FUSIONE NUCLEARE La via verso il reattore

Documenti analoghi
La strada percorsa e il futuro

Prospettive Industriali nel campo della fusione termonucleare:il Progetto ITER

Fusione a confinamento inerziale

Paolo Buratti. Associazione EURATOM-ENEA sulla Fusione, Frascati, Italy

La fusione. Lezioni d'autore. di Claudio Cigognetti

Prospettive energetiche della Fusione Termonucleare Controllata. G Bosia Dipartimento difisica. Università di Torino

Dagli esperimenti di Fusione attuali ad ITER

IL PROGETTO ITER. dalla fusione nucleare l energia per il nostro futuro. Opportunità per le imprese. Alessio Misuri Dintec. Ferrara, 21 novembre 2008

Il programma Ignitor

Formazione e ricerca sull energia da fusione termonucleare

Italian ITER Business Forum La Partecipazione Italiana al Programma Internazionale sulla Fusione

Lezione 2 Condizioni fisiche per la produzione di energia per mezzo di fusione termonucleare controllata

Ricerca e prospettive della fusione nucleare - Il progetto ITER

il CNR: il più grande ente pubblico italiano di ricerca Fondato nel 1923 (novantesimo compleanno nel 2013)

RICERCA SCIENTIFICA ed ENERGIA DEL FUTURO

La fusione nucleare: fonte di energia

Attività di fisica della fusione complementari a ITER

Fissione indotta e fusione nucleare (cenni)

LA FUSIONE TERMONUCLEARE (appunti presi dal sito dell Enea:

La Fusione Nucleare per la produzione di energia

Dipartimento Fusione e Tecnologie per la Sicurezza Nucleare

H 2 H 2 H 2. Come geenerare corrente nel plasma di un possible reattore a fusione nucleare è un problema di fondamentale importanza

Aspetti di Elettromagnetismo Applicato nella Fusione Termonucleare Controllata

Stato e Prospettive delle Ricerche sulla Fusione Termonucleare Controllata

FTC - Metodi di Confinamento

La Fusione Nucleare. Il sole dell avvenire. M.Samuelli UTS Fusione

Il progetto Divertor Tokamak Test, una nuova opportunità per le imprese italiane

Le reazioni di fusione. 1 kev = K

Il Vuoto Fisico. un invito al laboratorio. Andrea Fontana, INFN Pavia

Scuola Politecnica - DEIM ANNO ACCADEMICO CORSO DI LAUREA MAGISTRALE Ingegneria Energetica e Nucleare INSEGNAMENTO

Steven Weinberg. Marco Gentilini: Impianti Nucleari. Energie Rinnovabili. Conversione Diretta 1

Le prospettive dell energia da fusione nucleare e il progetto ITER. Francesco Romanelli ENEA, Frascati

Come l Universo produce energia? Energia di legame nucleare

L Energia da Fusione

E = MC². È: Una forma di energia che deriva da profonde modificazioni della struttura stessa della materia. ENERGIA NUCLEARE

Riconnessione magnetica, filamenti ed eventi di espulsione in plasmi di laboratorio

LA FUSIONE NUCLEARE IN ITALIA ED IN EUROPA IL RUOLO DELL ENEA. Aldo Pizzuto, ENEA Direttore Unità Tecnica Fusione

Ricerca sulla fisica dei plasmi e della fusione termonucleare a Padova

E=mc2. Cosa è ENERGIA NUCLEARE. Fu Albert Einstein a scoprire la legge che regola la quantità di energia prodotta attraverso le reazioni nucleari

università DEGLI STUDI DI NAPOLI FEDERICO II

INDICE. Cos è la Fusione Nucleare... Fusione Nucleare sulla Terra... La Fusione a Confinamento Magnetico... ITER Stellarator...

LA RICERCA SULLA FUSIONE NUCLEARE E LE SUE RICADUTE INDUSTRIALI

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg.

La ricerca sulla fusione a Padova

E=mc². E n e r g i a ENERGIA NUCLEARE

APPUNTI DI TECNOLOGIA. ENERGIA NUCLEARE Fissione nucleare Fusione nucleare Centrali nucleari Vantaggi - Svantaggi Produzione

APPUNTI DI TECNOLOGIA

FTU: una stella dentro una ciambella magnetica

Istituto di fisica del plasma Max Planck. Fusione nucleare Ricerca sull'energia del futuro

Lezione 1 Introduzione al corso di Fisica del Plasma Confinato

Cenni di Fisica Nucleare

Percorsi Didattici di Fisica della Materia FISICA DEI PLASMI

Risultati di simulazioni con un codice ibrido Magnetoidrodinamico- Girocinetico (MHD-GK)

Esperienza e ruolo del Politecnico di Torino nella Fusione Nucleare

La fusione nucleare come fonte energetica: stato della ricerca. -Udine, 27 novembre

Le centrali nucleari

La ricerca sulla fusione a Padova

Il nucleo dell atomo

La fisica dell energia Ezio Menichetti Dip. di Fisica Universita di Torino

Fusione nucleare: strutture resistenti al calore

COMPONENTI PRINCIPALI IN UN TOKAMAK

INFORMAZIONI PERSONALI

Fusione seconda puntata

FUSIONE NUCLEARE: DALLA FANTASCIENZA ALLA REALTA

LA FUSIONE: L IMPEGNO DI OGGI PER L ENERGIA DI DOMANI

Lezione 4. Vita delle Stelle Parte 2

Seminario del 25/09/08 su nucleare per l energia. ( R.Petronzio, presidente dell Istituto Nazionale di Fisica Nucleare)

Supercritical CARbon dioxide/alternative fluids Blends for Efficiency Upgrade of Solar power plant

J. Robert Oppenheimer

Parte I Le informazioni fisiche contenute negli spettri

FORME E FONDI DI ENERGIA.

Il reattore a fusione ITER stato del progetto opportunitá per le aziende

Il nucleo dell atomo

Albert Einstein fu il primo scienziato ad intuire che dal nucleo si poteva ottenere energia.

& ricerche. Magnetic Fusion Energy. The ITER Project

Rivelatori Caratteristiche generale e concetti preliminari

Cosa alimenta le stelle? Stefano Covino INAF / Osservatorio Astronomico di Brera

Il Nucleare da Fusione

Rimodulazione coerente con Negoziazione

Macchine per! fusione a confinamento magnetico! Cenni su principî, risultati, prospettive!

La produzione di energia da reazioni nucleari Energia da fusione nucleare

L energia nella scuola. Enzo De Sanctis INFN-Laboratori Nazionali di Frascati Societa Italiana di Fisica

Conversione dell energia - Terminologia

Il bisogno di energia dell umanità

ENERGIA NUCLEARE DA FUSIONE

Mario Merola - ITER International Organization

Osservando il Sole è possibile scorgere delle aree che appaiono più scure (macchie) rispetto al resto della fotosfera a causa della loro temperatura

Attività di Ansaldo Nucleare per ITER G.P. Sanguinetti

Stelle e Neutrini: il centro del Sole

La via europea alla fusione:

motors - Servomotori per applicazioni speciali Potenti Compatti Efficienti

COME E FATTA LA MATERIA

FISICA NUCLEARE. Liceo scientifico Don Bosco Fisica nucleare pag.1

Sicurezza e protezione

Nane bianche e stelle di neutroni. di Roberto Maggiani

CENTRO CONGRESSI UNIONE INDUSTRIALE

Collisioni tra ioni pesanti -- energie intermedie

Profilo economico del nucleare

RELAZIONI 187 RELAZIONE DEL PROFESSOR ROMANO TOSCHI

La ricerca sulla fusione a Padova

Transcript:

FUSIONE NUCLEARE La via verso il reattore Francesco De Marco Associazione ENEA-EURATOM sulla Fusione Frascati

LA FUSIONE ALIMENTA IL SOLE E LE ALTRE STELLE. Ogni secondo nel sole circa 700 milioni tonnellate di idrogeno si trasformano in elio. Queste reazioni producono 4x10 26 watt (!) di cui meno di un miliardesimo cade sulla terra. Fonti di energia attualmente usate o in via di sviluppo: - l'energia solare diretta, - l'energia idrica (tramite l'evaporazione), - i combustibili fossili e le biomasse ( tramite la fotosintesi), - l'energia eolica ( tramite il riscaldamento dell'atmosfera) hanno origine da processi di fusione.

Un reattore a fusione di grandi dimensioni L esito del ciclo di Bethe: 1 H+ 1 H+ 1 H+ 1 H 4 He + 25 MeV. Il ciclo di Bethe e gli altri che partono dall idrogeno richiedono grandi densità e grandi dimensioni = confinamento gravitazionale.

E' POSSIBILE RIPRODURRE E CONTROLLARE I PROCESSI DI FUSIONE SULLA TERRA? La grande difficoltà della fusione consiste nel superare la forte repulsione elettrica ( legge di Coulomb)

La reazione Deuterio-Trizio Per ottenere energia da fusione sulla Terra dobbiamo partire da isotopi dell idrogeno che reagiscono più facilmente: Energia di reazione >> energia di ionizzazione il combustibile è allo stato di plasma (fluido completamente ionizzato). Le particelle alfa ( 4 He ++ ) sostengono il plasma (ignizione) se questo è abbastanza caldo, denso e ben confinato. Temperatura T >10 kev (100 milioni di gradi); densità n e tempo di confinamento τ tali che n τ > 2 10 20 sec/m 3.

Reazioni di fusione La reazione considerata è: D+T n(14.1mev)+he 4 (3.5MeV) Per ricostituire il trizio n+li 6 T+He 4 +4.8MeV Altre reazioni hanno probabilità e rendimenti più bassi, anche se hanno potenziali vantaggi per la bassa produzione di neutroni

La scelta della reazione D+T ha fondamentali conseguenze che non possono essere sottostimate. I quattro quinti dell'energia da fusione sono portati da neutroni veloci di 14 MeV. Questi neutroni devono essere rallentati in un involucro (blanket) che circonda la camera di reazione, ove la loro energia è convertita in calore per alimentare una turbina. Il blanket ha anche un'altra funzione fondamentale, cioé generare il trizio.

Schema di principio del reattore

Qual è il fine dell attività di ricerca? Costruire un reattore sicuro, ragionevolmente pulito e accettabile dal punto di vista ambientale, economicamente attrattivo.

Il confinamento magnetico del plasma Le particelle cariche seguono orbite a spirale attorno alle linee di campo. Il plasma si diffonde attraverso il campo per collisioni o effetti di deriva.

Configurazioni lineari e toroidali (a ciambella) Plasma non magnetizzato Configurazioni lineari: sopravvivono come esperimenti di base. Configurazioni toroidali: costituiscono il mainstream della ricerca sulla fusione

Schema di un tokamak La componente toroidale del campo magnetico è prodotta da bobine avvolte attorno all anello di plasma. Il solenoide centrale induce una corrente che genera il plasma (breakdown) e lo scalda. Altre bobine controllano la posizione del plasma.

IL TOKAMAK Sezione del plasma Camera da vuoto e divertore

Storia (1) Le ricerche sulla fusione iniziarono negli anni 50. Furono declassificate con la conferenza di Ginevra del 1958. Alla fine degli anni 60 i russi annunciarono che il tokamak T-3 raggiungeva alte temperature e tempi di confinamento di circa 20ms, molto più grandi che quelli di altri esperimenti. Le misure russe erano indirette. Furono confermate da una squadra di scienziati inglesi che eseguì sul T-3 misure mediante scattering di luce laser (metodo nuovo per quei tempi).

Storia (2) Da allora decine di tokamak hanno operato e operano nel mondo. In particolare in Italia: Thor (CNR-Milano, non più operativo), FT(ENEA-Frascati, non più operativo), FTU (ENEA-Frascati, in operazione). I paesi europei hanno costruito e gestito in comune il più grande tokamak nel mondo, il JET a Culham(R.U.).

Problemi scientifici Controllare grandi volumi di plasma per tempi lunghi o in continua. Massimizzare il valore di β= Pressione del plasma Pressione magnetica Infatti potenza di fusione ß 2 xb 4 xvolume (B Campo Magnetico)

Problemi scientifici(2) Riscaldare il plasma alle temperature necessarie ( 10 20keV; 1keV 107K) Ottenere tempi di confinamento dell ordine del secondo nei regimi di interesse per il reattore Metodi di riscaldamento del plasma

Per accendere il fuoco nucleare <nt> τ (m -3,keV,sec) 2 10 21 B 2 ß τ(tesla,%,sec) 100 <nt> media di nt sulla sezione del plasma

Raggiunti oggi valori di ntτ entro un fattore circa 3 da quello richiesto.

La Fusione in Italia (1) Da decenni Associazione ENEA EURATOM che comprende: ENEA Consorzio RFX (ENEA,CNR,Un.Padova,Acciaierie Venete) IFP-CNR,Consorzi universitari. Dal 2006 anche INFN in Cons. RFX

La Fusione in Italia (2) In 2005, 415 persone e circa 55MEURO (incluso il personale) Esperimenti: FTU,RFX Partecipazione a JET ITER Tecnologia (Magneti,neutronica,materiali) Programma a lungo termine (DEMO) Limitato programma sulla fusione inerziale

Fisica e Tecnologia Progressi nella fisica devono essere accompagnati da progressi nella tecnologia. Esempio Fisica Reattori compatti Alti carichi energetici e neutronici sui componenti affacciati al plasma Ricerca sui materiali

Materiali Lo sviluppo di materiali con bassa attivazione e alta resistenza sotto bombardamento neutronico e che operino ad alta temperatura (T 1000 C) permettono alte efficienze termiche ( 50%) e possono anche produrre direttamente idrogeno

Tecnologia Le principali aree tecnologiche nel cammino verso il reattore sono: bobine superconduttrici il blanket triziogeno, i componenti affacciati al plasma e i materiali resistenti alla radiazione e che abbiano basse proprietà di attivazione.

I passi futuri ITER ( Dimostrazione della fattibilità scientifica, progresso nella fattibilità tecnologica) Sorgente di neutroni per studi sui materiali Reattore dimostrativo DEMO

EU,USA,Giappone,Fed. Russa, Cina,Corea,India Sito:Cadarache (Francia) Inizio costruzione: 2007 Inizio operazioni: 2016 500MW di potenza di fus. x500sec ITER

The core of ITER Central Solenoid Nb3Sn, 6 modules Cryostat Toroidal Field Coil Nb3Sn, 18, wedged 24 m high x 28 m dia. Vacuum Vessel 9 sectors Blanket Poloidal Field Coil Nb-Ti, 6 Major plasma radius 6.2 m Plasma Volume: 840 m3 Plasma Current: 15 MA Typical Density: 1020 m-3 Typical Temperature: 20 kev 440 modules Port Plug heating/current drive, test blankets limiters/rh diagnostics Torus Cryopumps, 8 Divertor 54 cassettes Fusion Power: 500 MW Machine mass: 23350 t (cryostat + VV + magnets) - shielding, divertor and manifolds: 7945 t + 1060 port plugs - magnet systems: 10150 t; cryostat: 820 t

Device B(tesla) Ip (MA) Vol (m 3 ) t (s) FTU 8 1.2 1.5 1.5 JET 3.5 5 100 40 ITER 5.3 15 840 >300 La missione di ITER è dimostrare la fattibilità scientifica dell energia da fusione e di progredire nella fattibilità tecnologica. ITER ha come obiettivo: - dimostrare la produzione estesa nel tempo di energia; P 500MW, Q 10 - provare tecnologie essenziali per il reattore (come le bo bine superconduttrici) in un sistema integrato.

Progetti di reattori modello mostrano tendenza verso reattori più economici. 8 Z(m) 6 4 ITER D C B A 2 0-2 0 5 10 15 R(m) -4-6 -8 Filiera USA ARIES: evoluzione del raggio maggiore Filiera UE: evoluzione della sezione del plasma (A B C D Progressi in scienza e tecnologia)

CONCLUSIONI La fusione può dare un contributo nella seconda metà del secolo. I reattori avanzati forniranno elettricità di base e produrranno direttamente idrogeno Sezione del reattore modello ARIES -AT 2 m 4m

CONCLUSIONI Le centrali a fusione sono intrinsecamente sicure Con un appropriata scelta dei materiali le scorie della fusione non costituiranno un un problema di lungo termine per le generazioni successive a quella che ha prodotto le scorie stesse. Nello spirito dello sviluppo sostenibile

Vista del reattore modello ARIES-AT 2m 4m

CENNI SULLA FUSIONE INERZIALE Ringraziamenti a S.Atzeni Univ. di Roma La Sapienza

Fusione a confinamento inerziale Reazioni di fusione da una piccola quantità (milligrammi) di combustibile (DT), contenuta in un bersaglio, fortemente compressa (1000 volte la densità del solido!) riscaldata ad altissima temperatura (100 000 0000 K) pressioni di miliardi di atmosfere; nessun confinamento esterno => il combustibile è confinato solo dalla sua stessa inerzia brucia in modo esplosivo per una frazione di miliardesimo di secondo Processo impulsivo (microesplosione) è necessario fornire energia ciclicamente tramite un driver la massa del combustibile è limitata dalla necessità di contenere l esplosione in un reattore (1 mg di DT rilascia 340 GJ, come l esplosione di 85 kg di tritolo)

Il principio dello schema classico

Schema alternativo : ignizione veloce si usano due diversi laser per comprimere prima e riscaldare poi proposto da M. Tabak nel 1993 condizioni di ignizione calcolate da S.A. (1996, 1999)

Qualche numero (per un futuro reattore) Bersaglio (guscio) massa: qualche milligrammo raggio: 1 3 mm spessore = 0.1 x raggio impulso laser Energia: 1.5 MJ ( 0.4 kwh) Durata: 10 20 miliardesimi di secondo (10 20 ns) potenza di picco: 400 000 miliardi di watt Intensità massima: 10 19 W/m 2 radiazione ultravioletta o blu Energia di fusione prodotta 100 volte l energia dell impulso laser

Storia moderna della fusione inerziale anni 70: prime implosioni fine anni 70: pessimo assorbimento della luce laser infrarossa inizio anni 80: sviluppo laser a luce visibile e u.v. buon assorbimento, generazione di alte pressioni 1988-1992: misurate elevatissime compressioni (x 600), elevatissime temperature primi anni 90: comprese, misurate, simulate le instabilità, sviluppate tecniche di misura con risoluzione spazio-temporale elevatissima (micron - picosecondo) 1992-94: dati disponibili per iniziare a progettare esperimenti di ignizione 1994: primi laser ultra-intensi e schema di ignizione veloce ------------------------- nota: fino al 1993 molte ricerche coperte da segreto militare (USA, URSS, F, GB)

Esperimenti di ignizione: Dall ignizione al reattore Una strada lunghissima, ma già avviata Obiettivo: ignizione, con moltiplicazione G > 10, impiegando laser con rendimento dell 1% che effettuano pochi spari al giorno, usando bersagli che costano più di 1000 $ ciascuno Reattore: Necessari: moltiplicazione G > 100, impiegando driver con rendimento del 10% che effettuano 5 spari al secondo, usando bersagli che costano meno di 1 $ ciascuno!

Uno dei molti concetti di reattore Sono già in corso azioni di ricerca e sviluppo su tutti i componenti

Lo sforzo internazionale sulla fusione inerziale Grandi programmi (> 300 Meuro/anno) : USA e Francia (in parte notevole finanziati da organismi militari, ma con notevoli componenti civili, universitarie, etc.) Medi programmi (qualche decina di Meuro/anno): GB, (con numerosi laser di varie dimensioni, e grande partecipazione di giovani), Giappone, Russia Programma più piccolo, ma di frontiera su alcuni temi: Germania Piccole attività: Polonia, Rep. Ceca, Spagna, Portogallo, Corea, India

E in Italia? Attività sperimentale pioneristica a Frascati negli anni 60, poi interrotta; ripresa nel 1977. Impianto LASER ABC (circa 200J) Finanziamenti Euratom per Frascati; piccoli programmi ministeriali per gli altri gruppi. Piccole attività sperimentali a Pisa e Milano. Piccolissimi nuclei partecipano a collaborazioni ed esperimenti all estero (con finanziamenti esteri). Attività teorica di piccole dimensioni, ma ancora internazionalmente riconosciuta ( Frascati, Roma; su qualche tema Pisa); collaborazione richiesta da alcuni fra i maggiori laboratori europei e americani. Sviluppate in Italia teoria dell ablazione, dell ignizione, studi importanti su simmetria e stabilità, interazione laser ultra-intensa; programmi di calcolo.

Una nuova proposta europea: HiPER, un laser per l ignizione veloce idea: 2005-6 pre-progetto: 2007-2010 costo: 750 milioni di euro? nell attuale fase leadership italiana di due dei sei/sette gruppi di lavoro

Construction Cost Sharing C Contributions in Kind Major systems provided directly by Parties A Systems suited only to Host Party industry - Buildings - Machine assembly - System installation - Piping, wiring, etc. - Assembly/installation labour Overall cost sharing: EU 5/11, Others 6 Parties 1/11 each, Overall contingency up to 10% of total. B Residue of systems, jointly funded, purchased by ITER Project Team Overall costs shared according to agreed evaluation of A+B+C

Il Tokamak In un toro le particelle sono perse per una lenta deriva verso le pareti In un tokamak il confinamento viene dato da sovrapposizione di un forte campo magnetico toroidale generato dall esterno e da un campo magnetico poloidale generato dalla corrente di plasma.

Studi socio-economici Il costo del reattore deriva in massima parte dal costo dell impianto Gli studi s.e. hanno valutato il costo dell elettricità da fusione e gli scenari di inserimento della fusione nella produzione di energia. Ai risultati sui costi manca la verifica di un prototipo operante Il confronto con il progetto ITER ha diminuito il margine di incertezza

Studi socio-economici Questi studi affermano che i costi diretti dell elettricità da fusione non sono molto distanti da quelli di fonti rinnovabili tipiche. I costi indiretti della fusione sono trascurabili. Gli studi s.e. mostrano che la penetrazione della fusione dipende non solo dai suoi costi diretti, ma anche dall atteggiamento della società verso le fonti di energia ( limiti alla produzione di CO2, diffidenza verso la fissione, scorie)

Si possono evitare scorie che richiedano depositi permanenti per tempi lunghi. Il caso del reattore modello studiato in Europa Model C. Verde=scorie non attive Viola=scorie semplicemente riciclabili Blu=scorie riciclabili con manipolazione a distanza Rosso= scorie in depositi permanenti