Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 9 TERMOLOGIA E DISPERSIONI TERMICHE



Documenti analoghi
CERTIFICAZIONE ENERGETICA

PRINCIPI DI TRASMISSIONE DEL CALORE

Gli impianti per la climatizzazione

Temperatura e Calore

CALDAIE E RISCALDAMENTO: Gli incentivi possibili. 06/05/2008 1

LEZIONE 5-6 ENERGIA TERMICA, TRASPORTO DEL CALORE (CONDUZIONE, CONVEZIONE) ESERCITAZIONI 2

Il vetro e l isolamento termico Scambi termici

IMPIANTI DI CLIMATIZZAZIONE

Lavori intelligenti per il risparmio energetico

ESEMPI DI CALCOLO MANUALE DEL FABBISOGNO DI INVOLUCRO SECONDO D.G.R. VIII/5018 DEL 26/06/2007 E DECRETO DEL

Il raffrescamento estivo con gli impianti radianti

RISCALDARE e RISPARMIARE. calcolo del fabbisogno termico degli edifici

IMPIANTI RISCALDAMENTO Descrizione

22/04/2013. La tenuta all aria non significa impermeabilità al vapore!!!

PREMESSA. Scuola secondaria di primo grado Dante Alighieri Tricase (LE) Pag. 1

L isolamento termico degli edifici

TIPOLOGIE IMPIANTISTICHE

CERTIFICAZIONE ENERGETICA COMUNE DI MILANO PROVINCIA DI MILANO

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

La ventilazione meccanica controllata LA VENTILAZIONE DEI LOCALI

basso consumo energetico

COMUNE DI LIZZANO. (Provincia di Taranto) Progetto di ristrutturazione edilizia per la realizzazione di una casa alloggio PROGETTO ETNICAMENTE A.

Calcolo della trasmittanza di una parete omogenea

La bioclimatica nella storia. Corso Probios Carrara 16 settembre 2006 Arch. M. Grazia Contarini

Temperatura e Calore

Università di Roma Tor Vergata

Impianto Solare Termico

TERMOGRAFIA a infrarossi

Buono Microclima confortevole

corso di FISICA TECNICA modulo di IMPIANTI TECNICI Scheda 01

Impianti di riscaldamento convenzionali

CASE CON SISTEMI INNOVATIVI COMPARATIVA IMPIANTI RISCALDAMENTO

352&(662',&20%867,21(

Cos è la Termografia InfraRosso

COME SCEGLIERE L ORIENTAMENTO DEGLI AMBIENTI

Lavoro d anno Corso di Energetica Industriale Professore: Antonio Ficarella

I CONSUMI ED IL RENDIMENTO

RIQUALIFICAZIONE ENERGETICA EDIFICI PUBBLICI COMUNE DI CAVRIAGO. Azienda Casa Emilia-Romagna di Reggio Emilia

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

Combustione energia termica trasmissione del calore

MERCOLEDI 26 GIUGNO 2013

Produzione del caldo e del freddo: energia dal sole e dalla terra

Cos è una. pompa di calore?

Audit energetico. La villetta bifamiliare. 24/06/2013

condizioni per la posa su massetto riscaldante

Corso di Componenti e Impianti Termotecnici. VERIFICA DEL C d

adesso riparmierete il 30% con le nuove apparecchiature Ecofanseason

LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante

sistema euromax Eurotherm SpA Pillhof 91 I Frangarto BZ Tel Fax mail@eurotherm.info

Edifici Evoluti Bertelli Residenza via Mazzali

Impianti Meccanici Calcoli Esecutivi e Relazione illustrativa Impianto Riscaldamento a Pannelli

Fabbisogno di acqua calda

LABORATORIO NORD - OVEST Offerta di energia. Il sistema Cogen-Barca

Impianti di riscaldamento. Prof. Ing. P. Romagnoni Università IUAV di Venezia Dorsoduro 2206 Venezia

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Miscelatori e riduttori di pressione

PROGETTARE UN EDIFICIO IN CLASSE A

Miglioramenti Energetici Solare Termico. Aslam Magenta - Ing. Mauro Mazzucchelli Anno Scolastico

Ente Scuola Edile Taranto IMPIANTO DI RISCALDAMENTO A PAVIMENTO

QUALITÀ E TRATTAMENTO DELL ACQUA DEL CIRCUITO CHIUSO

Collettori solari. 1. Elementi di un collettore a piastra

Comuni di Sirolo e Numana

ALLEGATO F. - combustibile utilizzato: gas metano gasolio GPL teleriscaldamento olio combustibile energia elettrica biomassa altro

progettazione di edifici con strutture portanti in legno 21 ottobre 2011 tenuta all aria arch. m.sc. andrea zanchetta

Principi di regolazione degli impianti termici

Esempi di ristrutturazione di edifici storici con sistemi radianti a bassa temperatura

REQUISITI DI ISOLAMENTO TERMICO PANNELLI DI TAMPONAMENTO

Riqualificazione energetica. La tranquilla tecnologia Cappotto multistrato riflettente. Ing. Francesco Veronese. Quanto costa?

Il sistema radiante a soffitto e parete. Climalife

Rilevazioni consumi. L Agenda. SCHEDE DI RILEAVAZIONE Scheda Istituto Scheda aula Come articolare la scheda. Uno schema aperto SCUOLE

Caratteristiche meccaniche, termiche e acustiche del tufo. Ing. Nicola Lauriero

Per un architettura che mette al centro l uomo

METODOLOGIE DI RISPARMIO DI ENERGIA TERMICA

Il riscaldamento a pavimento. Il riscaldamento a pavimento a basso spessore Funzionamento ad acqua Semplice benessere Caldo in 10 minuti!

Impianti tecnici nell edilizia storica

Il calcolo della potenza di riscaldamento. P. Romagnoni Università IUAV di Venezia Dorsoduro, Venezia

Elettricità e magnetismo

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro

IMPIANTI SOLARI TERMICI

Mini corso in fiera BESTClass 2.1 (software per la certificazione energetica)

I N D I C E Premessa PAG Descrizione dello stato di fatto PAG Intervento previsto da progetto PAG. 2

Il PANNELLO A TAGLIO TERMICO

Individuazione edificio e unità tipologica

CERTIFICAZIONE ENERGETICA COMUNE DI.. PROVINCIA DI.

LA CORRENTE ELETTRICA

RIFERIMENTI NORMATIVI

DIVIDIAMO LE NOSTRE CASE DALL AMBIENTE CHE LE CIRCONDA INSTALLIAMO DEGLI IMPIANTI PER IL RISCALDAMENTO

IMPIANTI RISCALDAMENTO Corpi scaldanti

I sistemi di riscaldamento a pavimento: i motivi della scelta e la soluzione per le ristrutturazioni

KLIMA NUOVI SISTEMI RADIANTI. klima

PANNELLI A SOFFITTO E/O A PARETE

Fondamenti di Climatizzazione Ambientale Prof. C.M. JOPPOLO Prova scritta 29/01/2010

Corso di Energetica degli Edifici

AUDIT ENERGETICO EDIFICIO SCOLASTICO

è l insieme dei fattori (es. temperatura, umidità, velocità dell aria) che regolano le condizioni climatiche di un ambiente chiuso

PROGETTARE UN EDIFICIO IN CLASSE A

SOLUZIONI INNOVATIVE PER IL RISCALDAMENTO DEGLI AMBIENTI

Il calcolo della resa termica, dei sistemi radianti, secondo le nuove normative (Gianni Lungarini Direttore Tecnico Velta Italia)

SCHEDA TECNICA DUPLEX EC.UI 175 Cod ORIZZONTALE DUPLEX EC.UI 175 Cod VERTICALE

APPUNTI DI FISICA TECNICA

Transcript:

- Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 9 TERMOLOGIA E DISPERSIONI TERMICHE Prof. Matteo Intermite 1

9.1 COMBUSTIONE La combustione è una reazione chimica che comporta l'ossidazione di un combustibile (in genere gas metano, Benzina o Gasolio) da parte di un comburente (in genere è rappresentato dall'ossigeno presente nell'aria), con sviluppo di calore e radiazioni elettromagnetiche (luce), tra cui spesso anche radiazioni luminose. In termini più rigorosi la combustione è una ossidoriduzione con emissione di calore in quanto un composto si ossida mentre un altro si riduce (nel caso degli idrocarburi, il carbonio si ossida, l'ossigeno si riduce) con rilascio di energia e formazione di nuovi composti, principalmente anidride carbonica ed acqua. 9.2 POTERE CALORIFICO DEI COMBUSTIBILI Il potere calorifico di un combustibile esprime la quantità massima di calore che si può ricavare dalla combustione completa di 1 kg di sostanza combustibile (o 1 m 3 di gas). Si misura in Joule su chilogrammo (J/kg) oppure in Joule su m 3 (J/ m 3 ). Durante la combustione si sviluppa del vapor d acqua dovuto all umidità del combustibile e del comburente per cui parte del calore prodotto durante la combustione si disperde con il vapore. Bisogna perciò distinguere un potere calorifero superiore Ps e un potere calorifero inferiore Pi. IL potere calorifero inferiore si ricava dal valore del potere calorifero superiore a cui bisogna sottrarre il calore di condensazione del vapor d acqua. Normalmente nelle applicazioni energetiche si fa riferimento al valore del potere calorifero inferiore, considerando non utilizzabile il calore di condensazione del vapor d acqua. Potere Calorifico Potere calorifico superiore Potere calorifico inferiore GASOLIO 44 MJ kg 41 MJ kg BENZINA 46 MJ kg 42 MJ kg LEGNO 13,8 MJ kg 7,7 MJ kg MJ METANO 36,16 3 m 31,65 3 MJ m Prof. Matteo Intermite 2

9.3 CALORE SPECIFICO Il calore specifico di una sostanza è definito come la quantità di calore necessaria per aumentare di 1 C la temperatura di un'unità di massa (generalmente un grammo o un chilogrammo) di materiale. In altre parole il calore specifico è il rapporto fra la quantità di calore assorbito o ceduto dall'unità di massa di una sostanza e la variazione di kj temperatura subita dalla sostanza stessa. Viene espresso in. kg ACCIAIO E FERRO 0,456 kj kg ACCIAIO INOX 0,502 kj kg BRONZO 0,384 kj kg ALLUMINIO 0,896 kj kg GHISA 0,440 kj kg RAME 0,383 kj kg ACQUA 4,186 kj kg ARIA 1,004 kj kg Prof. Matteo Intermite 3

9.4 TRASMISSIONE DEL CALORE Per trasmissione del calore si intende il passaggio naturale dell energia termica nel tempo da un corpo a temperatura più elevata ad uno a temperatura più bassa. Esistono tre modi di trasmissione del calore: - Conduzione: Trasmissione del calore senza spostamento di molecole; - Convezione: Trasmissione del calore con spostamento di molecole; - Irraggiamento: Trasmissione del calore tramite onde elettromagnetiche. 9.4.1 CONDUZIONE Il calore si trasmette per contatto diretto tra le particelle che costituiscono la materia a livello microscopico (atomi o molecole): - Nei fluidi a causa delle collisioni che si verificano tra atomi o molecole durante il loro moto casuale; - Nei solidi a causa della vibrazione degli atomi o delle molecole all interno del reticolo cristallino; Il trasferimento di calore avviene SEMPRE dall elemento a temperatura più alta a quello a temperatura più bassa e il fenomeno termina quando si è raggiunto l equilibrio termico tra i due corpi. La trasmissione di calore per conduzione si esprime tramite la legge di Fourier la quale stabilisce che la quantità di calore scambiata Q è direttamente proporzionale all area A della superficie, alla differenza di temperatura, al tempo e ad un coefficiente di conduzione λ, mentre è inversamente proporzionale alla distanza tra le due pareti attraverso le quali si manifesta il passaggio di calore: λ A ( T2 T1) τ Q = d Il coefficiente λ si definisce coefficiente di conduzione termica e dimensionalmente si esprime in. m C T2 T1 d Prof. Matteo Intermite 4

9.4.2 CONVEZIONE La trasmissione di calore per convezione si esprime tramite la legge di Newton. Essa stabilisce che la quantità di calore Q trasmessa è direttamente proporzionale all area A della superficie sulla quale avviene il trasporto d energia, alla differenza di temperatura, al tempo τ e ad un coefficiente α, detto coefficiente di convezione termica, che dipende dal tipo di fluido, dalla natura e dallo stato superficiale della parete attraverso cui si trasmette il calore, dalla pressione del fluido ma soprattutto dalla sua velocità rispetto alla parete: Q= α A ( T T) τ 2 1 Il coefficiente λ si definisce coefficiente di conduzione termica e dimensionalmente si esprime in. 2 m C 9.4.3 IRRAGGIAMENTO La trasmissione di calore per irraggiamento si esprime tramite la legge di Stefan. Essa stabilisce che la quantità di calore Q trasmessa è direttamente proporzionale alla quarta potenza della temperatura e ad un coefficiente caratteristico della superficie. σ è la costante di Stefan e vale 5,77 10 Q= σ T 8 m 4 2 4 per il corpo nero. Il potere emissivo di un corpo nella realtà è minore del potere emissivo del corpo nero; ogni corpo ad una data temperatura emette una quantità d energia minore rispetto a quella che può emettere un corpo nero alla stessa temperatura. Prof. Matteo Intermite 5

9.5 TRASMISSIONE DEL CALORE TRA DUE FLUIDI SEPARATI DA UNA PARETE Nelle applicazioni pratiche il caso più diffuso è quello della trasmissione del calore tra due fluidi separati da una parete. La trasmissione del calore, in questo caso, è caratterizzata da due fenomeni convettivi e da uno conduttivo. In particolare: T4 T3 T2 T1 d Convezione Conduzione Convezione Il fluido a temperatura T 4 e avente coefficiente di convezione α 1 trasmette alla parete d area A nel tempo τ una quantità di calore: Q= α A ( T T ) τ 1 4 3 Attraverso la parete di spessore d si trasmettere calore per conduzione: se si indica con λ il coefficiente di conduzione si ha: Q λ A ( T T ) τ d 3 2 = Infine tra la parete d area A e il fluido a temperatura T 1 e che ha un coefficiente di convezione α 2 si trasmette la quantità di calore: Q= α A ( T T) τ 2 2 1 Ricavando dalle precedenti relazioni le differenze di temperatura si ottiene: Prof. Matteo Intermite 6

T T T T Q = α1 A τ T Q d = λ A τ Q 4 3 3 2 T = 2 1 α A τ E sommando i termini di sinistra e i termini di destra: Se si pone misurato in 2 T Q 1 d 1 T = + + A τ α λ α 4 1 1 d 1 1 + + = α1 λ α2 m C si ottiene: T 4 1 2 1 2 in cui k è il coefficiente di trasmissione globale Q T = A τ Infine si determina la quantità di calore scambiata: Q= A ( T T) τ 4 1 Per determinare la potenza termica che attraversa la parete basta dividere per il tempo entrambi i membri: Pot. Termica = Q = A ( T4 T1) τ Pot. Termica = A ( T T ) 4 1 Dove: = 1 1 S1 S2 S3 1 + + + +... + α λ λ λ α 1 1 2 3 2 S, S, S = Spessori dei vari strati della parete 1 2 3 λ1, λ2, λ 3 = Coefficienti di conduzione dei vari starti della parete Prof. Matteo Intermite 7

9.6 DISPERSIONI TERMICHE PER VENTIAZIONE L aria esterna immessa negli ambienti climatizzati per esigenze di ricambio igienico comporta un dispendio energetico a carico del generatore di calore. Per determinare la Potenza termica necessaria a compensare queste dispersioni viene applicata la seguente formula. Pot. Termica VENTILAZIONE. Vc s ΔT = 3, 6 Dove: Pot. TermicaRICAMBI ARIA V = Portata di aria kg h = [ ] c s = Calore specifico aria = 1,004 kj kg Δ T = Variazione di temperatura tra interno ed esterno [ ] 9.7 LE DISPERSIONI TERMICHE NEGLI EDIFICI Le principali dispersioni termiche degli edifici sono schematizzate nella seguente figura. Prof. Matteo Intermite 8

Attraverso le nozioni acquisite nei paragrafi precedenti siamo in grado di determinare le seguenti dispersioni: - Dispersioni delle pareti (21%); - Dispersioni del pavimento (6%); - Dispersioni delle finestre (22%); - Dispersioni del tetto (10%); - Dispersioni per aerazione (29%) La somma di tutte queste dispersioni rappresenta l 88% delle dispersioni totali. Il restante 12% rappresenta le perdite di calore dovute alle emissioni e sono legate al rendimento della caldaia. 9.8 AUMENTO PERCENTUALE PER L ORIENTAMENTO A causa dell orientamento della parete è necessario applicare dei coefficiente di maggiorazione correttivi per tener conto della maggiore velocità del vento e del minor irraggiamento solare sulla parete. Ovest N-O S-O Nord Sud N-E S-E Est Nord Nord-Est Est Sud-Est Sud Sud-Ovest Ovest Nord-Ovest 1,2 1,15 1,1 1,05 1 1,05 1,1 1,15 Si ricorda che per le superfici orizzontali (pavimenti e soffitti) non si applica il coefficiente di maggiorazione per l orientamento. Prof. Matteo Intermite 9

9.9 SCELTA DEL TERMINALE DI EROGAZIONE DEL CALORE Una volta determinato le dispersioni termiche nei singoli ambienti è necessario scegliere il terminale di erogazioni più idoneo a compensare tali dispersioni. Principalmente esistono tre tipologie di impianto: - Impianto a Radiatori; - Impianto a Ventilconvettori; - Impianto radiante (pavimento, parete, soffitto). La scelta viene fatta in funzione dell utilizzo dei locali. L impianto a radiatori viene utilizzato in locali ad uso prevalentemente residenziale in caso di ristrutturazione dell impianto termico e in locali con metrature molto ridotte. L inconveniente principale è che l aria riscaldata sale verso l alto per convezione e quindi la sensazione è quella di avere i piedi freddi e la testa calda. L impianto a Ventilconvettori viene preferito ai radiatori in quelle applicazione dove viene richiesto un tempo di messa a regime molto ridotto (negozi, uffici, locali commerciali e industriali). L inconveniente dei ventilconvettori è la manutenzione dei terminali, l elevata movimentazione d aria e quindi di polvere e l aumento della sensazione di avere i piedi freddi e la testa calda. Prof. Matteo Intermite 10

L impianto a pavimento radiante, a differenza dei precedenti impianti, sfrutta il fenomeno dell irraggiamento per distribuire il calore. Viene utilizzato prevalentemente in impianti nuovi installati in alloggi di pregio. Massimizza il comfort termico e la sensazione di benessere. La sensazione che si avverte, a differenza dei precedenti impianti, è di avere i piedi caldi e la testa fresca. La distribuzione delle temperature è la seguente. Prof. Matteo Intermite 11

9.9.1 IMPIANTO A RADIATORI Per scegliere il radiatore più idoneo a compensare le dispersioni termiche vengono utilizzate delle tabelle fornite dai costruttori di radiatori. Normalmente in funzione dell altezza e del numero di colonne viene indicata la resa termica in att/elemento. Di seguito è riportata la tabella fornita dalla ditta IRSAP. Prof. Matteo Intermite 12

La scelta viene fatta in funzione dell arredamento e delle dimensioni geometriche della stanza. Normalmente la scelta cade sull altezza 685 per l installazione sotto la finestra e 885 per l installazione fuori finestra. Infine per scegliere la posizione più idonea bisogna considerare che è preferibile installare i radiatori sulle pareti che confinano con l ambiente esterno dato che normalmente sono quelle più fredde. 9.9.2 IMPIANTO A VENTILCONVETTORI Per scegliere il ventilconvettore più idoneo a compensare le dispersioni termiche vengono utilizzate delle tabelle fornite dai costruttori. Di seguito la tabella della RHOSS. Prof. Matteo Intermite 13

9.9.3 IMPIANTO A PAVIMENTO RADIANTE Il dimensionamento dell impianto a pavimento radiante viene eseguito da tecnici specializzati e consiste nel decidere la posizione delle tubazioni (in materiale plastico) da installare nel massetto sotto al pavimento e calcolare la portata d acqua che ogni circuito deve avere per garantire l uniformità della temperatura nel locale e la completa copertura delle dispersioni termiche. Di seguito è riportata la sezione di un impianto con pavimento radiante e una planimetria con la distribuzione dell impianto. 3 4 5 6 7 Prof. Matteo Intermite 14

PARETE NASTRO PERIMETRALE PAVIMENTAZIONE COLLANTE P ER PA VIMENTO MASSETTO ADDITTIVATO TUBO IMPIANTO A PAVIMENTO PANNELLO IS OLANTE PER INSTALLAZIONE TUB AZIONE A PA VIMENTO STRUTTURA PORTANTE ORIZZONTALE 45 72 114 ISOLANTE IN LASTRA DA 2cm L unico dato da considerare è che l impianto a pavimento può erogare al massimo 100 /mq e quindi, se l edificio non è isolato termicamente, l impianto a pavimento può non riuscire a garantire la potenza termica necessaria a coprire le dispersioni termiche. 9.10 SCELTA DELLE TUBAZIONI DI ALIMENTAZIONE DEI TERMINALI La scelta delle tubazioni d alimentazione dei terminali d erogazione del calore, viene normalmente eseguita considerando una velocità massima del fluido nelle tubazioni. Normalmente viene considerata una velocità massima = 0,7-1 m/s. Dalla dispersione termica si calcola la portata d acqua nel seguente modo: [ / ] q litri h Dove: Q 3, 6 = C ΔT s D = Q = Dispersioni termiche del locale [ ] Cs = Calore specifico acqua Δ T kj kg 4 Q π V C ΔT 1000000 = Differenza di temperatura tra l ingresso e l uscita dell acqua di riscaldamento dal terminale di erogazione. Normalmente per gli impianti a radiatori e ventilconvettori si considera 10 C, mentre per gli impianti a pavimento si considera 5 C. s Prof. Matteo Intermite 15

9.11 ESERCIZIO Istituto Professionale Statale per l'industria e l'artigianato Si vuole dimensionare i radiatori dell appartamento di seguito schematizzato. 4,03 m 3,94 m 1.10 1.40 1.10 1.40 1.08 2.40 1.10 2.40 CAMERA SOGGIORNO mq 15.52 CAMERA mq 14.07 3,57 m ALTRA PROPRIETA' INGRESSO mq 6.69 DISIMP. mq 4.08 BAGNO mq 5.24 0.90 1.50 2,46 m CAMERA CUCINA mq 9.95 CAMERA mq 11.82 3,56 m 1.00 2.40 E S 2,50 m 3,20 m N O Piano primo H=3m Consideriamo per le camere 0,5 Vol./h, per la cucina 1 Vol./h e per il bagno 2 Vol./h di ricambio aria. Prof. Matteo Intermite 16

L appartamento è al piano primo, sotto c è un garage (T=0 C), sopra un altro appartamento (T=20 C) e il vano scala è riscaldato (T=20 C). La parete esterna ha la seguente stratigrafia: 1 cm 1 cm λ INTONACO = 0,7 m λ ISOLANTE = 0,035 m λ MATTONI = 0,65 m 8 cm 25 cm Il pavimento su garage ha la seguente stratigrafia: Piastrella Massetto Cemento Armato Solaio Intonaco Infine gli infissi installati hanno INFISSI 2 λ PIASTRELLA = 1,16 10 cm m 4 cm λ MASSETTO = 1, 05 m λ CEM. ARM = 1, 6 20 cm m λ SOLAIO = 0,7 m 1 cm λ INTONACO = 0,7 m = 3,1 m Si ricorda che i coefficienti di maggiorazione per l orientamento sono: N=1,2 E=1,1 S=1 O=1,1 N-E=1,15 S-E=1,05 S-O=1,05 N-O=1,15 I coefficienti di convezione sono: 7 INTERNO α =, α = 20 ESTERNO Prof. Matteo Intermite 17 1 cm

SVOLGIMENTO: Calcolo la trasmittanza della parete e del pavimento: Parete: 1 1 PARETE, = = = 0,346 1 S1 S2 S3 S4 1 1 0,01 0,08 0,25 0,01 1 + + + + + + + + + + αint λ1 λ2 λ3 λ4 αest 7 0,7 0,035 0,65 0,7 20 Soffitto: 1 PAVIMENTO = = 1, 61 1 0,01 0,1 0,04 0, 2 0,01 1 + + + + + + 7 1,16 1,05 1,6 0,7 0,7 20 1) Calcolo le dispersioni termiche dei singoli locali Soggiorno+Ingresso+Dis. Parete Sud-Est: ( ) QS E= A ΔT c= 0,346 (4,03 3) 1,08 2,4 25 1,05 = 86,26 Finestra Sud-Est: QFinestra _ S E = A ΔT c= 3,1 (1,08 2,4) 25 1,05 = 210,92 Pavimento: Q = A ΔT c= 1, 61 (15,52 + 6, 69 + 4, 08) 20 = 846,5 pavimento Ventilazione: Portata _ Aria = ( 15,52 + 6,69 + 4,08) 3 1,247 0,5 = 49,17 kg h V cs ΔT 49,17 1,004 25 QVentilazione = = = 342,82 3, 6 3, 6 Dispersione totale Soggiorno+Ingresso+Dis. = 1486,5 Camera mq. 14,07 Parete Sud-Est: ( ) QS E= A ΔT c= 0,346 (3,94 3) 1,1 2, 4 25 1, 05 = 83,37 Finestra Sud-Est: QFinestra _ S E = A ΔT c= 3,1 (1,1 2,4) 25 1,05 = 214,83 Parete Sud-Ovest: [ ] QS O= A ΔT c= 0,346 3,57 3 25 1, 05 = 97, 27 Pavimento: Q = A ΔT c= 1,61 14,07 20 = 453,05 pavimento Ventilazione: Portata _ Aria = [ 14,07 3] 1,247 0,5 = 26,31 kg h Prof. Matteo Intermite 18

Q Ventilazione Istituto Professionale Statale per l'industria e l'artigianato V cs ΔT 26,31 1,004 25 = = = 183,44 3, 6 3, 6 Dispersione totale Camera 14,07 mq = 1031,96 Bagno mq. 5,24 Parete Sud-Ovest: ( ) QS O= A ΔT c= 0,346 (2,46 3) 0,9 1,5 25 1,05 = 54,76 Finestra Sud-Est: QFinestra _ S O = A ΔT c= 3,1 (0,9 1,5) 25 1,05 = 109,85 Pavimento: Q = A ΔT c= 1,61 5,24 20 = 168,73 pavimento Ventilazione: Portata _ Aria = [ 5,24 3] 1,247 2 = 39,20 kg h V cs ΔT 39,20 1,004 25 QVentilazione = = = 283,11 3, 6 3, 6 Dispersione totale Bagno 5,24 mq = 616,45 Camera mq. 11,82 Parete Sud-Ovest: [ ] QS O= A ΔT c= 0,346 (3,56 3) 25 1, 05 = 97, 00 Parete Nord-Ovest: ( ) QN O= A ΔT c= 0,346 (3,56 3) 1 2, 4 25 1,15 = 82,36 Finestra Nord-Ovest: ( ) QFinestra _ N O = A ΔT c= 3,1 1 2, 4 25 1,15 = 213,9 Pavimento: Q = A ΔT c= 1,61 11,82 20 = 380,60 pavimento Ventilazione: Portata _ Aria = [ 11,82 3] 1,247 0,5 = 22,11 kg h V cs ΔT 22,11 1,004 25 QVentilazione = = = 154,15 3, 6 3, 6 Dispersione totale Camera 11,82 mq = 928,01 Prof. Matteo Intermite 19

Cucina mq. 9,95 Parete Nord-Ovest: ( ) QN O= A ΔT c= 0,346 (2,5 3) 1,1 1, 4 25 1,15 = 59, 28 Finestra Nord-Ovest: ( ) QFinestra _ N O = A ΔT c= 3,1 1,1 1, 4 25 1,15 = 137, 25 Pavimento: Q = A ΔT c= 1, 61 9,95 20 = 320,39 pavimento Ventilazione: Portata _ Aria = [ 9,95 3] 1,247 1 = 37,22 kg h V cs ΔT 37,22 1,004 25 QVentilazione = = = 259,5 3, 6 3, 6 Dispersione totale Cucina = 776,42 2) Scelta dei radiatori e del diametro dei tubi: Soggiorno+Ingesso+Disimp. Dato che l ambiente è superiore a 15 mq si decide di installare due radiatori. L altezza del radiatore da utilizzare è 885 mm dato che l unica finestra esistente è una porta-finestra. Un elemento alto 885 con 3 colonne emette 84,6 quindi: 1486,5 17,57 84,6 = 18 elementi Considerando di installare un radiatore più grosso sulla parete esterna e uno più piccolo sulla parete adiacente all ingresso risulta: Sulla parete esterna 12 elementi, H=885, 3 colonne 12/3/885 Tubazione: 4 Q 4 991 D = = = 0, 0065m= 6,5mm π V C ΔT 1000000 π 0, 7 4,186 10 1000000 s Si sceglie una tubazione con diametro 10x8 mm. Sulla parete interna 6 elementi, H=885, 3 colonne 6/3/885 Si utilizza sempre la tubazione da 10x8. Sotto questo diametro è bene non andare per evitare problemi di corrosione e di incrostazione delle tubazioni. Prof. Matteo Intermite 20

Camera 14,07 mq L altezza del radiatore da utilizzare è 885 mm dato che l unica finestra esistente è una porta-finestra. 1031,96 12,20 84,6 = 13 elementi Sulla parete esterna 13 elementi, H=885, 3 colonne 13/3/885 Tubazione: 4 Q 4 1031,96 D = = = 0,0067m= 6,7mm π V C ΔT 1000000 π 0, 7 4,186 10 1000000 s Si sceglie una tubazione con diametro 10x8 mm. Bagno 5,24 mq L altezza del radiatore da utilizzare è 685 mm da installare sotto la finestra. 616,45 9,025 68,3 = 9 elementi Sotto la finestra 9 elementi, H=685, 3 colonne 9/3/685 Si sceglie una tubazione con diametro 10x8 mm. Camera 11,82 mq L altezza del radiatore da utilizzare è 885 mm dato che l unica finestra esistente è una porta-finestra. 928,01 10,97 84,6 = 11 elementi Sulla parete esterna 11 elementi, H=885, 3 colonne 11/3/885 Si sceglie una tubazione con diametro 10x8 mm. Cucina 9,95 mq L altezza del radiatore da utilizzare è 685 mm da installare sotto la finestra. 776,42 11,37 68,3 = 12 elementi Sotto la finestra 12 elementi, H=685, 3 colonne 12/3/685 Si sceglie una tubazione con diametro 10x8 mm. Prof. Matteo Intermite 21