Wattmetro/ROSmetro automatico MHz con il PIC16F876

Documenti analoghi
VOLTMETRO/AMPEROMETRO DIGITALE (MK3980)

Ricevitore RX FM8SF 869,50 MHz

Ricevitore RX FM4SF 433,92 MHz

Il ricevitore supereterodina RX 4MM5 a 5V di alimentazione è in grado di ricostruire sequenze di dati digitali trasmesse in modalità AM OOK.

ACCODATORE D ANTENNA

Ricevitore RX-AM8SF. Pin-out. Connessioni

Comprendere il funzionamento dei convertitori V/f Saper effettuare misure di collaudo

ROSmetro QRP HF. Altra soluzione QRP (*)

WATTMETRO ROSMETRO AD INCROCIO D AGHI SX-40C

Operazioni di misura(1) A. Misura di tensione DC e AC (vedi figura 3)

Misuratore a Ponte di Rumore per antenne HF

Applicazioni dei microcontrollori PIC

Ricevitore RX 4MM5/F. RX 4MM5/F Manuale d uso. Pin-out. Connessioni. Caratteristiche tecniche

COMPONENTI PER L ELETTRONICA INDUSTRIALE E IL CONTROLLO DI PROCESSO

RX 4MHCS Ricevitore superreattivo MHz OOK(AM) 4 canali di uscita

Termometro digitale. Ivancich Stefano

Esempio di antenna a telaio, con spire rettangolari e circolari.

MISURA DELLA PERCENTUALE DI MODULAZIONE IN UN TRASMETTITORE AM

DEOMECANO - BINGO Per costruire bene il tuo Transceiver mono-banda QRP, SSB o CW

La sonda compensata. La sonda compensata

ACCORDATORE DAIWA CNW 419

Misure voltamperometriche su dispositivi ohmici e non ohmici

Esercitazione Misure su circuiti magnetici. 3 - Rilievo del ciclo di isteresi dinamico di un nucleo magnetico

IGB2 MANUALE DI SERVIZIO

Misure su linee di trasmissione

Filtro Passa Basso anti TVI per HF

SPLITTER RICEVITORI

Esercitazione 8 : LINEE DI TRASMISSIONE

VU-METER A LED By FABIO FIORAVANZO

Accordatore d antenna per SWL e BCL

Principio di funzionamento dell ONDAMETRO

RX up/lp - Low power consumption: <90 ua

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590

OSCILLATORE A SFASAMENTO

Il mio Lineare HF (di IØENF)

Richiesta preventivo materiale elettronica:

Esercitazione Multimetro analogico e digitale

Kit Assembling. (board rev 002)

COMPONENTI PER L ELETTRONICA INDUSTRIALE E IL CONTROLLO DI PROCESSO. Misuratori ed indicatori digitali da pannello DAT9550, DAT8050 e SERIE DAT700

Collaudo statico di un ADC

MISCELATORI A DUE CANALI

MODULO ALIMENTATORE 1 A K1823. La soluzione ideale per alimentare i vostri circuiti. ISTRUZIONI DI MONTAGGIO

Manuale d istruzione 1. Generalità 2. Avvertenze di sicurezza 3. Specifiche 3.1 Generalità

In elettronica un filtro elettronico è un sistema o dispositivo che realizza

INDICE KIT PER TRASFORMATORI E MOTORI KIT PER IL MONTAGGIO DI 2 TRASFORMATORI DL 2106

I.P.S.I.A. Di BOCCHIGLIERO. ----Misure sui converitori A/D---- Materia: Elettronica, Telecomunicazioni ed applicazioni. prof. Ing.

Progetto di un preamplificatore per microfono

ALIMENTATORE 0 30V 10A (MK 3965) di Giulio Buseghin

SEZIONE B - Inserimento dei componenti

II.3.1 Inverter a componenti discreti

TRASFORMATORI PER LE NOSTRE ANTENNE E ANTENNA DEFINITIVA

Interazione tra strumenti e sistemi in misura: effetto di carico

ModeloFuoriProduzione

ELETTRONICA APPLICATA E MISURE

Fagor Automation S. Coop. MANV-I/O. Manuale di installazione e funzionamento. Manual code: Manual version: 0404

Amplificatore Proporzionale KC-B10-11

Antenna Da Interno Amplificata DVB-T SRT ANT 12

Corso di Elettronica Industriale

Guida alla realizzazione di un'antenna a stilo con cavo coassiale. Drosophila -

Transceiver SSB per i 50 MHz.

HF3B by IT9ZMX. Pag. 1 vertical antenna for 1.8 / 3.5 / 7 MHz

Ultrasonic Level Meter USM-02. (Estratto dal manuale operatore)

Esperimentazioni di Fisica II. Esercitazione 0 Utilizzo strumentazione di laboratorio. Misure di resistenze.

TX 86-T AMPLIFICATORE AD IMPEDENZA NEGATIVA

I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT

Dipolo caricato con bobine posizionate al centro

Commutatore di antenna. illy

Watt Temperatura ambiente

Informazione e comunicazione per la sicurezza Esercizi tipo Telecomunicazioni

Bal-Un 1:1 da 1Kw key down 160-6mt

Dipartimento di Ingegneria Industriale e dell Informazione. Laboratorio di acquisizione dati

Masoero Fazari 5EA a.s.2011/2012 2

Amplificatori B.F. Hi-Fi da 10, 15, 25, 50,100 W con alimentazione asimmetrica

Ruggero Caravita, Giacomo Guarnieri Gruppo Gi101 Circuiti 1. Circuiti 1. Relazione sperimentale A P P A R A T O S P E R I M E N T A L E

Amplificatore differenziale con operazionale: studio e simulazione

Transceiver QRP CW per i 40 metri

COMPONENTI PER L ELETTRONICA INDUSTRIALE E IL CONTROLLO DI PROCESSO. Soglie di allarme per montaggio su guida DIN SERIE DAT5028-DAT5024

CONVERTITORI DC/DC STEP DOWN

TECNOLOGIA, DISEGNO E PROGETTAZIONE STRUMENTI DI MISURA

Radio Margherita. Una radio per le gite fuori porta. di Lucia Lattanzi e Damiano Piccolo

Convertitore 12-24V Preamplificatore per i 70cm Relazione sull ATV 2^ parte Tabella dati per accoppiatori d antenna

Soluzione: prof. Stefano Mirandola PRIMA PARTE. 1) 2) Schema a blocchi e progetto circuitale della catena di condizionamento.

STRUMENTO ELETTRONICO DI PESATURA

Modulo di frenatura ( Marklin 72442) auto costruito v 3.0 del 19/06/2010 by LucioTS

7 Elementi Yagi 144MHz SSB-CW Modello DK7ZB HB9TQF

Antenna digitale HD da interno MODELLO: FMAHD1500

Informazione Tecnica. 6. Relè differenziali di terra

Misure Elettriche ed Elettroniche Esercitazioni Lab - Circuiti con diodi e condensatori 1. Circuiti con diodi e condensatori

Antenne per Stazioni Radio Base: Antenne per UMTS

ITA. Modello DT Manuale d'uso

Serie 41 - Mini relè per circuito stampato A. Caratteristiche SERIE

CHIAVE A TASTIERA (cod. K6400)

P4 OSCILLATORI SINUSOIDALI

DIODO. La freccia del simbolo indica il verso della corrente.

VOLTMETRO ELETTRONICO PER MISURE DI RADIOFREQUENZA. Scritto da Giuseppe Balletta I8SKG Lunedì 09 Marzo :38

IL PROGETTO «TELECOMANDO» (sensore ad infrarossi)

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE

Comprendere il funzionamento dei convertitori Saper effettuare misure di collaudo

Verificheremo che a seconda dei valori della resistenza in questione è possibile:

Genere DATA Generalità Note Distribuzione

Transcript:

Wattmetro/ROSmetro automatico 1.8 60 MHz con il PIC16F876 Un progetto curato da Il Club Autocostruttori della sezione ARI di Padova Il progetto Già da qualche tempo opera presso la sede A.R.I. di Padova Il Club Autocostruttori, che raccoglie un piccolo gruppo di amici accomunati dalla passione per la sperimentazione nel campo della radio. Durante la riunione settimanale del mercoledì, discutendo delle inziative per il 2005, è nata l idea di questo progettino. Alla realizzazione ha collaborato Danilo (IW3EGT), che si è assunto il compito di sviluppare il software, e coordina il gruppetto che si interessa di microprocessori, ed il sottoscritto (IK3OIL), per la realizzazione dell accoppiatore direzionale e degli stampati. Nella sostanza si tratta del ben noto strumento, indispensabile nell attrezzatura di ogni OM, però in versione digitale ed automatica. Non richiede quindi l aggiustamento manuale del F.S. e fornisce la lettura diretta del R.O.S. e della potenza in Watt p.e.p., nonché un indicazione visiva della potenza istantanea mediante una barra a riempimento progressivo (molto ben realizzata dall amico Danilo). Lo strumento fornisce una misura piuttosto precisa nelle bande HF e VHF fino a 50 MHz, entro un range di potenze compreso fra 5 e 120W, adattandosi quindi alla maggior parte delle apparecchiature radioamatoriali HF, anche nella categoria QRP. Il circuito elettrico dell accoppiatore direzionale IN RG174 5 cm OUT 9-12V 4.7KΩ 47KΩ Toroide FT50-43 35 spire Φ 0.4 mm 4.7pF 2x 2x Vdir 8.2KΩ 10µH 10µH 8.2KΩ Vref 60pF 82pF 3.3KΩ Questa parte dello strumento è stata oggetto di varie prove, con circuiti diversi, tutti più o meno convenzionali, nella versione ad una e a tre bobine, con e senza presa centrale. Alla fine la soluzione più semplice si è rivelata anche la migliore, con una sola bobina a singolo avvolgimento. Il bilanciamento avviene mediante un comune trimmer da 60 pf, che andrà regolato per il minor valore di ROS su carico adattato (dummy load da 50 Ω). Sperimentalmente si è dimostrato utile inserire due piccole capacità (15 pf) in parallelo alle resistenze da 100 Ω, in questo modo si ottiene una migliore linearità in frequenza e un miglior bilanciamento del ponte di misura. Da tener presente che il condensatore da 4.7 pf collegato al ramo di ucita deve essere idoneo per alta tensione (200 V). I diodi sono del tipo Schottky low barrier, il modello impiegato è un, o altro equivalente, reperibile presso RF ELETTRONICA di F.Rota : www.rfmicrowave.it), con questi diodi si riesce ad ottenere una buona linearità in frequenza e, grazie alla bassa caduta di tensione, anche una buona precisione con un ampia dinamica di potenza, infatti lo strumento 1

fornisce un indicazione sufficientemente precisa in un range di potenze da 5 a 120 W. Se si accetta una minore precisione nella lettura del R.O.S., è possibile utilizzarlo anche con livelli inferiori di potenza, fino a circa 3 W. Per migliorare la dinamica sui bassi livelli, si è dimostrato utile prevedere una leggera polarizzazione diretta dei diodi, ottenuta mediante il trimmer da 5KΩ, che andrà regolato in modo da leggere qualche millivolt in assenza di segnale. Il vero e proprio accoppiatore è costituito da uno spezzone di cavetto coassiale RG174, lungo circa 5 cm, fatto passare entro il toroide FT50-43. Quest ultimo va realizzato avvolgendo 35 spire di filo di rame smaltato del diametro di 0.4 mm, distribuite uniformemente su tutta la superfice del nucleo toroidale. La calza del cavetto coassiale va collegata a massa solo dal lato USCITA, come indicato nello schema. Tutto l insieme va montato in modo da rispettare il più possibile la simmetria dei due lati, per ottimizzare il bilanciamento. E anche possibile modificare il range di potenze trattate variando il numero di spire della bobina, un aumento corrisponde ad uno spostamento del range verso l alto (potenze più elevate), una riduzione dell avvolgimento sposta il range verso il basso (potenze più basse). Il sistema di lettura a microprocessore 10µF 0.1µF 78L05 9-12 V DISPLAY 10µF PROGRAMMER 1KΩ Vss Vdd Vo RS R/W E Vdir Vref RESET 1 PIC16F876 MCLR RA0 RA1 RA2 RA3 RA4 RB7 RB6 RB5 RB4 RB3 RB2 28 DB0 RA5 RB1 DB1 DB2 DB3 DB4 DB5 OSC1 OSC2 RC0 RC1 RB0 Vdd RC7 RC6 Vss +5V UP DOWN DB6 DB7 RC2 RC5 RC3 RC4 14 15 SET 4 MHz 100nF Il vero plus di questo dispositivo è l impiego del microprocessore. Abbiamo optato per un PIC16F876 perché dispone di un convertitore A/D interno a 10 bit, necessario per effettuare la lettura delle due tensioni Vf (diretta) e Vr (riflessa). Una volta acquisiti i due valori è sufficiente applicare la formula : SWR = (Vf + Vr) / (Vf Vr) per migliorare la precisione del calcolo, il microprocessore tiene conto della caduta di tensione sui diodi. Poiché questa varia in funzione della tensione letta, ho rilevato sperimentalmente una serie di valori per il diodo, questi sono stati caricati nella memoria del PIC. Ritengo che altri diodi Schottky con Vf dell ordine di 0,3 0,4 V presentino valori analoghi. 2

La potenza indicata è un valore di picco (p.e.p.) e viene misurata acquisendo il valore massimo riscontrato in un periodo di durata costante (circa 2 secondi), la lettura viene aggiornata al termine di ogni periodo di misurazione. In questo modo si ottiene una lettura abbastanza stabile anche durante la modulazione. E poi prevista un indicazione della potenza istantanea mediante una barra a riempimento progressivo, sulla seconda riga del display. Questa indicazione viene aggiornata 10 volte al secondo e segue quindi l andamento istantaneo del segnale trasmesso. L azzeramento del display avviene dopo circa 2 secondi, qualora non vi sia segnale in ingresso. Il circuito prevede la possibilità programmare il PIC in circuit mediante connessione standard sui pin MCLR, RB6 e RB7. E previsto anche un pulsante di RESET manuale. La calibrazione dello strumento La calibrazione è l unica operazione manuale da eseguire una tantum prima dell impiego, per il resto il funzionamento è completamente automatico. Tenete presente che l indicazione dello strumento sarà tanto più precisa quanto più accurata sarà stata la taratura iniziale. La calibrazione si può dividere in due fasi : la taratura dell accoppiatore direzionale e la taratura del sistema a microprocessore. Entrambe le fasi richiedono l impiego di un carico fittizio da 50Ω, se non l avete potete costruirne facilmente uno, da utilizzare con potenze non superiori a 15 W, secondo il seguente schema RF IN 1N4148 DVM 9 x 470 Ω 2W non induttiva 10nF Per le resistenze bisogna impiegare un tipo antinduttivo (a impasto o strato metallico), non utilizzate quindi delle resistenze a filo. L uscita DVM va collegata ad un tester digitale ad alta impedenza. Taratura dell accoppiatore direzionale si esegue nel modo seguente : - Si collega il DVM all uscita Vref dell accoppiatore e l alimentazione (9 12V) al potenziometro da 4,7 KΩ. Si regola il potenziometro per leggere circa 5 mv. - Si collegano ora il trasmettitore ed il carico fittizio, si opera in portante continua (CW o AM) con una potenza di 10 15 W, in banda 28 MHz. Il tester digitale va collegato sempre all uscita Vref dell accoppiatore. Si regola il compensatore da 60 pf per la minima lettura, che dovrebbe essere prossima allo zero. Taratura del sistema a microprocessore. Questa calibrazione si effettua collegando un trasmettitore di potenza nota, possibimente compresa fra 10 e 50 W, e un carico fittizio. Ovviamente il trasmettitore dovrà essere predisposto per erogare una portante continua (modo CW oppure AM). All uscita della sonda va collegato un tester digitale e la potenza si calcola facilmente applicando la seguente formula : Potenza (Watt) = (Vout + 0.5) 2 / 100 La correzione di 0.5 V è necessaria per compensare la caduta di tensione sul diodo. 3

Si opererà possibilmente al centro della banda (14-21 MHz) dopo aver attivato l apposita funzione del software con il pulsante SET. A questo punto il microprocessore chiede di immettere, mediante l uso di due pulsanti ( < e > ), il valore della potenza impiegata, che dovrà essere ricavata leggendo la tensione sul carico fittizio. Dopo aver chiesto una conferma, il PIC memorizza questo valore, che utilizzerà poi come riferimento per i suoi calcoli. Il circuito stampato e lo schema di montaggio dell accoppiatore direzionale Il circuito stampato dell accoppiatore direzionale viene realizzato su una piastrina di rame doppia faccia. Sul lato dove sono tracciate le piste di collegamento vengono montati tutti i componenti, ad eccezione dei due bocchettoni SO239. Il lato opposto conserva integra la superficie di rame, che viene utilizzata come piano di massa distribuita, su questo lato vengono quindi riportati e saldati tutti i collegamenti di massa. Sempre su questo lato vengono montati i due bocchettoni SO239, fissati con tre viti ciascuno, le stesse viti potranno essere utilizzate per fissare la basetta ad un telaio metallico. Per alloggiare alcuni componenti (es. i trimmer) è opportuno praticare dei fori passanti, in questo caso il foro andrà svasato leggermente sul lato opposto con una punta da 4 mm, in modo da creare il necessario isolamento. Circuito stampato in scala 1:1, visto dal lato dei collegamenti 4

Piano di montaggio dei componenti 9-12V 4,7KΩ 60pF 82pF 47KΩ 4,7pF TX ANT 8,2KΩ Dir 10µH 8,2KΩ 3,3KΩ 10µH Rifl Il circuito stampato e lo schema di montaggio del modulo PIC Il montaggio di questo modulo non presenta alcuna difficoltà, non ci sono elementi critici, tuttavia raccomando di separare accuratamente le due basette (RF e PIC), e possibilmente schermare l accoppiatore direzionale con una copertura in lamierino, in modo da evitare irradiazione RF verso il microprocessore. Il circuito stampato è realizzato su una piastrina di rame a singola faccia, da notare il connettore per la pulsantiera di calibrazione, che serve solo per la taratura iniziale e converrà quindi collegare solo all occorrenza. Questo connettore prevede anche il collegamento di un quarto pulsante, attualmente non utilizzato, per un eventuale impiego futuro. Nello schema di montaggio si può notare la presenza di alcune resistenze di basso valore (10 Ω) utilizzate come ponticelli per risolvere gli incroci delle piste. Circuito stampato in scala 1:1 (66x48 mm), visto dal lato rame 5

Piano di montaggio dei componenti Tasti 5X 10µF + 78L05 10µF 9-12V 1KΩ PIC16F876 4MHz ENCODER LCD RESET Programmer Per concludere A questo punto, oltre a fare un augurio di buon lavoro e buon divertimento a chi vorrà cimentarsi in questa semplice realizzazione, mi resta solo da citare i riferimenti E-mail per eventuali contatti : (SilveryDanilo@libero.it ) Danilo IW3EGT, (info@ik3oil.it) Francesco IK3OIL. 6