enzima che catalizza la formazione di PGA. Se gli stomi devono rimanere chiusi gran parte del loro tempo, come accade, per esempio, nei climi caldi e secchi per conservare acqua, la pianta con metabolismo C4 prenderà più anidride carbonica a ogni, per così dire, «respiro», rispetto alla pianta con metabolismo C3. Le piante C4 si sono evolute principalmente nelle zone tropicali e si sono adattate particolarmente bene a un'alta intensità luminosa, alle alte temperature e alla siccità; la canna da zucchero e il granturco sono tra le piante C4 più conosciute

CAM Di solito gli stomi delle piante si aprono durante il giorno e si chiudono durante la notte, ma in alcune specie accade esattamente il contrario. Di notte, non solo la temperatura è più bassa, ma l'umidità è in genere più alta; entrambi questi fattori riducono la velocità di traspirazione. Le specie che aprono gli stomi soltanto di notte comprendono una certa varietà di piante adattate ai climi caldi e secchi, come, per esempio, i cactus, gli ananas e i membri della famiglia delle crassulacee come, per esempio, il genere Sempervivum che cresce in montagna.

CAM È una variante biochimica della fotosintesi caratterizzata dallo scambio notturno di acqua e di anidride carbonica. Nelle piante CAM la fissazione della CO2 atmosferica è effettuata dalla PEP carbossilasi, che utilizza come substrato il fosfoenolpiruvato (PEP), con produzione di ossalacetato (OAA) e successiva riduzione a malato. PEP + CO 2 + H 2 O OAA + Pi OAA + NADH + H + Malato + NAD + La reazione di carbossilazione primaria ha luogo nel citoplasma durante la notte, quando gli stomi sono aperti; l'acido malico agisce come metabolita di accumulo e la sua concentrazione nel vacuolo aumenta progressivamente nel corso della notte causando acidificazione. Alla luce il malato passa nel citoplasma dove ha luogo la decarbossilazione dell'acido malico.

Piante CAM Dal punto di vista ecologico il CAM può essere considerato un efficace adattamento fisiologico all'aridità. Infatti la traspirazione nelle piante CAM ha luogo durante la notte, quando la temperatura è più bassa e il gradiente di concentrazione del vapor d'acqua tra pianta e aria è relativamente piccolo. La fissazione notturna della CO 2 è perciò associata ad un'elevata efficienza nell'uso dell'acqua.

Relazione fra fotosintesi e respirazione (I) reagenti Fotosintesi acqua e anidride carbonica Respirazione cellulare glucosio e ossigeno prodotti glucosio e ossigeno acqua e anidride carbonica equazione generale metabolismo energetico 6H 2 O+6CO 2 > C 6 H 12 O 6 +6O 2 6H 2 O+6CO 2 <C 6 H 12 O 6 +6O 2 Endoergonica Osservando le equazioni generali della fotosintesi, e della respirazione cellulare si può considerare che i reagenti della prima reazione (H 2 O e CO 2 ) sono i prodotti finali della respirazione cellulare; la prima reazione, è endoergonica, mentre la respirazione cellulare è esoergonica. I due processi possono quindi essere considerati interdipendenti. Esoergonica

Relazione fra fotosintesi e respirazione (II) Nella fotosintesi le piante e le alghe producono glucosio, composto ad alto contenuto energetico. Esso costituisce una fonte di energia chimica potenziale che può essere utilizzata o immagazzinata dallo stesso vegetale, oppure essere trasferita ad altri organismi.

Relazione fra fotosintesi e respirazione (III) Quando un erbivoro si nutre di una pianta (che è un produttore) trasferisce l'energia chimica del glucosio in una catena alimentare. Nelle cellule il glucosio viene demolito, generalmente per via ossidativa attraverso la respirazione cellulare, liberando la propria energia chimica che è utilizzata per ricaricare l'atp, disponibile per le diverse attività cellulari. L'energia del Sole passa in questo modo a tutti gli organismi viventi, autotrofi o eterotrofi. L'acqua e il biossido di carbonio, prodotti finali della respirazione cellulare possono essere nuovamente utilizzati dagli autotrofi per produrre glucosio attraverso la fotosintesi. Fotosintesi Respirazione cellulare reagenti acqua e anidride carbonica glucosio e ossigeno prodotti glucosio e ossigeno acqua e anidride carbonica equazione generale 6H2O+6CO2--> C6H12O6+6O2 6H2O+6CO2<-C6H12O6+6O2 metabolismo energetico Endoergonica Esoergonica

CICLO DEL CARBONIO Questa semplice rappresentazione grafica del ciclo biologico del carbonio evidenzia gli attori fondamentali nei due processi di fotosintesi e respirazione: il sole, che fornisce dall'esterno l'energia necessaria per mantenere il ciclo le piante, che sono in grado di utilizzare energia solare, anidride carbonica e acqua per attuare la fotosintesi generando ossigeno e carboidrati gli animali, che utilizzano carboidrati e ossigeno per la respirazione. Mediante la respirazione gli animali generano ATP, un trasportatore di energia essenziale per le loro funzioni vitali.

Respirazione e Fotosintesi Questo schema rappresenta, in modo estremamente semplificato, il rapporto tra respirazione e fotosintesi, dal punto di vista dei materiali iniziali e finali dei processi. Nella fotosintesi, CO2 e H2O danno luogo alla formazione di carboidrati e di ossigeno molecolare. Nella respirazione, carboidrati e ossigeno riformano CO2 e H2O

Fotosintesi nelle per mezzo di con con FOGLIE per mezzo di producendo CLOROFILLA contenuta nei CLOROPLASTI presenti nel TESSUTO A PALIZZATA cioè portata dai FLOEMA ACQUA TESSUTI CONDUTTORI proveniente dal cioè XILEMA LUCE SOLE immagazzinata nel TESSUTO SPUGNOSO per DIFFUSIONE GAS ANIDRIDE CARBONICA proveniente dai STOMI GLUCOSIO immagazzinato nel PARENCHIMA DI RISERVA