Studio del Centro Galattico e Ricerca di Segnale da Annichilazione di Materia Oscura con il Telescopio Spaziale per Raggi Gamma Fermi.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Studio del Centro Galattico e Ricerca di Segnale da Annichilazione di Materia Oscura con il Telescopio Spaziale per Raggi Gamma Fermi."

Transcript

1 UNIVERSITÀ DEGLI STUDI ROMA 2 Dipartimento di Fisica Laurea In Fisica Studio del Centro Galattico e Ricerca di Segnale da Annichilazione di Materia Oscura con il Telescopio Spaziale per Raggi Gamma Fermi Edoardo Striani Relatore Prof. Piergiorgio Picozza Relatore Dott. Aldo Morselli Marzo 2009

2 Indice 1 Introduzione 3 2 Il cielo nei raggi gamma L osservazione del cielo nei raggi gamma Nuclei Galattici Attivi Pulsars Gamma Ray Burst Raggi Cosmici Sorgenti Egret non identificate Emissione Extragalattica Diffusa Dark Matter La geometria dello spazio-tempo Evidenze della Dark Matter Candidati per la Dark Matter Ricerca di Dark Matter con il telescopio Fermi L osservazione del centro galattico dell esperimento EGRET Fondo Diffuso Segnale Fermi Large Area Telescope Fermi Large Area Telescope AntiCoincidence Detector Tracker Rivelatori a semiconduttore Calorimetro Il Sistema di Acquisizione Dati Classificazione dei fotoni e rimozione del background La Funzione di Risposta del LAT Area Efficace Point Spread Function Risoluzione Energetica

3 5 Programmi utilizzati e procedura di riduzione dati I programmi di analisi scientifica della collaborazione Fermi (Glast Science Tools) I dati del LAT Simulazioni Simulazione del Fondo Simulazione della Dark Matter Sorgenti nel Centro Galattico Analisi Conclusioni Analisi dati Prima analisi dati Acquisizione dati Fit dei dati nel centro galattico Analisi dati luglio-novembre Analisi dei primi 5 mesi di dati Mappe di conteggi e mappe di significanza Analisi Spettrale Analisi del profilo spaziale del Centro Galattico Conclusioni I risultati ottenuti dal telescopio Fermi Conclusioni 109 A Likelihood e Test Statistic 111 B Processi elettromagnetici 113 B.1 Radiazione Sincrotrone B.2 Bremsstrahlung B.3 Effetto Compton inverso B.4 Assorbimento di fotoni B.5 Sciami elettromagnetici C Lista Acronimi 118 2

4 Capitolo 1 Introduzione L 11 Giugno 2008 è stato lanciato in orbita da Cape Canaveral il Telescopio Spaziale per Ragga Gamma Fermi, precedentemente chiamato GLAST (Gamma-ray Large Area Space Telescope). Con i suoi 2 strumenti, il Large Area Telescope (LAT) ed il GLAST Burst Monitor (GBM), il telescopio Fermi sta osservando l Universo ad energie comprese tra 10 KeV e 300 GeV, ossia nella banda Gamma, la regione dello spettro elettromagnetico che va da qualche decina di KeV a diverse centinaia di TeV. Gli obiettivi del telescopio Fermi sono dunque alcuni tra i fenomeni più energetici e violenti dell universo, che verranno studiati con una precisione ed una sensibilità mai avuti prima. Il predecessore del telescopio Fermi, EGRET, con i suoi 9 anni di attività rivoluzionò l astronomia nella banda gamma, ma lasciò anche parecchi interrogativi aperti. Grazie ad una sensibilità aumentata, rispetto ad EGRET, di un fattore 30, con il telescopio Fermi si cercherà di capire i meccanismi di produzione ed accelerazione dei raggi cosmici, la natura dei Gamma Ray Bursts, e sarà possibile studiare centinaia di AGN e gamma-pulsars. Tra gli obiettivi del telescopio Fermi c è lo studio del centro galattico, e la ricerca di segnale gamma dato dalla annichilazione di Materia Oscura (Dark Matter, DM). Il centro galattico è una delle regioni più qualificate per la ricerca della Dark Matter, poichè dai modelli teorici è previsto in questa regione un incremento della sua densità. EGRET osservò nel centro galattico, in una regione compresa entro un raggio di 1, un forte eccesso di fotoni ad energie > 1 GeV. Una delle possibili interpretazioni di questo fenomeno è che tale eccesso possa essere dovuto a fotoni derivanti dall annichilazione di Dark Matter. L oggetto di questa tesi è lo studio del Centro Galattico e dell eventuale interpretazione dell eccesso GeV come annichilazione di Dark Matter. Nel primo capitolo della tesi verranno descritte le principali sorgenti astrofisiche di raggi gamma, mentre nel secondo capitolo si parlerà in modo più dettagliato della Dark Matter. Il capitolo 3 è dedicato alla descrizione del Large Area Telescope e la sua funzione di risposta. Per l analisi dei dati è stato sviluppato dal Fermi/GLAST Collaboration 3

5 Group un pacchetto di programmi, i Glast Science Tools, che verrà descritto nel capitolo 4. Il capitolo 5 è dedicato alle simulazioni del centro galattico effettuate da me nel corso della fase iniziale della tesi, prima del lancio del telescopio Fermi e dell invio dei dati da parte del LAT. Tali simulazioni sono state utilizzate per stimare la sensibilità del telescopio Fermi nel trovare una sorgente di Dark Matter nel Centro Galattico. L analisi dei dati inviati dal LAT è effettuata nel capitolo 7. Con lo studio delle mappe di conteggi da me create è stato possibile osservare il Centro Galattico con una risoluzione mai avuta prima a queste energie. Ciò ha reso possibile l identificazione di almeno 3 nuove possibili sorgenti, una delle quali, la Pulsar Mouse, è stata identificata in modo indipendente da me. E stata poi effettuata un analisi spettrale dei fotoni γ provenienti dal Centro Galattico, la quale ha rivelato un eccesso di conteggi che, se dovuto alla Dark Matter, imporrebbe dei limiti precisi alla sua massa. Infine, è stato effettuato uno studio preliminare del profilo spaziale della sorgente nel Centro Galattico, per cercare di capire se le sue dimensioni siano quelle di una sorgente puntiforme, o se essa sia spazialmente estesa. 4

6 Capitolo 2 Il cielo nei raggi gamma 2.1 L osservazione del cielo nei raggi gamma Per cercare di capire la natura dei più enigmatici oggetti astrofisici, gli astronomi hanno da sempre cercato nuove sorgenti di dati. A tale scopo, il cielo è stato esplorato in quasi tutte le lunghezze d onda, a partire dagli anni 30, in cui per la prima volta furono fatte osservazioni nella banda radio. Successivamente, grazie alla sempre maggiore sensibilità dei rivelatori, ed alla possibilità di operare al di fuori dell atmosfera, sono state esplorate le regioni nella banda dell X, dell infrarosso e dell ultravioletto. La regione gamma è stata l ultima ad essere esplorata, a causa di grandi difficoltà di carattere tecnico che possono essere spiegate da tre fattori: il flusso nella banda gamma è molto basso e diminuisce molto velocemente con l energia. i raggi gamma sono quasi totalmente assorbiti dall atmosfera terrestre. per rivelatori in orbita nelle missioni spaziali, si presenta il problema che i raggi cosmici (Cosmic Rays, CR), circa 10 4 volte più numerosi dei fotoni γ, possono interagire con lo strumento e generare segnali che possono essere interpretati come raggi gamma. A causa dell assorbimento dovuto all atmosfera terrestre, l astronomia nei raggi gamma si è potuta sviluppare solo utilizzando palloni sonda o telescopi spaziali. Va comunque detto che nelle ultimi anni sono stati sviluppati telescopi Cherenkov a terra (Atmospheric Cherenkov Telescopes, ACT), i quali rivelano la radiazione Cherenkov prodotta dagli sciami elettromagnetici causati dall interazione dei raggi gamma con l atmosfera. La prima missione spaziale realizzata per rivelare radiazione gamma nello spazio fu OSO-3 (Third Orbiting Solar Observatory), lanciato nel 1967, il quale lavorò per 16 mesi raccogliendo 621 eventi. Esso rivelò che la maggior parte dei fotoni gamma provengono dalla nostra Galassia. Successivamente 5

7 fu lanciato, nel 1972, il telescopio SAS-2 (Second Small Astronomy Satellite), il quale funzionò per circa sei mesi, ed osservò per la prima volta l emissione da sorgenti discrete come le pulsar Crab e Vela. Nel 1975 fu lanciato in orbita COS-B, il quale individuò 25 sorgenti gamma ed effettuò la prima mappa completa del disco della Via Lattea. A COS-B si deve l individuazione della prima sorgente extragalattica - il quasar 3C 273. Una data storica nello sviluppo dell astronomia gamma fu il 1991, quando la NASA lanciò in orbita il Compton Gamma Ray Observatory (CGRO), il quale, con i suoi 9 anni di osservazioni, rivoluzionò l astronomia gamma con diverse scoperte. CGRO era dotato di quattro telescopi per la rivelazione della radiazione gamma. Lo strumento per la rivelazione dei raggi gamma di alte energie era l Energetic Gamma Ray Telescope Experiment EGRET, il cui range energetico andava dai 20 Mev ai 30 GeV. Rispetto ai precedenti esperimenti, EGRET aveva una migliore risoluzione angolare ed energetica ed una sensibilità un ordine di grandezza superiore. Tra i maggiori risultati ottenuti da EGRET possono essere citati: la catalogazione di 271 sorgenti con energie al di sopra dei 100 MeV, il cosiddetto terzo catalogo EGRET (Third EGRET Catalog, 3EG); la produzione di una mappa e la misura dello spettro del fondo galattico diffuso e lo spettro del fondo extragalattico diffuso; la scoperta di una nuova classe di AGN (Active Galactic Nuclei) che emettono nei raggi gamma, i Blazars, che compongono la più grande frazione di sorgenti identificate da EGRET, con 66 identificazioni ad alta confidenza e 27 a bassa confidenza [1]; l osservazione di migliaia di Gamma Ray Bursts (GRB), alcuni dei quali aventi emissioni della durata di più di un ora. Figura 2.1: Il cielo gamma visto da EGRET per E > 100 MeV 6

8 Grandezza EGRET LAT Miglioramento 30 Range Energetico 20 MeV-30 GeV 20 MeV-300 GeV 10 Risoluzione Energetica 10% 10% 1 Area Effettiva 1500 cm cm 2 6 Campo di vista 0.5 sr 2 sr 4 Sensitività ai 10 7 γ cm 2 s γ cm 2 punti sorgente s 1 Localizzazione 15 < Sorgenti Tempo morto 100 ms 27 µs 4000 Risoluzione angolare < (100 MeV) Risoluzione angolare (10 GeV) < 0.15 Tabella 2.1: Caratteristiche del LAT comparate con quelle di EGRET Il telescopio spaziale Fermi può essere considerato il successore di EGRET. Il satellite del Fermi è posto in un orbita approssimativamente circolare, con periodo orbitale di circa 90 minuti, ad una altezza di 565 km da terra ed una inclinazione dei piano orbitale di Due strumenti sono presenti a bordo del Fermi: il Large Area Telescope (LAT) ed il GLAST Burst Monitor (GBM). Il GBM, sensibile ad energie comprese tra 30 KeV e 30 MeV, è stato realizzato prevalentemente per lo studio di sorgenti transienti come i GRB, e non verrà trattato in questa tesi. Il LAT è lo strumento principale a bordo del telescopio Fermi, e verrà descritto approfonditamente nel prossimo capitolo. Rispetto ad EGRET, il LAT presenta notevoli miglioramenti, schematizzati in tabella 2.1: Un campo di vista (Field of View, FOV) di 2 sr, circa 20% del cielo, migliore di quello di EGRET di un fattore 4 Una risoluzione angolare (Point Spread Function, PSF) migliorata di un fattore 3 rispetto ad EGRET per energie maggiori di 1 GeV. Un area effettiva di circa cm 2, migliore di un fattore 5 rispetto a quella di EGRET Un tempo morto pari a 27 µs, 4000 volte migliore di EGRET Questi aspetti hanno portato ad un miglioramento della sensibilità di un fattore 30 per energie al di sotto dei 10 GeV e di un fattore 100 ad energie più elevate. 7

9 Andiamo a vedere più in dettaglio le sorgenti astrofisiche della radiazione gamma, e quali sono gli obiettivi che ci si aspetta possano essere raggiunti con il telescopio Fermi. 2.2 Nuclei Galattici Attivi Circa 60 anni fa Seyfert scoprì una nuova classe di Galassie, particolarmente luminose nel loro centro e con una larga banda di emissione. Questo nuovo tipo di oggetto, chiamato Galassia Seyfert, fu poi associato ad una nuova classe di oggetti, chiamati AGN (Active Galctic Nuclei). Altri esempi di AGN sono i Quasar, le Radio Galassie, e i Blazars. Inizialmente questi oggetti sembravano essere tutti diversi tra loro, ma negli anni novanta è stata avanzata l ipotesi che essi fossero lo stesso fenomeno visto da differenti prospettive: un buco nero super massivo (Super Massive Black Hole, SMBH) circondato da un disco di accrescimento e due jet di materia collimati e perpendicolari al piano del disco (figura 2.2) Figura 2.2: Il Modello Standard degli AGN L emissione degli AGN è estremamente variabile: essa cambia significativamente da tempi dell ordine dei giorni o delle ore, fino a tempi dell ordine dei minuti. Un sistema di dimensioni l non può avere variazioni in tempi minori di l/c. La variabilità pone perció dei vincoli sulle dimensioni della regione di emissione: per variazioni dell ordine di un giorno, la regione di emissione deve avere un raggio delle dimensioni del sistema solare. L energia emessa è invece più di 10 volte quella di una normale Galassia. Questo scenario implica un meccanismo di conversione dell energia estremamente efficiente. Il meccanismo più efficiente conosciuto è quello del rilascio di en- 8

10 ergia gravitazionale in presenza di una profonda buca di potenziale. Da qui nasce l ipotesi della presenza di un SMBH nel centro. Lo spettro è caratterizzato da una componente doppia, una piccata nell X e l altra con energie dell ordine dei GeV, quindi nei raggi gamma. Per spiegare questa emissione gamma sono stati proposti 2 modelli: modello leptonico in cui elettroni accelerati dai jets interagiscono con fotoni di bassa energia via effetto compton inverso modello adronico, in cui protoni accelerati dai jets interagiscono con fotoni o con altri protoni generando π 0 e quindi raggi γ dal loro decadimento. E previsto che il telescopio Fermi aumenterà il numero di AGN nei raggi gamma da circa 100 a diverse migliaia, e permetterà per la prima volta la discriminazione tra canale leptonico ed adronico. Effettuando una scansione del cielo ogni 3 ore, migliorerà il tempo di scala minimo per il monitoraggio della variabilità. 2.3 Pulsars Le Pulsars sono stelle di neutroni dotate di un forte campo magnetico e rapidamente ruotanti. Sono state scoperte prevalentemente nella banda radio, ma la loro osservazione è possibile a tutte le lunghezze d onda. Le prime gamma pulsar osservate furono Vela e Crab. Dopo una esplosione di Supernova (SN), se la stella non è completamente distrutta, si ha la formazione di un oggetto estremamente compatto. Se la pressione di degenerazione degli elettroni è sufficiente a contrastare l attrazione gravitazionale, si ha una Nana Bianca. In oggetti più massivi, il cui nucleo ha una massa maggiore di 1.44 masse solari, la pressione di degenerazione del gas di elettroni non è più sufficiente a bilanciare il peso del core, e la stella comincia a collassare. All aumentare della densità e pressione, elettroni e protoni si combinano in neutroni tramite decadimento β inverso, fino a formare la configurazione stabile di un gas di Fermi di neutroni. Le stelle di neutroni hanno una densità maggiore di g/cm 3 e un raggio di circa 10 km; la conservazione del momento angolare porta ad un aumento nella velocità angolare di un fattore mentre la conservazione del flusso magnetico aumenta il tipico campo magnetico stellare ( 10 2 G) a valori dell ordine di G ed oltre. La stella, ruotante ed altamente magnetizzata, produce un enorme quantità di radiazione elettromagnetica. Sulla superficie della stella il campo elettrico indotto è molto più grande di quello gravitazionale, e le particelle cariche sono espulse nella magnetosfera, rotante con la stella. Alla distanza r = c/ω dall asse di rotazione, il campo magnetico si trova a ruotare ad una velocità pari e quella della luce 9

11 e per effetti relativistici le linee del campo magnetico si aprono. Le particelle cariche, che si muovono lungo le linee di forza del campo magnetico, emettono radiazione di Sincrotrone (vedi sezione B.1) e possono inteteragire con i fotoni prodotti, producendo fotoni di alta energia tramite effetto Compton Inverso (sezione B.3). A causa di effetti relativistici, la radiazione elettromagnetica non sarà prodotta in tutte le direzioni, ma entro un cono di angolo θ 1/γ rad. Si avrà quindi una emissione pulsata con periodo uguale a quello di rotazione della stella. Tra i modelli per spiegare l accelerazione delle particelle e la generazione dei raggi gamma, quelli principali sono il Polar Cap [2], per cui la radiazione ha origine vicino ai poli magnetici, e l Outer Gap [3], che suppone una origine della radiazione lontano dalla superficie della Pulsar. Si stima che il telescopio Fermi scoprirà circa 250 γ- ray pulsars, e cercherà la periodicità nelle sorgenti EGRET non identificate, molte delle quali potrebbero essere radioquiet Pulsars. Potranno inoltre essere studiati i meccanismi di accelerazione delle particelle, verificando quale tra il Polar Gap e l Outer Gap sia il modello migliore. 2.4 Gamma Ray Burst I Gamma Ray Burst (GRB) sono flash di radiazione gamma estremamente intensi, che avvengono quasi una volta al giorno in una direzione casuale e non prevedibile nel cielo. I GRB sono le sorgenti gamma più potenti, arrivando ad essere 10 4 volte più brillanti degli AGN. Il primo GRB fu osservato nel 1967 e da allora numerosi strumenti sono stati progettati per la loro rivelazione. Tra il 1991 ed il 1998 CGRO misurò oltre 2000 GRB con la precisione di 1. Grazie alla misurazione della controparte ottica dei GRB è stato possibile l identificazione della Galassia ospitante, e questo, come anche la misura del redshift, ha reso possibile stabilire la loro origine extragalattica. I GRB hanno un profilo temporale estremamente variabile: alcuni mostrano dei picchi della durata di 1 ms o meno, altri esibiscono strutture della durata di 1000 s. La durata temporale segue una distribuzione bimodale: i Long Bursts, con t > 2 s, piccati a 20 s, e gli Short Bursts, con t < 2 s, piccati a 200 ms. Un altra importante caratteristica dei GRB è l afterglow: all intenso burst nei raggi γ seguono altre emissioni di radiazione elettromagnetica ad energie inferiori, che vanno dalla banda radio ai raggi X. Tra i modelli per spiegare il comportamento dei GRB, il più accreditato è il Fireball Model, nel quale diverse fireballs, formate da coppie e e + accelerate a velocità relativistiche, sono prodotte in modo intermittente; l interazione tra una fireball più interna con quelle più esterne produce uno shock che causa l intenso burst. Quando poi le fireballs più esterne interagiscono con il mezzo interstellare, generano emissioni a più bassa frequenza che possono spiegare gli afterglows. Sono proposti due diversi meccanismi per l accelerazione delle particelle che causa una così violenta esplosione. I Long Burst 10

12 sono probabilmente correlati ad esplosioni di Supernovae particolarmente intense. La connessione con le SN è particolarmente interessante poichè significherebbe poter utilizzare i GRB come candele standard per la misurazione delle distanze. Gli Short Burst sono probabilmente il risultato un differente meccanismo, come la fusione di due oggetti compatti, come due nane bianche o due stelle di neutroni. Il telescopio Fermi avrà la capacità di puntare direttamente verso la sorgente del burst per il monitoraggio di una eventuale emissione ritardata. Si stima che rivelerà circa 100 bursts per anno, e grazie al tempo morto molto piccolo, darà la possibilità di confermare o no il Fireball model, il quale prevede la presenza di multi-picchi ad alta frequenza dopo il burst iniziale. 2.5 Raggi Cosmici I raggi cosmici (Cosmic Rays, CR) sono particelle relativistiche che si propagano nel mezzo interstellare. Lo spettro di potenza dei CR è descritto dalla legge { dn 1.7 per E < 10 de = E (γ+1) con γ = 6 GeV 2 per E > 10 6 GeV Lo spettro si fa più ripido intorno ai 10 6 GeV, ma intorno ai 10 9 GeV mostra un leggero appiattimento (figura 2.3). La maggior parte dei raggi cosmici ha energie comprese tra i 100 MeV e i 10 GeV. L energia più alta mai misurata è superiore ai GeV. La composizione dei CR comprende essenzialmente tutti gli elementi della tavola periodica; circa l 89% è costituito da protoni, il 10% da nuclei di elio e l 1% da elementi più pesanti. L abbondanza degli elementi più pesanti come carbonio ossigeno e silicio è la stessa che si trova nel nostro sistema solare, mentre ci sono alcune importanti differenze, rispetto all abbondanza nel nostro sistema solare, come la sovrabbondanza di litio, berillio e boro. Si pensa che essi siano prodotti da collisioni di CR più pesanti come carbonio ed ossigeno con il mezzo interstellare. Ciò lascia pensare che i raggi cosmici passino molto tempo confinati nella Galassia a causa dei campi magnetici presenti nel mezzo interstellare. Si pensa che i raggi cosmici vengano creati ed accelerati da esplosioni di Supernova e dai resti di queste esplosioni, le Supernova Remnants (SNR). Si può calcolare infatti che la potenza delle esplosioni di SN è tale da giustificare l accelerazione di tutti i CR contenuti in una Galassia. Tale ipotesi è rafforzata dal fatto che il modello di Fermi, che descrive l accelerazione come provocata da un forte shock, riproduce naturalmente la legge di potenza tipica dei raggi cosmici. I CR interagiscono con il mezzo interstellare producendo pioni neutri π 0, i quali decadono in 2 fotoni gamma. Lo spettro dei 11

13 Figura 2.3: Spettro differenziale dei raggi cosmici gamma prodotti dal decadimento presenta un caratteristico bump a 68 MeV, metà della massa del π 0. Una importante prova dell accelerazione dei CR da parte di SNR sarebbe l osservazione del bump del π 0 nelle shell delle SNR. Questa verifica sarà possibile con il telescopio Fermi, che avrà la capacità di risolvere spazialmente le SNR e misurare il loro spettro. Sarà possibile inoltre misurare separatamente la distribuzione di protoni ed elettroni nei CR e di verificare le teorie circa la loro produzione e diffusione. 2.6 Sorgenti Egret non identificate Delle 271 sorgenti identificate da EGRET, 170 sono sorgenti non identificate [1], poichè non è stato possibile associare sorgenti rivelate ad altre lunghezze d onda. Ciò implica che la loro luminosità nei raggi gamma è molto più elevata di quella ad altre lunghezze d onda. Si pensa che parte di queste sorgenti siano AGN o Radio-quiet Pulsar, mentre per altre sorgenti non si esclude l origine galattica, poichè esse sono distribuite prevalentemente lungo il piano galattico. Il telescopio Fermi sarà in grado di identificare tali sorgenti grazie alla sua maggiore risoluzione angolare ed area effettiva. 2.7 Emissione Extragalattica Diffusa Fu scoperta per la prima volta dal satellite SAS-2 una componente diffusa del flusso dei raggi gamma, isotropica e di origine extragalattica. Si pensa che essa sia dovuta alla somma dei contributi di migliaia di AGN non risolti 12

14 [4]. Lo spettro dell emissione extragalattica è ben descritto da una legge di potenza, di tipo E Γ, con indice spettrale Γ= 2.07 ± Tale indice è consistente con l indice spettrale medio trovato da Egret per i Blazars. Ciò supporta l ipotesi che l emissione extragalattica diffusa sia dovuta ad AGN non risolti [5]. Il telescopio Fermi, grazie alla sua migliore risoluzione angolare ed energetica rispetto ai precedenti rivelatori gamma, sarà in grado di identificare migliaia di AGN, migliorare la loro localizzazione, e verificare questa ipotesi. 13

15 Capitolo 3 Dark Matter 3.1 La geometria dello spazio-tempo La geometria dello spazio tempo è determinata del contenuto energetico dell universo. Vale l equazione di Friedmann (ȧ a) 2 = H 2 = 8 3 πgρ k a 2 + Λ 3 dove Λ è la costante cosmologica, associata all energia di vuoto, a è un fattore di scala che determina la dimensione fisica dell universo, e la costante k caratterizza la sua curvatura spaziale. Per k = 1 si ha un universo aperto, destinato ad espandersi infinitamente. Per k = 1 si ha un universo chiuso, per cui all attuale espansione derivante dall esplosione del Big Bang seguirà una contrazione e conseguente Big Crunch. Per k = 0 si ha un universo piatto, destinato ad una espansione infinita ad un ritmo decrescente. Definendo la densità critica come ρ c = 3h2, l equazione di Friedmann diventa Ω 1 = k H 2 a 2 Λ 3H 2 dove Ω = ρ/ρ c, è il rapporto tra la densita dell universo e la densita critica. La curvatura spaziale dell universo è data quindi, in assenza di costante cosmologica, dal valore di Ω. Nel seguto verra indicato con Ω m il contributo totale ad Ω dovuto alla materia, con Ω b quello dovuto alla materia barionica e Ω DM quello dovuto alla DM. Si ha Ω m = Ω b + Ω DM. 8πG 3.2 Evidenze della Dark Matter La prima evidenza che la quantità di materia presente nell Universo fosse maggiore di quella che emette radiazione elettromagnetica si ebbe nel 1933 grazie agli studi di Zwichy. Egli stimò la massa dell ammasso di Galassie Coma basandosi sulla velocità di rotazione delle Galassie al suo interno, e la 14

16 confrontò con la massa ricavata dalla luminosità dell ammasso. Il potenziale gravitazionale delle Galassie visibili era troppo piccolo per tenere insieme le Galassie nell ammasso, che avrebbe quindi dovuto disgregarsi. Zwicky suppose che doveva esserci una forma di materia non visibile che avrebbe dovuto fornire la massa necessaria per tenere insieme l ammasso, e diede a questo fenomeno il nome di problema della massa mancante. Una delle più dirette evidenze di Dark Matter viene dall osservazione della curva di rotazione delle Galassie a spirale: le stelle che le compongono si muovono più velocemente di quanto ci si aspetterebbe se esse sentissero semplicemente l attrazione gravitazionale degli altri oggetti visibili, come si può vedere graficando le loro velocità rotazionali in funzione della distanza dal centro galattico. La velocità di rotazione v di un oggetto in un orbita stabile kepleriana con raggio r intorno alla Galassia scala come v(r) M(r)/r, dove M(r) è la massa all interno dell orbita. Se r si trova all esterno della parte visibile della Galassia, e se la luce traccia la massa, ci si aspetterebbe v 1/ r. Invece si trova che v diventa approssimativamente costante al crescere di r; ad esempio nella nostra Galassia v 220km/s alla distanza del nostro sistema solare, con piccoli cambiamenti all aumentare del raggio (figura 3.1). Ciò ha suggerito l esistenza di un alone oscuro, con densità ρ 1/r 2, ossia M(r) r. La stima della materia nella Galassia calcolata a partire dalla sua luminosità fornisce una Ω lum 0.01, mentre dall analisi delle curve di rotazione si ottiene Ω DM 0.1. Figura 3.1: Curva di rotazione osservata della Galassia M33, imposta alla sua immagine nell ottico. Tratteggiata è mostrata anche la velocità aspettata dal disco luminoso 15

17 L osservazione degli ammassi di Galassie fornisce invece Ω DM Un altra suggestiva evidenza della presenza di Dark Matter nell universo è l effetto di lensing gravitazionale: la luce di una Galassia può essere deflessa dal campo gravitazionale di un ammasso di Galassie (figura 3.2). Dalla misura della deflessione può essere ricavata la massa dell ammasso. Studi dell effetto del lensing gravitazionale di numerosi clusters rivelano ancora la presenza di una grande massa che non emette nè assorbe radiazione, e danno una stima di Ω DM [6]. Figura 3.2: Effetto di lente gravitazionale osservato intorno all ammasso di Galassie Abell-2218 dal Telescopio Spaziale Hubble. La luce delle Galassie in background è distorta a formare archi intorno all ammasso. La più accurata determinazione della Ω DM viene da osservazioni su scala cosmologica. La misura dell anisotropia della radiazione cosmica di fondo (Cosmic Microwave Background, CMB), effettuata da WMAP (Wilkinson Microwave Anisotropy Probe) fornisce un stima della densità della materia nell universo pari a Ω m 0.27 [7] ed un valore di Ω b 0.04 per la densità della materia barionica: circa l 85% della materia nell Universo è costituito da Dark Matter. 3.3 Candidati per la Dark Matter Candidati Barionici Il contributo della materia luminosa alla densità di materia è Ω lum = , mentre Ω b = Quindi la maggior parte della materia barionica è oscura. Il miglior candidato per la dark matter barionica sono le nane brune, 16

18 stelle di piccola massa che non si sono mai accese. Anche buchi neri primordiali potrebbero essere buoni candidati, ma la maggiore obiezione contro la loro esistenza è la mancanza di meccanismi plausibili per la loro formazione. Candidati non barionici La classificazione principale della DM non barionica è basata sulla sua temperatura al momento del disaccoppiamento dall equilibrio termico. La Hot Dark Matter (HDM) nel momento del disaccoppiamento era relativistica. Le strutture formate dalla HDM non si formerebbero gerarchicamente, da piccoli aggregati a strutture più grandi, ma da frammentazione di superammassi, che si formerebbero per primi per poi suddividersi in strutture più piccole come le Galassie. Tale previsione è in disaccordo con le osservazioni a larga scala dell universo. I migliori candidati alla HDM sono i neutrini massivi, ma c è un limite al loro contributo alla massa totale, Ω ν 0.014, che viene dall analisi della radiazione cosmica di fondo. Quindi i neutrini costituiscono solo una piccola componente della massa della Dark Matter. La Cold Dark Matter (CDM) era non relativistica al tempo di disaccoppiamento. Quando iniziò nell universo la formazione delle Galassie, la CDM era lenta abbastanza per legarsi in strutture di scala galattica. La CDM quindi produce naturalmente Galassie e le strutture a grande scala dell universo. I candidati per la DM non barionica devono soddisfare diverse condizioni: devono essere stabili su scala cosmologica, devono interagire solo debolmente e gravitazionalmente con la materia ordinaria, e devono fornire il valore di Ω DM che ci si aspetta dalle considerazioni precedenti. Questi candidati includono buchi neri primordiali, axioni, e particelle massive debolmente interagenti (Weakly Interacting Massive Particles, WIMPs). Candidati Supersimmetrici - WIMPs La Supersimmetria è stata introdotta per unificare le forze fondamentali della natura. Essa richiede l esistenza di una nuova particella per ogni particella del Modello Standard. I partner supersimmetrici differiscono dalle particelle del Modello Standard per un fattore di spin pari ad 1/2. Quindi i parner supersimmetrici dei bosoni sono fermioni e vice versa. Se la supersimmetria fosse una simmetria della natura, i superpartners avrebbero la stessa massa delle particelle del Modello Standard. Per spiegare perchè tali particelle non sono ancora state trovate, si assume quindi che la supersimmetria sia rotta, ed i superpartners possono quindi avere una massa molto più grande delle loro controparti. L estensione minimale del modello standard (Minimal Supersymmetric Standard Model, MSSM) assume la conservazione della R-parità: R ( 1) 3B+L+2s 17

19 dove B, L ed s sono il numero barionico, leptonico e di spin. Tutte le paricelle del Modello Standard hanno R-parità uguale ad 1 mentre le particelle supersimmetriche hanno R-parità uguale a -1. Come conseguenza della conservazione della R-parità, la particella supersimmetrica più leggera (Lightest Supersymmetric Particle, LSP) è stabile e può essere distrutta solo mediante annichilazione di coppia, essendo così un ottimo candidato per la Dark Matter. La LSP non può avere carica elettrica o di colore, altrimenti potrebbe interagire con la materia barionica dando isotopi pesanti, in conflitto con le osservazioni. Per avere buon accordo con le osservazioni, una LSP deve avere una massa compresa tra qualche GeV a qualche TeV, deve essere neutra e può interagire con una sezione d urto comparabile a quella delle interazioni deboli, oltre all interazione gravitazionale. Nell MSSM il candidato LSP è il Neutralino χ, ottenuto dalla combinazione dei superpartners dei bosoni di gauge dell interazione elettrodebole e dei bosoni di Higgs neutri χ N 11 B + N12 W 3 + N 13 H0 1 + N 14 H0 2 (3.1) Le WIMPs erano in equilibrio termico con le particelle ordinarie nell universo primordiale, ed erano non relativistiche al tempo del disaccoppiamento. La densità può essere calcolata come Ωh 2 = ρ ρ c h cm 3 s 1 < σ ann v > (3.2) dove h è la costante di Hubble in unità di 100 km s 1 Mpc 1, < σ ann > è la sezione d urto totale di annichilazione di una coppia di WIMPs in particelle del modello standard, v è la velocità relativa tra le 2 WIMPs e <... > denota la media termica. Dai dati di WMAP si ha Ωh E rimarchevole il fatto che la sezione d urto delle WIMPS ha esattamente il valore giusto affinchè la 3.2 dia il corretto valore di Ω. 3.4 Ricerca di Dark Matter con il telescopio Fermi Le strategie per la ricerca di Dark Matter possono essere raggruppati in 2 gruppi: metodi di ricerca diretti ed indiretti. Nei primi si sfrutta il fatto che la Dark Matter può interagire con la materia ordinaria tramite scattering elastico, e si studia l energia trasferita mediante il processo di interazione con gli atomi del rivelatore. Il rate di interazione è proporzionale alla velocità relativa tra il rivelatore e la nube di Dark Matter nella quale si suppone sia immersa la Terra. Ci si aspetta di poter rivelare 2 tipi di segnale: una asimmetria giornaliera nella direzione di rinculo dei nuclei del rivelatore, dovuta alla rotazione della Terra, e una modulazione annuale nel rate di scattering dovuto all addizione o sottrazione della velocità della Terra a quella del Sole. Tra gli esperimenti per la ricerca diretta di Dark Matter vanno menzionati gli esperimenti DAMA/NaI e DAMA/LIBRA, effettuati presso i Laboratori 18

20 Nazionali del Gran Sasso dell INFN ed ideati da ricercatori dell Università di Tor Vergata. I dati dei due esperimenti, presi insieme, hanno osservato una modulazione annuale del segnale con la fase aspettata ed una significanza statistica di 8.2σ [9]. Tuttavia gli esperimenti DAMA/NaI e DAMA/LIBRA sono gli unici segnali positivi visti dagli esperimenti di ricerca diretta di Dark Matter. Grandi difficoltà si incontrano nel cercare di riconciliare il segnale visto da DAMA con i risultati negativi di altri esperimenti, anche se studi recenti non escludono la compatibilità [10]. I metodi di ricerca indiretti sfruttano il fatto che le particelle di Dark Matter possono annichilarsi, e i prodotti di decadimento possono essere rivelati come un contributo esotico al flusso astrofisico di raggi gamma, neutrini ed antimateria (figura 3.3). Tra gli esperimenti per la ricerca di Dark Matter basati sulla rivelazione di antimateria, va citato l apparato PAMELA [11], un rivelatore ottimizzato per lo studio di antiparticelle nella radiazione cosmica. PAMELA ha osservato [12] un significativo aumento nell abbondanza dei positroni nella radiazione cosmica per E > 10 GeV che non può essere spiegato dai modelli standard che descrivono la produzione di positroni secondari tramite le interazioni tra i Raggi Cosmici e le particelle del mezzo interstellare. I positroni in eccesso potrebbero essere prodotti dall annichilazione di particelle di Dark Matter, o nella magnetosfera delle Pulsars. L eccesso di positroni osservato da PAMELA potrebbe costituire una evidenza indiretta dell annichilazione di Dark Matter, o la prima osservazione della produzione di positroni da Pulsars. Figura 3.3: Produzione di raggi γ da annichilazione di WIMPs L oggetto di questa tesi è la ricerca di Dark Matter tramite la rivelazione del segnale γ dato dall annichilazione di coppie di WIMPs. La ricerca può essere effettuata in diverse regioni del cielo, ognuna delle quali presenta dei vantaggi e degli svantaggi, come schematizzato nella tabella 3.1. Il Centro Galattico rappresenta una delle zone di maggiore interesse, poichè, come verrà discusso nel paragrafo 3.4.3, i modelli teorici prevedono in questa regione un aumento della densità delle WIMPs, cui consegue un aumento del 19

21 Ricerca Vantaggi Svantaggi Centro Galattico Elevatata statistica Incertezza sul fondo diffuso Satelliti Basso segnale dal fondo Incertezze astrofisiche diffuso, buona identi- ficazione delle sorgenti Alone galattico Elevata statistica Incertezza sul fondo diffuso Extra Galattico Elevata statistica Incertezze astrofisiche e incertezze sul contributo galattico diffuso Linee Spettrali Nessuna incertezza astrofisica, Bassa statistica segnale incon- fondibile Tabella 3.1: Le regioni del cielo che il telescopio Fermi esplorerà alla ricerca di WIMPs, ed i vantaggi e svantaggi di ogni regione segnale γ dovuto alla loro annichilazione. In questo lavoro la ricerca di Dark Matter è stata dunque effettuata nel Centro Galattico L osservazione del centro galattico dell esperimento EGRET Durante i suoi 9 anni di osservazione del cielo il telescopio spaziale EGRET ha rilevato nel Centro Galattico, in una zona compresa entro un raggio di 1.5, un flusso di fotoni che eccedeva in misura rilevante l emissione diffusa. Diversi scenari sono stati proposti per spiegare questo eccesso; tra questi: 1. una variazione nello spettro dei CR, al quale corrisponderebbe un aumento nell emissione diffusa. 2. emissione dovuta alla concentrazione di un gran numero di pulsar nel Centro Galattico 3. l accrescimento del buco nero super massiccio nel Centro Galattico Alternativamente, l eccesso GeV potrebbe essere spiegato dall annichilazione di Dark Matter: i dati di EGRET mostrano infatti il tipo di distorsione dello spettro γ diffuso che ci si aspetterebbe dall annichilazione di WIMPs, assumendo che l alone di Dark Matter abbia un picco nel CG [13]. In questa ipotesi, il flusso totale misurato da EGRET può essere scisso in 2 contributi: uno dovuto al fondo diffuso, in questo caso considerato come background, l altro dovuto all annichilazione di WIMPs, che sarà il segnale. Vediamo separatamente i due contributi 20

22 3.4.2 Fondo Diffuso Ci sono tre meccanismi che danno luogo alla componente γ diffusa: il decadimento del π 0, l effetto Compton inverso ed il bremsstrahlung. Il decadimento del π 0 è la componente dominante alle energie prese in considerazione (E > 1 GeV). La produzione del π 0 avviene tramite interazione dei raggi cosmici con gli atomi del mezzo interstellare p + X π 0 2γ He + X π 0 2γ dove X è un atomo del mezzo interstellare, principalmente H e He. Il flusso può essere scisso in 2 fattori: un termine che definisce la forma spettrale, ed una costante di normalizzazione N b. Il termine che definisce la forma spettrale è proporzionale all emissività Em per atomo di idrogeno, ossia il numero di fotoni secondari con energia compresa tra E γ ed E γ +de γ emessi nell unità di tempo e per atomo di idrogeno, quando esso è colpito da un protone o nucleo di elio. La costante di normalizzazione sarà invece legata all integrale lungo la linea di vista della densità dell idrogeno del mezzo interstellare. Per energie maggiori di 1 GeV la forma spettrale del fondo diffuso può essere descritta da una power law, ossia una legge del tipo φ back E α γ (3.3) dove l indice spettrale α, che determina la pendenza dello spettro, è uguale a quello dei protoni nei raggi cosmici, ossia α = Per calcolare l emissione γ diffusa si può assumere che lo spettro dei raggi cosmici nella Galassia sia uguale a quello misurato localmente. Modelli di questo tipo sono chiamati convenzionali. Alternativamente, si può assumere che lo spettro locale dei raggi cosmici non rappresenti quello medio della Galassia. Considerevoli aumenti nell intensità del CR si possono avere ad esempio con esplosioni di SN. I modelli che usano questa assunzione sono chiamati ottimizzati, e riescono a riprodurre l eccesso GeV dei dati di EGRET senza dover introdurre produzioni esotiche. Gli spettri risultanti da questi 2 modelli sono mostrati nelle figure 3.4 e 3.5 (fonte [14]), e confrontati con i dati ottenuti da EGRET e COMPTEL, un altro telescopio a bordo di CGRO. 21

23 Figura 3.4: Spettro gamma della Galassia interna (300 < l < 30, b < 5) derivato dal modello convenzionale. In rosso il contributo dal decadimento del π 0, in verde il contributo dato dall effetto Compton Inverso, in fucsia il contributo dal bremsstrahlung. In nero il fondo diffuso extragalattico, in blu il flusso totale. Sono mostrati i dati di EGRET, in rosso, e quelli di COMPTEL, in verde. Figura 3.5: Spettro gamma della Galassia interna (300 < l < 30, b < 5) derivato dal modello ottimizzato. In rosso il contributo dal decadimento del π 0, in verde il contributo dato dall effetto Compton Inverso, in fucsia il contributo dal bremsstrahlung. In nero il fondo diffuso extragalattico, in blu il flusso totale. Sono mostrati i dati di EGRET, in rosso, e quelli di COMPTEL, in verde. 22

24 3.4.3 Segnale Ci sono differenti tipi di contributi che danno luogo a fotoni γ dall annichilazione di WIMPs. La componente dominante dei raggi gamma è associata alla produzione e decadimento di b b, t t, W + W e Z 0 Z 0, che hanno come stadio finale la produzione del π 0 ed il suo decadimento in 2γ. Il contributo dovuto all annichilazione in coppie di fermioni leggeri è soppresso di un fattore m 2 f /M 2 χ, dove m f è la massa del fermione, se si considera che le velocità delle particelle è piccola rispetto alla massa, e l annichilazione avviene in onda S. Per concludere, le particelle di Dark Matter possono annichilare direttamente in fotoni, mediante il processo χχ γγ o χχ Zγ, dando luogo ad una linea di emissione ad energie pari alla massa della DM. Tuttavia il branching ratio per questo processo è 10 3, poichè le WIMPs sono elettricamente neutre, e quindi non si accoppiano direttamente in fotoni. Supponendo l alone di Dark Matter approssimativamente sferico, il flusso gamma indotto dall annichilazione di WIMPs lungo una direzione che forma un angolo ψ con il centro galattico sarà dato da: φ χ (E, ψ) = σv dn f 4π de B f dl(ψ) 1 ρ(l) 2 f l.o.s 2 Mχ 2 (3.4) dove B f è il branching ratio dei vari stati finali di annichilazione, dn f de è il flusso differenziale relativo ad un determinato canale di annichilazione, σv è il rate di annichilazione totale, M χ è la massa della DM, e l integrale della densità ρ è effettutato lungo la linea di vista. La precedente equazione può essere fattorizzata in una parte dipendente solo dalla fisica della particella di DM presa in considerazione (definita da sezione d urto, branching ratio e massa) ed una parte dipendente dalla distribuzione della DM nell alone. Quindi ( ) φ χ (E, ψ) = σv ( 50GeV cm 3 s 1 M 2 χ ) 2 f dn f de B f J(ψ)cm 2 s 1 GeV 1 sr 1 (3.5) dove la costante adimensionale J contiene la dipendenza dalla densità dell alone ed è definita per convenzione come J(ψ) = 1 ( ) 1 8.5kpc 0.3GeV cm 3 ρ 2 (l)dl(ψ) (3.6) La parte sinistra dell equazione 3.5 determina la forma spettrale del segnale, dipende solo dalla fisica della particella scelta e può essere calcolata con una accuratezza elevata. La parte destra è invece soggetta ad una incertezza 23 l.o.s

25 di diversi ordini di grandezza, dovuta alla scarsa conoscenza della ρ(l) della Dark Matter. Come per la componente diffusa, il segnale γ dovuto alla Dark Matter può quindi essere diviso in un termine che definisce la forma spettrale del flusso, ed una costante di normalizzazione, N χ, definita da J(ψ). Il profilo della densità della DM può essere studiato mediante simulazioni numeriche ad N-corpi della formazione di strutture per CDM. Tra i modelli più usati ci sono il profilo Navarro-Frenk-White (NFW) e quello di Moore ρ NF W = ρ 0 (r/r 0 )(1 + r/r 0 ) 2 (3.7) ρ M = ρ 0 (r/r 0 ) 1.5 (1 + (r/r 0 ) 1.5 ) (3.8) dove ρ 0 è fissato imponendo che la densità della DM alla distanza del sole dal CG (8.5 Kpc) sia uguale a 0.3 GeV/cm 3, e r 0 20 Kpc (figura 3.6). Tuttavia questi due profili non esauriscono tutte le possibilità, e restano grandi incertezze nella distribuzione della DM, soprattutto nel CG. In più, il potenziale gravitazionale nelle regioni più interne della Galassia è dominato non dalla DM, ma dai barioni, il cui effetto non è incluso in queste simulazioni. E difficile predirre nei dettagli l impatto dei barioni nella distribuzionde della DM, ma ci si aspetta un aumento del rate di annichilazione di DM dovuto alla compressione adiabatica [15]. I gamma derivanti dal fondo galattico diffuso e quelli dovuti all annichilazione di WIMPS hanno forma spettrale diversa: il bakground, come detto, segue un andamento di power law, mentre la DM ha un andamento più curvo, che diventa sempre più ripido quando E γ si avvicina alla massa del neutralino. In [13] lo spettro del fondo diffuso è stato modellato con il codice GAL- PROP, un modello numerico per la propagazione dei CR nella Galassia, e che fornisce l emissione γ diffusa data dalla loro interazione con le particelle del mezzo interstellare. Lo spettro dei CR nella Galassia è stato considerato uguale a quello misurato localmente. Gli spettri della Dark Matter sono stati simulati con il codice DARKSUSY, un pacchetto FORTRAN per calcoli sulla Dark Matter supersimmetrica [16]. E quindi stato fatto il fit dei dati di EGRET nel Centro Galattico con il modello del fondo diffuso ed alcuni modelli di Dark Matter, lasciando N b ed N χ come parametri liberi, ed al variare di M χ. L accordo con i dati risulta nettamente migliore quando all emissione γ del fondo diffuso viene aggiunta la componente dovuta all annichilazione di WIMPS, con un valore di χ 2 ridotto, con 6 gradi di libertà., che passa da 150 nel caso di solo fondo diffuso a 5 con la componente di DM aggiuntiva (figura 3.7) 24

26 Figura 3.6: Confronto tra i profili di densità della Dark Matter nella Via Lattea, come funzione della distanza dal centro dell Galassia. Tutte le curve sono normalizzate a ρ 0 ρ(r ) = 0.3 GeV cm 3 (fonte [17]) Figura 3.7: Fit dei dati di EGRET nel Centro Galattico ottenuto da Morselli et al. [13] 25

27 Capitolo 4 Fermi Large Area Telescope 4.1 Fermi Large Area Telescope Il Large Area Telescope LAT, il principale strumento a bordo del telescopio Fermi, è un telescopio a conversione di coppie, il cui intervallo di energia di rivelazione è compreso tra 20 MeV e 300 GeV. Schematicamente, il LAT è costituito da un dispositivo di anticoincidenza (Anticoincidence Detector, ACD), che circonda l intero strumento al fine di schermarlo dai raggi cosmici, all interno del quale si trovano 16 moduli indentici, chiamati torri o towers, inseriti in una griglia 4 4. Le torri sono così costituite: La parte superiore è costutuita dal Tracciatore o Tracker (TKR), nella quale avviene la conversione dei fotoni γ nelle coppie e + e e la determinazione della loro traiettoria. La parte centrale è costituita dal Calorimetro (CAL), il quale ricostruisce l energia dei raggi gamma primari. La parte inferiore è costituita dal Moduli di acquisizione Dati (DAQ) Un evento gamma sarà caratterizzato nel LAT da: nessun segnale dall ACD due tracce nel TKR, che devono partire dalla stessa posizione, identificando così un vertice uno sciame elettromagnetico nel CAL Vediamo ora le varie componenti del LAT più nel dettaglio 4.2 AntiCoincidence Detector L ACD ha il compito di rilevare le particelle cariche incidenti nel LAT, che nell orbita del telescopio Fermi sono 4 ordini di grandezza più abbondanti 26

28 Figura 4.1: Telescopio a conversione di coppie: un fotone entra nel LAT e crea una coppia e + e che viene rivelata nel tracciatore Figura 4.2: Rappresentazione schematica del LAT 27

29 dei raggi gamma. I raggi gamma ad energia piu elevata, al di sopra dei 5 GeV, possono produrre il cosiddetto fenomeno di backsplash: i fotoni originati nel calorimetro come prodotto degli sciami elettromagnetici possono subire uno scattering all indietro e produrre un segnale di self-veto nell ACD tramite scattering Compton. Il telescopio EGRET, nel quale l ACD era costituito da un pezzo unico, ha sofferto di una perdita di efficienza del 10% a 10 GeV rispetto a quella ad 1 GeV a causa di tale effetto. Nel LAT, al fine di ridurre il fenomeno del self-veto, l ACD è segmentato: un evento e preso in considerazione solo se il segnale appare nel settore nel quale passa la traiettoria dell evento ricostruito. Con la segmentazione è possibile minimizzare il selfveto ad alte energie e migliorare la reiezione del background. L ACD del lat è segmentato in 89 mattonelle di scintillatore, 25 nella parte superiore del LAT e 16 per ciascun lato. 4.3 Tracker Il Tracker del LAT ha 2 compiti: convertire i fotoni incidenti in coppie e + e, e rivelare le tracce degli elettroni e positroni. Si presentano quindi due esigenze: da una parte, per la conversione, è necessario un grande spessore di materiale convertitore, poiche la probabilità di conversione e proporzionale al numero di lunghezze di radiazione χ 0 del materiale convertitore. χ 0 è definita come la distanza media per la quale un elettrone perde (1-1/e) della sua energia per Bremsstrahlung (paragrafo B.2). Dall altra, per la rivelazione, e richiesto un piccolo spessore, poichè esso influisce sulla risoluzione angolare a causa dello scattering multiplo della coppia elettrone positrone con gli atomi del rivelatore (vedi paragrafo 4.7.2). La scelta dei materiali e del loro spessore è quindi cruciale. Per la conversione, serve un materiale con alto Z per ottenere una buone efficienza di conversione, ed è stato scelto il Tungsteno anche per le sue caratteristiche termiche e meccaniche. Ogni modulo del TKR contenuto in ciascuna torre è composto da trays contenenti il piano di tungsteno ed i piani di silicio. Ogni piano di silicio è composto da 2 silicon strip detector (SSD), una al di sopra ed una al di sotto, orientate nella stessa direzione. Il singolo sensore di silicio è un quadrato di lato 8.95 cm. I sensori vengono posti in gruppi di 4 uno di seguito all altro, con le strip parallele, e saldati formando un ladder. Quattro ladder vengono affiancati tra loro su una struttura in fibra di carbonio a formare il tray. I tray sono montati uno sopra all altro a distanza di 2 mm per formare una torre. Ogni tray è posizionato con un angolo di 90 rispetto alla precedente, creando così una struttura x-y ed ottenendo una capacità di immagine a 2 dimensioni. Ogni torre del TKR contiene 19 piani: 12 piani con foglio di tungsteno con 0.03 χ 0, chiamata trays frontale, 4 trays con un foglio di tungsteno con 0.18 χ 0, chiamata trays posteriore, e 3 28

30 trays senza foglio convertitore, per una spessore totale di 1.08 χ 0. La scelta dello spessore del foglio di tungsteno è cruciale per assicurare una buona efficienza di conversione minimizzando l impatto dello scattering multiplo, che influisce sulla risoluzione. La sezione frontale è designata per massimizzare la risoluzione angolare, mentre la sezione posteriore per massimizzare l area effettiva, aumentando la sensibilità alle alte energie, ma a discapito della risoluzione angolare. Il TKR è costituito da circa SSD, per una superficie di silicio totale pari a circa 80 m Rivelatori a semiconduttore Il meccanismo di rivelazione di una SSD sfrutta le proprietà fisiche di una giunzione p-n polarizzata inversamente. Una particella carica che attraversa una zona svuotata da portatori di carica crea coppie elettrone-lacuna liberi. Il numero di coppie è proporzionale all energia trasmessa dalla particella carica al semiconduttore. La radiazione è misurata per mezzo del numero di portatori di carica liberi nel rivelatore, che è posto tra due elettrodi: gli elettroni e le lacune vengono trasportati da un campo elettrico sugli elettrodi, sui quali generano un segnale pulsante che può essere misurato da un circuito esterno. La lettura del segnale viene effettuata in AC, mentre la componente continua viene tagliata. In questo modo il rumore, che varia lentamente nel tempo, può essere in larga parte eliminato. La regione di svuotamento creata dal campo elettrico intrinseco della giunzione p-n non è molto larga. Ciò comporterebbe una bassa efficienza nella raccolta di carica. Per migliorare le prestazioni viene applicato un potenziale inverso, il potenziale di bias, che ha l effetto di allargare la regione di svuotamento. Anche se teoricamente un diodo polarizzato inversamente non dovrebbe condurre, nella pratica è comunque sempre presente la corrente di perdita, dovuta principalmente al movimento dei portatori di carica di minoranza, e alla formazione spontanea di coppie elettrone-lacuna all interno della zona di svuotamento. Tale corrente di perdita costituisce una sorgente di rumore sull output del rilevatore, e stabilisce quindi un limite per il più piccolo segnale che possa essere rivelato. Le velocità degli elettroni e delle lacune all interno del silicio sono proporzionali al campo elettrico, e determinano il tempo di risposta dello strumento. Per i rivelatori del telescopio Fermi questo tempo è dell ordine di alcuni nanosecondi. Lo svantaggio principale dei rivelatori a strip è la quantità di elettronica richiesta per leggere il segnale, in quanto ad ogni strip corrisponde un differente elettrodo. Il grande vantaggio è l alta risoluzione spaziale, paragonabile al passo degli elettrodi. 4.4 Calorimetro Il Calorimetro del LAT ha lo scopo di misurare l energia dell elettrone e del positrone incidenti, e dare informazioni sui fotoni ad alta energia che non 29

31 Figura 4.3: Struttura di un wafer di silicio usato per il tracciatore sono stati convertiti nel TKR. Esso è composto da scintillatori a cristalli di Ioduro di Cesio drogato al Tallio, CsI(Tl), letti da fotodiodi. Il passaggio degli elettroni e dei positroni attraverso il calorimetro causa una reazione di scintillazione nei cristalli di ioduro di cesio. Il flash di luce risultante è convertito tramite il fotodiodo in una corrente elettrica, poi digitalizzata e registrata. Così come il resto del LAT, il calorimetro è costituito da 4 4 moduli. Ogni modulo è formato da 8 strati di scintillatori, ognuno dei quali è costituito da 12 barre di cristallo di CsI(Tl) delle dimensioni di cm 3, avvolti in fogli riflettenti, per una lunghezza di radiazione totale pare a 8.5 χ 0. All estremità di ciascuna barra è collocato un diodo PIN, utilizzato per la lettura. La precisione sulla posizione di rivelazione varia da qualche mm a basse energie (intorno ai 10 MeV), fino a frazioni di mm per energie maggiori di 1 GeV. Così come le SSD del TKR, ogni strato è ruotato di 90 rispetto al precedente per ottenere una capacità di immagine a 2 dimensioni. Questa capacità di immagine può anche essere usata per misurare la direzione di fotoni di alta energia che non hanno subito conversione nel TKR. 4.5 Il Sistema di Acquisizione Dati Il Sistema di Acquisizione Dati (Data Acquisition System, DAQ) del LAT ha principalmente 3 funzioni: far partire il trigger del rivelatore per registrare gli eventi, leggere e collocare gli eventi in una memoria temporanea, ed elaborarli per prepararli alla trasmissione a Terra. Il DAQ è costituito da 18 moduli, ognuno con una propria CPU: 16 Tower Electronic Module, collocati 30

32 Figura 4.4: Schema del calorimetro del LAT al di sotto di ogni torre, un modulo per il dispositivo di anticoincidenza (ACD Electronic Module, AED), e lo Spacecraft Interface Unit. Il Trigger del LAT è un sistema a 3 livelli: Il trigger di primo livello L1T ha lo scopo di far iniziare la lettura degli eventi. Ogni torre ha un proprio trigger. L inizio di un trigger di torre può essere causato da un segnale proveniente dal tracciatore o da uno proveniente dal calorimetro. Per quanto riguarda il tracciatore, la richiesta è che ci siano 3 piani consecutivi colpiti simultaneamente. Il trigger di livello 2, L2T, ha lo scopo di implementare nell L1T le informazioni provenienti dall ACD. Ricostruendo la traccia tramite un algoritmo, rende possibile l identificazione del pannello ACD attraversato da quella traccia. Se quel pannello ha dato segnale, l evento viene eliminato, in quanto dovuto ad un raggio cosmico. Il trigger di livello 3, L3T esegue una ricostruzione completa dell evento, utilizzando le informazioni di tutti i sottoinsiemi. E usato anche per eliminare il rumore dei fotoni di albedo provenienti dalla terra, confrontando la direzione di provenienza del fotone con la posizione dell orizzonte terrestre. La frequenze degli eventi che superano i 3 livelli sono rispettivamente di 5 khz, 1 khz e 15 Hz. La mole di dati dal primo all ultimo livello è notevolmente ridotta, ed i dati sono pronti per essere trasferiti a terra. 31

33 4.6 Classificazione dei fotoni e rimozione del background Al fine di discriminare se una dato evento è effettivamente un fotone astrofisico, o se esso è un evento di background, è fondamentale la ricostruzione dell interazione degli eventi con le varie parti del telescopio, ACD, TKR e CAL. La maggior parte dei trigger dello strumento infatti sono eventi di background causati dall interazione dei raggi cosmici con lo strumento, e raggi gamma di albedo provenienti dalla terra. La classificazione degli eventi è effettuata tramite algoritmi che dividono i dati in sottoinsiemi seguendo il valore assunto da alcune variabili scelte per la discriminazione degli eventi, come ad esempio la presenza di un vertice alla sommità delle 2 tracce nel tracker. In questo modo si formano i cosiddetti Classification Tree, CT. Gli eventi vengono separati dagli algoritmi di classificazione in 3 classi di eventi o event classes. Queste classi si differenziano da una richiesta via via più restrittiva che l evento in esame si comporti nel tracker e nel calorimetro come farebbe un raggio gamma. Le 3 tre classi di eventi sono: La diffuse class, che ha la più piccola PSF e la più piccola area effettiva. Essa include la più piccola frazione di conteggi del background, ed è usata per lo studio di emissioni diffuse. La source class, la quale ha una area effettiva maggiore, ma anche una più alta frazione di conteggi di background e fotoni con PSF più grande. Il compromesso tra area effettiva e PSF rende questa classe favorevole per lo studio di sorgenti puntiformi. La transient class, che ha dei tagli di selezione ancora minori. L area effettiva è aumentata al costo di una grande PSF e eventi di background addizionali. Tale classe è ideale per lo studio di transienti dalle dimensioni temporali di un ora, come gamma ray bursts, poichè quasi tutti gli eventi vengono dalla sorgente. La tabella 4.1 riassume le proprietà delle 3 classi di analisi, mentre le figura 4.5 mostra il background residuo per le 3 classi. 4.7 La Funzione di Risposta del LAT La Instrument Response Function o IRF descrive le prestazioni del LAT in termini di probabilità di trasformazione da una grandezza fisica vera, come ad esempio l energia e la direzione dei fotoni, alla corrispondente quantità misurata. Può quindi essere vista come una mappa tra il flusso di fotoni incidenti sul LAT e gli eventi registrati. La performance del rilevatore sono espresse nei termini dell efficienza di rivelazione (area efficace, A eff ), della risoluzione angolare (Point Spread 32

34 Classe Transient Source Diffuse Caratteristica Massimizza l area effettiva, particolarlmente a basse energie, alle spese di un alto background residuo. Appropriato allo studio di transienti Tasso residuo del background comparabile e quello del diffuso extragalattico stimato da EGRET. Appropriato per lo studio di sorgenti localizzate Tasso residuo del background comparabile al limite massimo possibile. Tagli alla PSF alle alte energie minimizzati. Consigliabile per lo studio delle sorgenti diffuse più deboli Tabella 4.1: Classi di Analisi del LAT Function, PSF), e della ricostruzione dell energia (dispersione energetica, E). Ogni classe di eventi, diffuse, point source e transient, ha una diversa IRF. Il rate di conteggi osservati è la convoluzione tra il flusso reale di fotoni e la IRF. Consideriamo il flusso differenziale incidente F (E, θ), espresso come numero di fotoni per unità di area, energia e tempo, dove E e θ sono l energia e la direzione veri. In particolare nel LAT θ è definto come l angolo tra la normale al LAT e la posizione vera della sorgente. Il numero di fotoni osservati nell unità di tempo, provenienti da una sorgente di flusso F (E, θ) sarà dato da: dn dt (E, θ ) = R(E, θ E, θ)f (E, θ)dedθ (4.1) dove R(E, θ E, θ) è la IRF del rivelatore. R può anche essere interpretata come la probabilità di misurare E e θ quando l energia vera è E e la direzione vera è θ, e può essere espressa nei termini di un area efficace per la probabilità che un fotone con un dato insieme di parametri sia rilevato come un evento con un dato insieme di osservabili. Per il LAT, i parametri del fotone sono l energia E e l angolo di inclinazione θ, e l evento è caratterizzato dall energia apparente E e dalla posizione apparente θ. Quindi per una data classe di eventi la IRF potrà essere scritta come R(E, θ ; E, θ) = A eff (E, θ)p SF (θ ; E, θ)e(e ; E) (4.2) ed è quindi il prodotto dell area effettiva, della PSF e della funzione di ridistribuzione dell energia. La IRF è determinata da simulazioni Monte Carlo della risposta del LAT ad un fotone di energia E ed inclinazione θ. Il confronto tra le proprietà dell evento calcolate e quelle del fotone incidente simulato fornisce la IRF. E importante notare che la IRF non dipende soltanto dallo strumento, ma anche dagli algoritmi di ricostruzione, di reiezione del background, e dalla selezione degli eventi. Per esempio, si può scegliere di 33

35 Figura 4.5: Rapporto tra il background residuo e il background extragalattico diffuso trovato da EGRET. studiare separatamente la risposta dello strumento selezionando solo quegli eventi che hanno subito la conversione nella parte frontale del tracker, dove i fogli di tungsteno sono sottili, o viceversa quelli provenienti dalla parte bassa del tracker, con fogli di conversione più spessi. Gli algoritmi di selezione degli eventi usati per la rimozione del background influiscono anche sull efficienza di rivelazione, data dall Area Efficace A eff. In generale, la massimizzazione dell efficienza di rivelazione, ottenuta considerando anche eventi che non sono stati ben ricostruiti, influisce sulla risoluzione angolare del rivelatore. Al contrario, considerare solo eventi la cui direzione è stata ben ricostruita implica la reiezione di molti eventi, con conseguente diminuizione dell efficienza di rivelazione. Per questo le 3 classi di eventi, diffuse, point source e transient, hanno ognuna una propria IRF Area Efficace L Area Efficace del LAT è una funzione dell energia E del fotone incidente, dell angolo di inclinazione θ, e della categoria dell evento. Essa è data dal prodotto dell area del rivelatore per l efficienza di rivelazione. Da un punto di vista strettamente geometrico, l area efficace sarà data da: A eff (θ) = A peak cos(θ) dove θ è l angolo tra il fotone incidente e la normale al piano del rivelatore, ed A peak l area efficace massima, che si ha per fotoni incidenti perpendicolar- 34

36 mente sulla superficie del rivelatore. Nelle figure 4.6, 4.7 e 4.8 sono mostrati i plot dell area efficace a vari angoli di inclinazione. Figura 4.6: Area Efficace per θ = 0 Figura 4.7: Area Efficace per θ = 30 Figura 4.8: Area Efficace per θ = 60 35

37 4.7.2 Point Spread Function La PSF è la risposta dello strumento ad una sorgente puntiforme, ossia l immagine di un punto sorgente dopo la ricostruzione da parte del rivelatore. L allargamento dell immagine dovuto alla PSF porta ad un impoverimento della risoluzione angolare dello strumento. Nei telescopi gamma con rivelatori allo stato solido, la maggiore causa dell allargamento della PSF è dovuto allo scattering multiplo della coppia elettrone positrone con gli atomi del rivelatore. Lo scattering multiplo è ben descritto dalla teoria di Molière: per piccoli angoli di deflessione la distribuzione angolare può essere ben approssimata da una gaussiana, mentre per grandi angoli essa si comporta come un singolo scattering alla Rutherford, dando come risultato una coda più allargata rispetto alla distribuzione gaussiana. All aumentare dell energia della particella incidente, l angolo di deflessione diminuisce. Ciò porta ad un miglioramento della PSF ad alte energie, fino al raggiungimento di un plateau, determinato dalla risoluzione intrinseca del TKR Risoluzione Energetica E misurata dal rapporto tra l energia ricostruita dal rivelatore e quella vera. Dato un fotone di energia vera E ed energia apparente E, la risoluzione energetica può essere parametrizzata dalla formula dn dx = A(1 + x) p1 1 + exp( x p 2 ) dove x = (E E)/E ed A è un fattore di normalizzazione. Di seguito sono riportati i grafici dei plots della PSF e dell Area Efficace per la versione della IRF P ass4 v1 36

38 Figura 4.9: Area Efficace vs energia Figura 4.10: Area Efficace vs angolo di inclinazione 37

39 Figura 4.11: PSF vs energia Figura 4.12: PSF vs angolo di inclinazione 38

40 Capitolo 5 Programmi utilizzati e procedura di riduzione dati 5.1 I programmi di analisi scientifica della collaborazione Fermi (Glast Science Tools) I dati del LAT, immagazzinati in file FITS (Flexible Image Transport System), il formato standard per i dati astronomici, sono divisi in 2 categorie: gli event files, o FT1, che contengono tutte le informazioni sugli eventi osservati, come l energia, le coordinate in Ascensione Retta e Declinazione, o in longitudine e latitudine galattica, il tempo di arrivo, la classe di eventi di appartenenza, e così via; e gli spacecraft files, o FT2, i quali contengono le informazioni sulla posizione del satellite ad un determinato tempo di osservazione e sulla direzione di puntamento del LAT. I tempi di osservazione sono definiti in MET, Mission Elapsed Time, misurati in secondi a partire dal 1 Gennaio L analisi dei dati provenienti dal telescopio Fermi è effettuata con gli Science Tools, un pacchetto di programmi sviluppato dal Fermi/GLAST Science Support Center. Essi sono stati ampiamenti usati nel corso di questa tesi. Nel seguito verra data una descrizione dei programmi e del loro utilizzo. Gtobssim Questo programma e usato per la simulazione di sorgenti gamma: esso genera fotoni da sorgenti astrofisiche e li processa seguendo la IRF specificata. Può generare sia sorgenti puntiformi, o point sources, che sorgenti diffuse. I modelli delle sorgenti da simulare sono definiti in un file xml, i cui parametri fondamentali sono lo spettro, ossia la distribuzione dei fotoni in funzione dell energia, e la distribuzione spaziale. Per le sorgenti puntiformi è possibile modellare lo spettro con andamenti di power law, broken power law o tramite 39

41 un file ASCII. Uno spettro di tipo power law ha una forma del tipo E γ, dove l indice spettrale gamma definisce la pendenza dello spettro: spettri piu ripidi vengono definiti hard, mentre spettri con una valore di gamma piu piccolo vengono definiti soft. Uno spettro di tipo broken power law ha invece una pendenza variabile: è definito da 2 indici spettrali, γ 1 e γ 2 e da E break, ossia l energia in corrispondenza della quale si ha la variazione di pendenza. Nel file ASCII vengono definiti l energia ed il corrispondente valore dello spettro differenziale dn/de in due colonne di dati. Per l andamento di power law occorre specificare nel modello il valore del flusso integrato, gli estremi di integrazione ed il valore dell indice spettrale. La broken power law richiede la definizione di due indici spettrali ed il valore dell energia di break, oltre al flusso integrato e gli estremi di integrazione. Se lo spettro è definito tramite file ASCII, occorre semplicemente inserire il percorso del file. In tutti i modelli occorre infine definire la posizione in coordinate celesti o galattiche. Per le sorgenti diffuse sono possibili diverse opzioni, sia per modellare la parte spaziale che per modellare lo spettro: una gaussiana bidimensionale con spettro power law; una sorgente isotropica che copre l intero cielo con spettro di power law; il modello MapSource, per cui la distribuzione spaziale dei fotoni è data in un file FITS e lo spettro nella mappa è di tipo power law; il modello MapCube, per cui i fotoni incidenti sono generati da un file FITS 3-d, i cui parametri sono le coordinate del cielo e l energia. Infine, con il modello FileSpectrumMap, è possibile usare una mappa 2-d per la distribuzione spaziale data da un file FITS come nel modello MapSource, ed un file ASCII con 2 colonne per lo spettro. Di seguito è riportato a titolo esemplificativo un template per la simulazione di una point source con andamento di power law. <source_library title="example"> <source name="_3c279" flux="3.48e-4"> <spectrum escale="mev"> <particle name="gamma"> <power_law emin="20.0" emax=" " gamma="1.96"/> </particle> <celestial_dir ra="193.98" dec="-5.82"/> </spectrum> </source> </source_library> Oltre a quello per le definizione delle sorgenti, il programma richiede in input altri 2 files: un file che deve contenere la lista dei nomi delle sorgenti da simulare, ed il file FT2 contenente le informazioni sulla direzione di punta- 40

42 mento del telescopio. Sono inoltre richiesti in input il tempo di simulazione, le dimensioni della regione di cielo da simulare, e la IRF. Gtselect Questo programma permette di effettuare delle selezioni nei parametri dei fotoni del file di eventi immesso in input. E possibile selezionare l energia dei fotoni, il tempo di integrazione, le dimensioni della regione di cielo che si vuole studiare, ed effettuare tagli sull angolo di zenith. E inoltre possibile tramite gtselect effettuare il mergering di più file di eventi, ossia creare un unico file di eventi FT1 dato dalla somma degli eventi di più file temporalmente consecutivi. GtMktime Questo programma permette di selezionare Good Time Intervals, GTI, nel file FT2. Un GTI e un range temporale entro il quale i dati possono essere condiderati validi. Tramite Gtmktime i dati vengono filtrati in accordo ai GTI definiti dall utente, mentre quelli al di fuori dei GTI sono rimossi dal file di eventi. Ad esempio possono essere scartati gli eventi corrispondenti agli intervalli di tempo in cui il telescopio stava passando nell anomalia subatlantica (Southern Atlantic Anomaly, SAA), ossia la zona dove, a causa della conformazione del campo magnetico terrestre, si ha la più alta concentrazione di CR. GtBin Questo programma permette di raggruppare gli eventi del LAT in bin temporali, spaziali e di energia, per creare curve di luce, spettri e mappe di conteggi. Nel corso di questa tesi esso è stato ampiamente usato per creare le mappe del cielo γ con i dati inviati dal LAT. Con Gtbin è possibile definire le dimensioni della regione di interesse e la risoluzione della mappa. Gtltcube Le IRF del LAT sono funzione dell angolo tra la direzione della sorgente e l asse z dello strumento. Il numero di conteggi rivelati da una sorgente dipende quindi da quanto tempo quella sorgente passa alle varie inclinazioni nel corso di una osservazione, ed anche dal livetime, ossia il tempo in cui il LAT sta effettivamente acquisendo dati. Gtltcube calcola i livetime come funzione dell inclinazione e della posizione nel cielo in un determinato interavallo di osservazione. Poichè i livetime non possono essere dati da una fun- 41

43 zione continua dell angolo di inclinazione e della posizione, essi sono definiti in bin di angolo di inclinazione e in una griglia HEALPIX. HEALPIX, acronimo per Hierarchical Equal Area isolatitude Pixelization, produce una divisione in pixel di una superficie sferica in cui ogni pixel possiede la stessa area. GtExpmap Calcola la mappa delle esposizioni che serve per la unbinned likelihood, definita più avanti. La mappa delle esposizioni calcolata da gtexpmap è definita come l integrale della risposta totale (A eff E P SF ) su tutta la regione di interesse. La mappa delle esposizioni è necesaria per calcolare il numero di eventi aspettati da una data sorgente o una data regione di interesse. Sono richiesti in input il file di eventi FT1, lo spacecraft file FT2, e i livetimes forniti da gtltcube. Gtdiffrsp Per effettuare un calcolo della maximum likelihood con i dati del LAT, occorre calcolare la distribuzione di fotoni aspettata per le sorgenti modellate (vedi paragrafo successivo). La distribuzione dei fotoni è data dall integrale di convoluzione del modello della sorgente con la IRF. Per sorgenti puntiformi la componente spaziale è una delta, e tale integrale è relativamente facile da calcolare. Per componenti diffuse, come il fondo Galattico, il calcolo dell integrale richiede molto tempo e deve essere calcolata separatamente. Gtdiffrsp calcola questo integrale per ogni componente diffusa e lo inserisce come informazione aggiuntiva nel file FT1. GtLike Questo programma permette di eseguire i fit dei dati utilizzando la Maximum Likelihood (paragrafo A per una introduzione alla Likelihood). I fit forniscono la migliore stima dei parametri spettrali delle sorgenti presenti nella regione di cielo considerata, il cui modello e fornito in input a Gtlike tramite un file xml. Per modellare la regione di cielo che si vuole studiare, possono essere definiti due tipi di sorgenti, Point Source e Diffuse Source, ognuno dei quali è costituito da una componente spaziale ed una spettrale. I parametri del modello possono essere impostati come fissi, o liberi di variare nel fit. Nel caso in cui un parametro è lasciato libero, si può definire il range di valori entro il quale il parametro può variare. Per modellare lo spettro di una sorgente sono disponibili diverse funzioni spettrali; tra queste menzioniamo 42

44 PowerLaw, della forma ( ) dn E γ de = N 0 E 0 e con parametri Prefactor N 0, Index γ, Scale E 0 BrokenPowerLaw, dn de = N 0 con parametri N 0, γ 1, γ 2 e E b { (E/Eb ) γ 1 E < E b (E/E b ) γ 2 E > E b Exponential Cutoff, usato per descrivere le Pulsar ( ) dn E γ1 de = N 0 e ( ) E γ2 Ec E 0 definita da un parametro di normalizzazione N 0, 2 indici, γ 1 e γ 2, e l energia di cut-off E C FileFunction, in cui lo spettro è definito in un file ASCII con 2 colonne, una per l energia e l altra per il flusso differenziale. Per quanto riguarda la parte spaziale, sono definibili 4 modelli: Sky- DirFunction, usata solo per sorgenti puntiformi, per cui è possibile definire una posizione nello spazio in ascensione retta e declinazione; ConstantValue, che fornisce un valore costante, usata per modellare la componente isotropica diffusa; SpatialMap, in cui la distribuzione dei fotoni è determinata in un file FITS bidimensionale; ed infine MapCubeFunction, che permette di descrivere le sorgenti diffuse con un file FITS tridimensionale contenente le coordinate spaziali e l energia. A titolo esemplificativo è riportato un template per una sorgente puntiforme con spettro di tipo power law. <source name="powerlaw_source" type="pointsource"> <!-- point source units are cm^-2 s^-1 MeV^-1 --> <spectrum type="powerlaw"> <parameter free="1" max="1000.0" min="0.001" name="prefactor" scale="1e-09" value="1"/> <parameter free="1" max="-1.0" min="-5." name="index" scale="1.0" value="-2.1"/> <parameter free="0" max="2000.0" min="30.0" name="scale" scale="1.0" value="100.0"/> </spectrum> <spatialmodel type="skydirfunction"> <parameter free="0" max="360." min="-360." name="ra" scale="1.0" value="83.45"/> <parameter free="0" max="90." min="-90." name="dec" scale="1.0" value="21.72"/> </spatialmodel> </source> 43

45 In un fit con Gtlike vengono trovati i valori dei parametri impostati come liberi che massimizzano la Likelihood tra modello e dati osservativi. La Likelihood è calcolata usando la probabilità Poissoniana (sezione A), data la bassa statistica dei fotoni provenienti dalle sorgenti, soprattutto quelle più deboli. Il massimo è trovato iterativamente calcolando la funzione per differenti valori dei parametri di prova. Stimando la derivata della funzione rispetto a questi parametri, l algoritmo sceglie nuovi parametri di prova che sono progressivamente più vicini a quelli che massimizzano la funzione. L iterazione continua finchè la differenza tra i valori della funzione tra due diverse iterazioni non è sufficientemente piccolo. Sono disponibili differenti algoritmi di iterazione, che variano nella rapidità di convergenza e nell accuratezza. I parametri richiesti in input da GtLike sono il file di eventi FT1, il file contenente posizione e direzione di puntamento del telescopio FT2, la mappa delle esposizioni, calcolata con Gtexpmap, i livetime calcolati in Gtltcube, il file xml contente il modello delle sorgenti nella regione di cielo in esame, la IRF, e l optimizer, ossia l algoritmo per la massimizzazione della Likelihood. Il programma fornisce in output, per ogni sorgente nel modello, la stima migliore dei parametri liberi, come ad esempio flusso ed indice spettrale, ed il valore di TS. E inoltre possibile con Gtlike fare i plot dei fit, nei quali sono graficati gli spettri delle sorgenti nel modello con i parametri trovati dal fit, lo spettro totale dato dalla somma delle singole sorgenti, ed i dati. L errore statistico sui dati è fornito dalla radice quadrata del numero di eventi. Infine è fornito il grafico dei residui, ossia la differenza tra i conteggi del modello e quelli osservati, normalizzati con i conteggi nel modello. Tutti i plot presenti in questo lavoro sono stati fatti con Gtlike. GtTsmap GtTsmap calcola una mappa di significanza basata sul valore assunto dalla variabile TS (vedi appendice A). Con Gttsmap, la regione di cielo di interesse viene suddivisa in una griglia rettangolare, e una volta definito il modello di tutte le sorgenti in tale regione, viene calcolato il valore di TS ottenuto aggiungendo una sorgente addizionale e calcolando la likelihood in ogni punto della griglia. La mappa risultante puo essere usata per localizzare nuove sorgenti piu deboli, tramite i massimi locali nella mappa di TS. Gtfindsrc Questo tool ottimizza la localizzazione di una sorgente usando una unbinned likelihood analisi. Gtfindsrc richiede che una stima approssimativa della posizione delle sorgenti in esame sia già conosciuta, ed una migliore localizzazione è ottenuta cercando il più alto valore di TS per diverse posizioni 44

46 intorno alla posizione iniziale. L output di questo programma è un file ASCII nel quale vengono forniti i valori della posizione, di TS ed del raggio di errore ottenuti dopo il best fit. DMFIT DMFIT è uno strumento, da poco incluso negli Science Tools, che permette di effettuare i fit dell emissione gamma dovuta all annichilazione di una generica WIMP, e di estrarre informazioni sulla massa, la costante di normalizzazione e il branching ratio tra 2 possibili canali di annichilazione, scelti dall utente tra gli 8 disponibili: coppie quark-antiquark b b, c c, t t, coppie di leptoni carichi µ + µ, τ + τ, coppie di bosoni di Gauge, W + W, Z 0 Z 0, e coppie di gluoni, gg. E possibile effettuare i fit con DMFIT spedificandolo, con l opportuna sintassi, nel file xml dato in input a Gtlike. PGwave PGwave è un programma per la rivelazione di sorgenti sviluppato dall INFN di Perugia. Il metodo di rivelazione sorgenti adottato da PGwave è chiamato a priori poichè non ha bisogno di informazioni sul modello della sorgente, al contrario ad esempio della Likelihood, per la quale un modello della sorgente deve essere definito. PGwave usa una Trasformata Wavelet (Wavelet Transform, WT) per la rivelazione di sorgenti. Una WT è una trasformata che fornisce una rappresentazione dei dati dalla quale è possibile estrarre informazioni sulla posizione e la forma. Tramite le WT il segnale è decomposto in versioni traslate e scalate di una funzione di origine (la wavelet madre). La wavelet madre utilizzata da PGwave è la Mexican Hat WT, la quale ha una forma simile alla PSF del rivelatore. Figura 5.1: La Mexican Hat Wavelet 45

47 L input da fornire a PGwave è la mappa di conteggi della regione di interesse, ed è possibile definire la significanza minima del segnale da rivelare e la distanza minima, in pixels, tra 2 differenti sorgenti. PGwave fornisce in output la WT map della regione di interesse, e, in un file di testo, le informazioni sulle sorgenti trovate, quali la posizione, l errore sulla posizione, ed il numero di conteggi stimati per ogni sorgente. Nel corso della tesi è stato ampiamente utilizzato anche ROOT, un pacchetto di programmi orientato agli oggetti per l analisi dati, usato per realizzare istogrammi, grafici, e fit. ROOT è stato implementato come libreria esterna negli Science Tools: tutti i grafici dei fit presenti in questa tesi sono realizzati con questo pacchetto di programmi. Ampiamente utilizzati nel corso della tesi sono anche FV e DS9, per la visualizzazione e la stampa delle mappe di conteggi, ed fselect, usato per selezionare dai dati la classe di eventi, che fa parte degli FTOOL, un pacchetto di programmi per la manipolazione dei FITS files. 5.2 I dati del LAT Ci sono diversi modi per ottenere i dati del LAT Fermi Science Support Center (FSSC): fornisce all-sky files settimanali, per i quali è possibile definire la classe di eventi. I files necessitano del taglio dell angolo di zenith con gtselect per la rimozione dei fotoni di albedo provenienti dalla terra. Fermi Data Portal Catalog: da qui sono scaricabili tutti i files dei dati FT1 ed FT2 del LAT. In tali files non è stata selezionata la classe di eventi, e necessitano dunque di fselect per selezionare la classe di eventi che si desidera studiare. Fermi Data Portal AstroServer: da qui si possono scaricare i dati relativi ad una definita regione di cielo, specificata dalla posizione in ascensione retta e declinazione e dal raggio. E possibile selezionare il range energetico degli eventi e la classe di eventi desiderata. Una volta scaricati i dati, ci sono una serie di passaggi da effettuare prima della loro analisi. Per prima cosa occorre selezionare la classe di eventi tramite fselect, che permette di definire il valore del parametro CTB- CLASSLEVEL, che distingue le 3 classi: CTBCLASSLEVEL>0 per la classe transient, CTBCLASSLEVEL>1 per la classe source, e CTBCLASSLEV- EL>2 per la classe diffuse. E necessario inoltre rimuovere i fotoni di albedo provenienti dalla terra, che vengono tagliati via dai dati con un taglio nell angolo di zenith. Allo scopo, si usa gtselect, il quale permette di specificare 46

48 il massimo angolo di zenith di provenienza dei fotoni, e seleziona solo gli eventi il cui angolo di zenith è inferiore a quello definito. Con gtselect si seleziona anche la regione di cielo da studiare e il range energetico e tempotale che si vuole considerare. Infine con Gtmktime si escludono dal file FT1 gli eventi in cui il LAT è passato attraverso l anomalia sub-atlantica. 47

49 Capitolo 6 Simulazioni In questa parte sono state effettuate varie simulazioni del centro galattico e del segnale γ dovuto all annichilazione di Dark Matter. Le sorgenti simulate sono il fondo galattico diffuso, la sorgente point source rivelata da EGRET nel centro galattico, denominata 3EGj nel 3EG, ed alcuni modelli di Dark Matter. I dati simulati sono stati utilizzati per studiare, al variare della massa della DM, i flussi minimi del segnale della DM rivelabili nel centro galattico dal LAT, con una soglia di rivelabilità pari a 3σ. 6.1 Simulazione del Fondo Il programma usato per effettuare le simulazioni è GtObssim. L emissione diffusa è stata modellata usando alcuni files Mapcube generati dal Fermi/GLAST Science Group tramite GALPROP, un modello numerico per la propagazione dei raggi cosmici e della loro interazione con il mezzo interstellare (paragrafo 3.4.2). Sono stati prodotti files MapCube per modelli del fondo diffuso di tipo conventional, e modelli di tipo optimal: tali files prendono il nome rispettivamente di GP conventional e GP optimal. In figura 6.8 è riportata la mappa di conteggi della simulazione del diffuso galattico, fatta con il file GP conventional su un tempo di integrazione di 3 mesi, in una regione di 5 gradi di raggio intorno al cento galattico (l=b=0). La risoluzione è di 0.1 /pixel. 6.2 Simulazione della Dark Matter Come già detto nel paragrafo 3.4.3, il maggiore meccanismo di produzione di raggi gamma da annichilazione di neutralino è il decadimento del π 0. Per questo motivo, nelle simulazioni è stato considerato solamente questo canale. Inizialmente, nel corso della tesi, le prime simulazioni sono state effettuate adottando la parametrizzazione ottenuta in [17] tramite simulazioni Monte 48

50 Figura 6.1: Simulazione del fondo galattico diffuso Carlo con il pacchetto PYTHIA [18]. Lo spettro differenziale dei fotoni γ derivanti da annichilazione di DM può essere parametrizzato da dn i dx = ηxa e b+cx+dx2 +ex 3 (6.1) dove x = E γ /m χ, essendo m χ la massa del neutralino, ed i identifica i diversi canali di annichilazione: quarks, τ, W, Z e gluoni. Il valore di η è 2 per W, Z ed il quark top, 1 altrimenti. In [17] possono essere trovati i valori dei parametri (a, b, c, d, e) per i diversi canali di annichilazione e per masse di 500Gev e 1 Tev. In figura 6.2 sono mostrati gli spettri originati da annichilazione di neutralino in b b, W + W e τ + τ, per una massa del neutralino di 500 GeV. Gli altri quark hanno un andamento analogo a quello di b b, e Z 0 Z 0 un andamento analogo a W + W. Si vede che a basse energie il contributo dominante è dato da raggi γ derivanti dall adronizzazione dei quark. Lo spettro derivato dai bosoni di Gauge ha un andamento più hard, con una ripida discesa quando l energia si avvicina ad m χ, mentre il leptone τ presenta, tra tutti, lo spettro più hard. Nel corso della tesi, tuttavia, per descrivere lo spettro della Dark Matter non è stata usata questa parametrizzazione, ma il pacchetto DarkSUSY, un pacchetto FORTRAN per calcoli sulla Dark Matter supersimmetrica [16]. Tramite DarkSUSY gli spettri della Dark Matter sono stati definiti in un file ASCII di due colonne, contenti l energia ed il flusso differenziale all energia 49

51 Figura 6.2: Spettri derivanti dall annichilazione di neutralino in b b, W + W e τ + τ, ottenuti tramite la parametrizzazione della formula 6.1 corrispondente. Files di questo tipo sono stati usati per definire lo spettro ed effettuare le simulazioni di diversi modelli di Dark Matter: come valore di σv è stato scelto il valore che che sostituito nella 3.2 dà il corretto valore della densità, ossia σv = cm 3 s 1 ; le masse sono state fatte variare tra 50 GeV ed 500 GeV, come canali di annichilazione sono stati considerati b b e τ + τ, e come profilo di densità il modello NFW, definito separatamente usando un file FITS 2d. Nelle figure che seguono sono mostrate alcune simulazioni di DM effettuate su tempi di integrazione di 3 mesi. In figura 6.3 è mostrato il caso di approssimazione puntiforme, in cui l estensione spaziale della sorgente è conseguenza del semplice allargamento dovuto alla PSF. Nella figura 6.4 è mostrata la simulazione di una sorgente con stesso spettro, ma profilo spaziale NFW. Il confronto delle dimensioni angolari delle due sorgenti è mostrato in figura 6.5, dove sono graficati il numero di conteggi in funzione dell ascensione retta. In figura 6.6 è mostrato lo spettro dei fotoni generati dall annichilazione di b b per una massa del neutralino di 50 GeV. Si può osservare la caratteristica forma curva dello spettro della Dark Matter, che ben si discosta dalla legge di potenza del fondo galattico e potrebbe essere d aiuto nell discriminazione del segnale proveniente dall annichilazione di WIMPs. In figura 6.7 sono confrontati tre diversi spettri per la Dark Matter, tutti ottenuti con lo stesso flusso pari a m 2 s 1 : b b con massa di 50 GeV, b b con massa 50

52 Figura 6.3: Simulazione con Gtobssim di fotoni da annichilzione di Dark Matter con canale di annichilazione b b, massa M χ = 50 GeV e tempo di integrazione 3 mesi, in approssimazione point source Figura 6.4: Simulazione con Gtobssim di fotoni da annichilzione di Dark Matter con canale di annichilazione b b, massa M χ = 50GeV e tempo di integrazione 3 mesi, con profilo spaziale NFW. 51

53 Figura 6.5: Proiezione dei conteggi delle due sorgenti di figura 6.3 e 6.4 lungo l ascensione retta RA. di di 500 GeV, e τ + τ. Lo spettro dei fotoni si estende fino ad energie pari alla massa della Dark Matter, è questo spiega la diversa forma degli spettri ottenuto per masse di 50 GeV e di 500 GeV. In figura si può anche osservare la forma peculiare dello spettro di τ + τ. 6.3 Sorgenti nel Centro Galattico EGRET ha osservato nel centro galattico una sorgente non identificata, denominata nel terzo catalogo come 3EGj Dal best fit la sorgente risulta situata in l= 0.19 e b = , con un flusso per E> 100 MeV pari a (217 ± 15) 10 8 ph/(cm 2 s) [20]. Lo spettro dei fotoni può essere ben rappresentato da una broken power law con una break energy pari a 1.9 GeV. Il best fit dei dati di EGRET con la broken power law è: dn de = cm 2 s MeV ( ) E γ (6.2) 1900M ev con γ = 1.3 per E < 1.9 GeV e γ = 3.1 per E > 1.9 GeV. Recentemente diversi telescopi IACT (Array of Imaging Atmospheric Cherenkov Telescope), hanno rivelato una sorgente gamma ad altissime energie nella direzione del CG. Tale sorgente è state denominata nel catalogo di H.E.S.S. (High Energy Stereoscopic System), uno IACT con range tra 52

54 Figura 6.6: Spettro derivante da annichilazione di b b Figura 6.7: Confronto degli spettri di b b con M χ = 50 GeV (verde), b b con M χ = 500 GeV (rosso), e τ + τ (blu) 53

55 100 GeV e 100 TeV, come HESS Principalmente si pensa che la natura di questa emissione sia dovuta all accelerazione di particelle in prossimità del buco nero supermassivo Sgr A* nel centro della nostra Galassia. L interpretazione di questa sorgente come possibile emissione gamma da annichilazione di DM è stata scartata. Lo spettro energetico può infatti essere caratterizzato lungo l intero range 160 GeV - 30 T ev da una power law E γ con γ = 2.25 ± 0.04 [21]. La forma spettrale con andamento di power law è inconsistente con il tipico andamento curvo dello spettro della DM. In più l emissione fino ad energie così elevate richiede masse per il neutralino dell ordine delle decine di TeV, valori che sono possibili al limite dei modelli supersimmetrici. Il flusso trovato per HESS per E > 0.1 GeV è pari a ph/(cm 2 s). Tale flusso è 3 ordini di grandezza inferiore a quello di 3EGj , è non è stata quindi inserita nel modello. 6.4 Analisi E stato simulato il cielo nel centro galattico in una ROI di 5 di raggio. Le sorgenti gamma inserite nel modello sono fondo galattico diffuso simulato usando il file MapCube GP conventional.fits, il quale ha uno spettro di tipo power law, con indice spettrale pari a -2.7 e flusso integrato su tutto il cielo e tutte le energie pari a m 2 s 1. 3EGj modellata con uno spettro di tipo broken power law, così come descritto nel paragrafo precedente, e posta in (l,b)= (0.19,-0.08), o (RA,DEC)=( , ) Dark Matter modellata usando come canale di annichilazione b b con diversi flussi integrati, tra m 2 s 1 e m 2 s 1, masse comprese tra 50 MeV e 500 MeV, e situata nel centro galattico, in (l,b)=(0.0,0.0) o (RA,DEC)=( , ). Nelle figure 6.8, 6.9 sono riportate le simulazioni del fondo galattico e della sorgente EGRET, ed in 6.10 una delle sorgenti di Dark Matter simulate. Gli spettri del fondo diffuso e della sorgente EGRET sono riportati in figura 6.11 e figura Prima di effettuare l analisi spettrale con la Likelihood, si è voluto determinare la regione di interesse ottimale per massimizzare il rapporto tra il segnale, determinato dalla DM, ed il rumore, dato dal fondo diffuso e la sorgente EGRET. Nel grafico in figura 6.13 è mostrato l andamento del numero di conteggi all interno di un determinato raggio in funzione del raggio stesso. I conteggi della DM aumentano velocemente fino ad un raggio pari a circa 1, per poi raggiungere un plateau, mentre i conteggi del fondo galattico diffuso sono sempre crescenti. Si è scelto quindi di effettuare l analisi in una regione di raggio 1 intorno al Centro Galattico. 54

56 Figura 6.8: Simulazione del fondo galattico diffuso in una regione di 5 di raggio e tempo di integrazione di 3 mesi. Il numero di conteggi è pari a Figura 6.9: Simulazione della sorgente 3EGj in una regione di 5 di raggio e tempo di integrazione di 3 mesi. Il numero di conteggi è pari a

57 Figura 6.10: Simulazione della DM con canale di annichilazione b b, massa 50 GeV e flusso pari a m 2 s 1. Sono stati simulati 629 conteggi in una regione di 5. Figura 6.11: Lo spettro del fondo galattico diffuso simulato 56

58 Figura 6.12: Lo spettro della sorgente 3EGj simulata Figura 6.13: Numero di conteggi all interno di una determinata regione di interesse in funzione del raggio 57

59 Successivamente è stato creato il modello della regione di cielo simulata, definendo in un file xml i parametri delle sorgenti. Il codice del modello è riportato di seguito: <source_library title="galcen"> <source name="galprop Diffuse" type="diffusesource"> <spectrum type="constantvalue"> <parameter free="0" max="10" min="0" name="value" scale="1" value=" " /> </spectrum> <spatialmodel file="gp_gamma.fits" type="mapcubefunction"> <parameter free="0" max="1000" min="0" name="normalization" scale="1" value=" " /> </spatialmodel> </source> <source name="3egj1746" type="pointsource"> <spectrum type="brokenpowerlaw"> <parameter free="0" max="1000" min="0.001" name="prefactor" scale="1e-010" value=" " /> <parameter free="0" max="-1" min="-5" name="index1" scale="1" value=" " /> <parameter free="0" max="-1" min="-5" name="index2" scale="1" value=" " /> <parameter free="0" max="10000" min="30" name="breakvalue" scale="1" value=" " /> </spectrum> <spatialmodel type="skydirfunction"> <parameter free="0" max="360" min="-360" name="ra" scale="1" value="266.59" /> <parameter free="0" max="90" min="-90" name="dec" scale="1" value="-28.81" /> </spatialmodel> </source> <source name="bbbar50_nfw" type="pointsource"> <spectrum file="bbbar50nfw.txt" type="filefunction"> <parameter free="1" max="1.3" min="1e-005" name="normalization" scale="1" value=" " /> </spectrum> <spatialmodel type="skydirfunction"> <parameter free="0" max="360" min="-360" name="ra" scale="1" value="266.41" /> <parameter free="0" max="90" min="-90" name="dec" scale="1" value=" " /> </spatialmodel> </source> </source_library> 58

60 Sono stati poi calcolati i livetimes con gtltcube, l esposizione con gtexpmap e i conteggi per le sorgenti diffuse modellate, con gtdiffrsp. Le mappe di conteggi ed il modello sono poi dati in input a Gtlike, il quale, oltre ai migliori parametri del fit, fornisce la significanza delle sorgenti in esame. Sono eseguiti diversi fit, al variare del flusso della DM, della massa e del canale di annichilazione. I risultati ottenuti nei fit sono riportati nella tabella 6.1. Tipo DM Flusso (m 2 s 1) Tempo (settimane) Conteggi TS σ b b b b b b b b b b b b b b b b b b τ + τ Tabella 6.1: Fit DM. Nella colonna tipo DM, i numeri definiscono la massa della DM espressa in GeV. Nelle figure 6.14 e 6.15 sono riportati, a titolo esemplificativo, 2 dei grafici di fit, output di Gtlike. In blu la DM, in rosso la sorgente EGRET non identificata, ed in verde il fondo galattico diffuso. Dai dati risulta che una sorgente γ data da annichilazione di DM, posta nel centro galattico, con canale di annichilazione b b e con flusso uguale o maggiore m 2 s 1 è rivelabile dal LAT su un periodo di integrazione di 3 mesi con una significanza 3σ. Una sorgente con flusso pari a m 2 s 1 viene rivelata con una significanza 8σ già dopo sole 3 settimane. Nel caso di una sorgente più debole, con flusso pari a m 2 s 1, la significanza passa da 1.5σ per un periodo di integrazione di 3 mesi a 3σ per un periodo di integrazione di 12 mesi: all aumentare della durata di osservazione, la significanza di rivelazione aumenta. Per piccoli tempi di esposizione ci si aspetta che la significanza cresca linearmente con il tempo di esposizione, mentre per esposizioni più grandi la significanza cresce con la radice quadrata del tempo di esposizione [23]. Si è voluto verificare questo andamento graficando T S in funzione del tempo di esposizione: il risultato è mostrato in figura 6.16 ed è in accordo con le previsioni. Variazioni nella significanza si hanno anche cambiando la massa della WIMP, o il canale di annichilazione. A parità di flusso, m 2 s 1, considerando il canale di annichilazione b b, la significanza passa da 4σ per una massa di 50 GeV a 6.5σ per una 59

61 Figura 6.14: Grafico del fit del centro galattico simulato, per M χ = 50GeV, canale di annichilazione b b e flusso m 2 s 1 Figura 6.15: Grafico del fit del centro galattico simulato, per M χ = 500GeV, canale di annichilazione b b e flusso m 2 s 1 60

62 massa di 500 GeV. Mentre variando il canale di annichilazione, con massa fissa a 50 GeV, la significanza passa da 4σ per b b a 13σ per τ + τ. Questo può essere spiegato considerando che, come mostrato in figura 6.7, sia b b con la massa di 500 GeV che τ + τ hanno, rispetto a b b con massa di 50 Gev, una statistica più elevata ad energie più alte, dove la statistica del fondo diffuso è bassa. Questo è dovuto nel primo caso al fatto che, essendo la massa della WIMP maggiore, lo spettro di estende ad energie più elevate. Nel secondo caso è dovuto alla forma peculiare dello spettro, più tondo nel caso di b b, piatto con una ripida discesa nel caso di τ + τ. Le figure 6.17 e 6.18 mostrano, infine, l andamento della significanza al variare del flusso e della massa della Dark Matter. Figura 6.16: Grafico della significanza in funzione di t exp, con dove t exp è il tempo di esposizione. t exp varia da 3 a 54 settimane. E verificata la relazione σ t exp La distorsione dello spettro del fondo galattico diffuso da parte dei fotoni derivanti da annichilazione di Dark Matter nel centro galattico è mostrata in figura E stata simulata una regione di 1 grado intorno al centro galattico, dove sono state considerate come sorgenti il fondo galattico diffuso e la DM. E stato poi fatto un fit con un modello costituito dal solo fondo galattico diffuso: è evidente, soprattutto nei residui, un eccesso di conteggi tra 1 e 10 GeV che non può essere modellato dal solo fondo diffuso, dovuto alla Dark Matter: questo è il segnale che ci si aspetta di trovare dalle osservazioni del Centro Galattico. 61

63 Figura 6.17: Andamento della significanza in funzione del flusso. E stata considerata una DM con canale di annichilazione b b e massa di 50 GeV. La linea rossa delimita la soglia di significanza a 5σ. Si trova che il minimo flusso per una significanza pari a 5σ è m 2 s 1 Figura 6.18: Andamento della significanza in funzione del flusso, effettuato per diverse masse. Il flusso minimo per una soglia di rivelabilità a 5σ scende da m 2 s 1 per M χ = 50 GeV a m 2 s 1 per M χ = 500 GeV 62

64 Figura 6.19: Fit del centro galattico con il solo modello diffuso, ma in cui sono stati simulati il fondo diffuso e la Dark Matter con canale di annichilazione b b, massa di 50 GeV, e flusso pari a m 2 s 1 63

65 6.5 Conclusioni Il centro della Galassia è una regione il cui flusso di fotoni è fortemente dominato dal fondo galattico diffuso e dalla sorgente non identificata rivelata da EGRET. La rivelazione della Dark Matter in questa regione è legata al rapporto tra il flusso dei fotoni derivanti dalla sua annichilazione, e quello del fondo diffuso. Simulando il fondo con i parametri noti da precedenti missioni, è stato visto che un segnale derivante da annichilazione di b b, con M χ = 50 GeV e flusso pari a è rivelato con una significanza > 3σ in 3 mesi di osservazione. Masse maggiori danno una significanza maggiore, a parità di flusso. Flussi più deboli potranno essere rivelati con tempi di esposizione t maggiori, essendo la significanza proporzionale a t 1/2. Una distorsione dello spettro del fondo diffuso è il segnale che ci si aspetta di trovare dall annichilazione della Dark Matter nel Centro Galattico. 64

66 Capitolo 7 Analisi dati In questa parte è effettuata l analisi dei dati inviati dal LAT. Il capitolo è suddiviso in 3 parti: la prima è l analisi dei dati acquisiti tra il 1 Luglio ed il 22 Ottobre. Sono state effettuate le prime mappe di conteggi del cielo visto dal LAT, che hanno permesso di osservare l eccesso di conteggi proveniente dal centro della Galassia, ed una prima analisi spettrale. La seconda parte riguarda l analisi dei dati compresi tra il 1 luglio ed il 7 novembre. E stata effettuata una analisi spettrale più accurata della precedente, dalla quale è stato possibile osservare un bump per E > 1 GeV, in accordo con le osservazioni fatte dagli altri ricercatori del Dark Matter Group. La terza parte è la più ampia e completa. Lo studio del centro galattico è stato effettuato tramite le mappe di conteggi, tramite le mappe di significanza, o mappe di TS, e con l analisi spettrale. Sono state trovate nuove possibili sorgenti, ed è stata fatta l associazione con sorgenti già conosciute. Infine, è stato effettuato uno studio preliminare del profilo spaziale del centro galattico. 7.1 Prima analisi dati Acquisizione dati Dal Fermi Data Portal Catalog sono stati scaricati il file di eventi, o FT1, ed il file relativo all orbita del telescopio, o FT2, relativi al periodo compreso tra il 1 luglio e il 22 ottobre Tramite GtSelect è stato formato un unico file di eventi, dai circa 1800 scaricati, uno per ogni orbita del satellite, ed il taglio ZA < 105 necessario per eliminare i fotoni di albedo. Sono quindi state effettuate le prime mappe di conteggi ottenute con i dati del Fermi. La risoluzione e di 0.1 /pixel. Nelle figure seguenti sono mostrate le mappe del piano galattico, per E > 30 MeV, per 50 < l < 50 (fig 7.1), 20 < l < 20 (fig 7.2) e 10 < l < 10 (fig 7.3). Per 10 < l < 10 sono poi mostrate le mappe di conteggi ottenute per E > 300 MeV ed E > 1 Gev (fig 7.4 e fig 7.5). Successivamente sono mostrate le immagini del Centro 65

67 Galattico in una regione di interesse di 2, per E > 300 MeV (fig. 7.6), E > 1 Gev (fig 7.7). Figura 7.1: Prime mappe di conteggi del cielo γ effettuata con i dati del LAT: la risoluzione è di 0.1 /pixel, E > 30 MeV ed 50 < l < Fit dei dati nel centro galattico Le classi di eventi definite nel paragrafo 4.6 si contraddistinguono per il grado di rimozione degli eventi di background dovuti all interazione del LAT con i raggi cosmici. Tale selezione degli eventi ha effetto anche sull Area Efficace, diminuendo i conteggi provenienti da fotoni astrofisici. Considerando l alta statistica di fotoni proveniente dal Centro Galattico, può essere scelta per selezionare gli eventi la classe diffuse, la quale effettua la selezione piu restrittiva nella classificazione degli eventi come fotoni. Tuttavia in questa prima analisi dei dati del LAT la classe di eventi diffuse non è stata selezionata. I primi risultati ottenuti dai fit risentono quindi di questa scelta erronea, ma vengono comunque riportati perche hanno rappresentato una parte del lavoro svolto. La classe diffuse è stata utilizzata nelle analisi effettuate successivamente. Un fit dei dati provenienti dal Centro Galattico in una regione di interesse di 2 e per E > 300 MeV è stato effettuato usando come modello il solo fondo galattico diffuso (figura 7.8). Per modellare il diffuso è stato utilizzato il file post-launch mapcube 54 59Xvarh7S, prodotto dal Gruppo di Collaborazione del Fermi che si occupa di studiare l emissione diffusa, e calibrato sulle osservazioni del LAT. La costante di normalizzazione del diffuso è stata lasciata come parametro libero. Si vede nella figura un forte 66

68 Figura 7.2: Prime mappe di conteggi del cielo γ effettuata con i dati del LAT: la risoluzione è di 0.1 /pixel, E > 30 MeV ed 20 < l < 20 Figura 7.3: Prime mappe di conteggi del cielo γ effettuata con i dati del LAT: la risoluzione è di 0.1 /pixel, E > 30 MeV ed 10 < l < 10 67

69 Figura 7.4: Il Centro Galattico visto dal LAT: 10 < l < 10, E > 300 MeV eccesso di conteggi per energie al di sopra del GeV, e che raggiunge il picco ad E 100GeV, visibile chiaramente nei residui. Sono stati effettuati alcuni tentativi di fit dei dati includendo nel modello, oltre al fondo diffuso, anche una sorgente γ derivante da annichilazione di Dark Matter, posta in (l, b)= (0.0, -0.2): sono stati considerati i canali di annichilazione b b e τ + τ, e masse di 50 GeV, 500 GeV e 1 TeV. I risultati dei fit dei dati, ed i rispettivi residui, sono riportati nelle immagini di seguito. Il canale di annichilazione b b e massa 1 GeV (figura 7.12) è quello che minimizza maggiormente la discrepanza con i dati osservativi. L eccesso di conteggi nei fit trovato in questa parte di analisi è in realtà dovuto ad eventi di background, non astrofisici, dovuti all interazione del LAT con i raggi cosmici, e causato dalla mancata selezione della classe di eventi. Benchè i risultati trovati non devono essere presi in considerazione, tale analisi ha permesso di capire l importanza della selezione degli eventi in un telescopio γ in orbita intorno alla terra. 68

70 Figura 7.5: Il Centro Galattico visto dal LAT: 10 < l < 10, E > 1 GeV Figura 7.6: Il Centro Galattico visto dal LAT: 2 di raggio intorno al Centro Galattico per E > 300 GeV 69

71 Figura 7.7: Il Centro Galattico visto dal LAT: 2 di raggio intorno al Centro Galattico per E > 1 GeV Figura 7.8: Fit dei dati con il fondo galattico diffuso 70

72 Figura 7.9: Fit dei dati del LAT con fondo galattico diffuso e DM da annichilazione di τ + τ e massa di 50 GeV Figura 7.10: Fit dei dati del LAT con fondo galattico diffuso e DM da annichilazione di τ + τ e massa di 500 GeV 71

73 Figura 7.11: Fit dei dati del LAT con fondo galattico diffuso e DM da annichilazione di b b e massa di 50 GeV Figura 7.12: Fit dei dati del LAT con fondo galattico diffuso e DM da annichilazione di b b e massa di 999 GeV 72

74 Figura 7.13: Mappa di conteggi per 335 < l < 25, 15 < b < 15 ed E > 300 MeV. 7.2 Analisi dati luglio-novembre In questa seconda analisi sono stati scaricati dall Astroserver i dati con intervallo temporale compreso tra t min = MET (1 luglio 2008) e t max = MET (7 novembre 2008) con E > 0.1 GeV. E stato effettuato con Gtselect il taglio dell angolo di Zenith z per eliminare i fotoni di albedo selezionando z max < 105, ed è stata selezionata la classe di eventi diffuse con ftselect, applicando il taglio CT BCLASSLEV EL > 2. E stata utilizzata la IRF Pass6 diffuse e, per modellare il fondo diffuso, il file postlaunch mapcube 54 59Xvarh7S. Sono mostrate in figura 7.13 e figura 7.14 le mappe di conteggi del cielo per 335 < l < 25 e 15 < b < 15, per E > 300 MeV ed E > 1 GeV. Nelle figure 7.15 e 7.16 sono mostrate le mappe in una regione di raggio 1 intorno al Centro Galattico, per E > 300 MeV ed E > 1 GeV rispettivamente. Le sorgenti individuate nei primi 3 mesi di attività del LAT sono state catalogate dal Fermi Collaboration Group nel 3 Months Catalogue, denominato ASO. Per ogni sorgente sono definiti il flusso, la forma spettrale, la significanza e la possibile associazione con sorgenti individuate da altri esperimenti. Tra le sorgenti del catalogo ASO, quella designata col nome di ASO386 è stata associata alla sorgente rivelata da EGRET nel centro galattico, la 3EGj Nel catalogo e stata classificata come una sorgente di tipo pointsource, situata in (RA, DEC)=( , ) con indice spettrale pari a e flusso integrato pari a cm 2 s 1 per E > 100 MeV. Tale sorgente è stata quindi utilizzata nell analisi spettrale del centro galattico. I fit dei dati del Centro Galattico con la Maximum Likelihood Analysis sono stati eseguiti con 3 diversi modelli: 73

75 Figura 7.14: Mappa di conteggi per 335 < l < 25, 15 < b < 15 ed E > 1 GeV. 1. fondo diffuso più la sorgente ASO fondo diffuso più Dark Matter nella posizione di ASO fondo diffuso più sorgente ASO386 più Dark Matter nel centro galattico In tutti i casi la DM è in approssimazione point source, e sono state considerate masse di 50 GeV ed 80 GeV. Lo scopo è quello di determinare quale tipo di spettro, la legge di potenza della sorgente ASO386 o lo spettro dato dall annichilazione di Dark Matter, fornisce il miglior fit dei dati del centro galattico. O se, assumendo che una sorgente con legge di potenza sia effettivamente nel Centro Galattico, si ha un miglioramento dei fit introducendo una sorgente γ dovuta all annichilazione di Dark Matter. Nello scegliere le dimensioni della regione di interesse si deve cercare di comprendere il maggior numero di fotoni dalla sorgente nel Centro Galattico, limitando il contributo dei fotoni dal fondo diffuso. Il grafico di figura 7.17 mostra l andamento dei conteggi all interno di un determinato raggio in funzione del raggio stesso. Si vede che oltre un raggio di 1.5 i conteggi della DM raggiungono un plateau. Nei fit che seguono e stata quindi considerata una regione di interesse centrata nel Centro Galattico e con un raggio di 1.5. In figura 7.18 e figura 7.19 sono mostrati i fit dei dati con il solo fondo galattico. Si può notare, soprattutto nel grafico dei residui, un eccesso di conteggi tra 1 e 10 GeV. Nel seguito sono riportati i risultati dell analisi spettrale con i 3 modelli presi in considerazione. 74

76 Figura 7.15: ROI raggio 1 intorno al CG, E > 300 Mev Figura 7.16: ROI raggio 1 intorno al CG, E > 1 Gev 75

77 Figura 7.17: Conteggi all interno di una determinata ROI in funzione della ROI. In nero i conteggi provenienti dai dati, in rosso e in verde quelli provenienti da annichilazione di b b con massa di 50 GeV e profilo rispettivamente point source e NFW 76

78 Figura 7.18: Fit dei dati con il fondo galattico diffuso Figura 7.19: Residui del fit dei dati con il fondo galattico diffuso 77

79 Modello1 In figura 7.20 e figura 7.21 sono mostrati, rispettivamente, il fit dei dati con il modello diffuso più ASO386 e i relativi residui. Per ASO386 si è trovato un valore di TS pari a 486. L eccesso di conteggi tra 1 e 10 GeV è ridotto rispetto al caso in cui il fit dei dati è fatto con il solo modello diffuso. Figura 7.20: Fit dei dati con il fondo galattico diffuso e la point source ASO386 Figura 7.21: Residui del fit dei dati con il fondo galattico diffuso e la point source ASO386 78

80 Modello2 Nelle figure 7.22, 7.23, 7.24 e 7.25 sono riportati i risultati del fit dei dati con fondo diffuso più la Dark Matter con canale di annichilazione b b e con massa del neutralino di 50 GeV e 80 GeV rispettavamente, e i relativi residui. I valori di significanza trovati per le due sorgenti inserite sono TS=519 per una massa di 50 GeV e TS=494 per una massa di 80 GeV Figura 7.22: Fit dei dati con il fondo galattico diffuso e DM da annichilazione di b b e massa di 50 GeV Figura 7.23: Residui del fit dei dati con il fondo galattico diffuso e DM da annichilazione di b b e massa di 50 GeV 79

81 Figura 7.24: Fit dei dati con il fondo galattico diffuso e DM da annichilazione di b b e massa di 80 GeV Figura 7.25: Residui del fit dei dati con il fondo galattico diffuso e DM da annichilazione di b b e massa di 80 GeV 80

82 Modello3 Il fit dei dati con fondo diffuso più ASO386 e Dark Matter con canale di annichilazione b b e massa di 50 GeV ha dato un valore di T S DM = 91 e T S ASO = 86. I grafici del fit e dei rispettivi residui sono mostrati in figura 7.26 e figura Il caso con DM di massa 80 GeV ha dato T S DM = 60 e T S ASO = 116. In figura 7.28 e figura 7.29 sono mostrati il grafico del fit ed i residui. Figura 7.26: Fit dei dati con il fondo galattico diffuso, ASO386 e b b con massa di 50 GeV Figura 7.27: Residui del fit dei dati con il fondo galattico diffuso, ASO386 e b b con massa di 50 GeV 81

83 Figura 7.28: Fit dei dati con il fondo galattico diffuso, ASO386 e b b con massa di 80 GeV Figura 7.29: Rsesidui del fit dei dati con il fondo galattico diffuso, ASO386 e b b con massa di 80 GeV 82

84 Dalle mappe di conteggi del Centro Galattico si osserva un eccesso in una regione di 0.5 intorno al punto (l=0, b=0). I fit dei dati del Centro Galattico con il solo modello diffuso rivelano un eccesso di conteggi per energie comprese tra 1 e 10 GeV. Lo spettro della sorgente nel Centro Galattico è stato modellato nel catalogo ASO con una legge di potenza, ma una possibile interpretazione come Dark Matter non può essere esclusa. I fit dei dati forniscono per la Dark Matter valori della significanza maggiori rispetto al caso in cui la sorgente nel Centro Galattico è modellata con uno spettro che segue una legge di potenza. 83

85 7.3 Analisi dei primi 5 mesi di dati In questa ultima sezione di analisi sono stati usati dati con un intervallo temporale compreso tra t min = MET (11 Agosto) e t max = MET (17 gennaio), E > 200 MeV e una regione di interesse di 50 intorno al centro galattico. Tramite fselect è stata selezionata la classe di eventi diffuse, e tramite gtselect è stato selezionato l angolo di zenith di provenienza dei fotoni, con il taglio z max = 105. Con Gtmktime sono stati tagliati gli eventi in cui il telescopio passava attraverso l anomalia sub-atlantica, facendo una selezione sui GTI. L analisi effettuata è suddivisa in 2 parti: una analisi delle mappe di conteggi e delle mappe di TS, e un analisi spettrale Mappe di conteggi e mappe di significanza Con Gtbin sono state create alcune mappe di conteggi per diverse regioni di interesse e diverse energie, con risoluzione pari a 0.1 /pixel. Le sorgenti ASO, catalogate nel 3 Months Catalogue, presenti entro una regione di 11 intorno al centro galattico sono mostrate in figura 7.30 e figura 7.31, rispettivamente per E > 200 MeV e E > 1 GeV. In figura 7.32 e figura 7.33 è mostrato lo zoom in una regione con 7 < l < 7, sempre per E > 200 MeV ed E > 1 GeV. Le figure 7.34 e 7.35 mostrano infine le sorgenti ASO all interno di una regione di 2.5 gradi intorno al centro galattico, per E > 200 MeV ed E > 1 GeV rispettivamente. Osservando la mappe di conteggi di figura 7.34 e figura 7.35 si notano, in una regione di 2.5, alcuni eccessi di conteggi che potrebbero essere attribuiti a possibili sorgenti non presenti nel catalogo ASO. Per verificare la presenza di nuove possibili sorgenti nel Centro Galattico è stato usato il tool PGwave2d in una mappa di conteggi del centro galattico con raggio di 2.5 gradi ed E > 1 GeV. Quattro possibili sorgenti sono state trovate in questa regione. La tabella 7.1 riporta le coordinate delle 4 sorgenti trovate in latitudine e longitudine galattica e l errore sulla posizione. La figura 7.36 mostra tali sorgenti in una mappa di conteggi per E > 1 GeV. Sorgente l b errore Tabella 7.1: Posizione delle 4 sorgenti trovate da PGwave2d in latitudine e longitudine galattica, e relativo errore. 84

86 Figura 7.30: Mappa del Centro Galattico, 11 < l < 11, 6 < b < 6, per E > 200 MeV. Sono indicate le 10 sorgenti gamma ASO catalogate in questa regione nel 3 months catalogue Figura 7.31: Mappa del Centro Galattico, 11 < l < 11, 6 < b < 6, per E > 1 GeV (scala SquareRoot). Sono indicate le 10 sorgenti gamma ASO catalogate in questa regione nel 3 months catalogue 85

87 Figura 7.32: Mappa del Centro Galattico, 7 < l < 7, 4 < b < 4, per E > 200 MeV. Sono indicate le sorgenti gamma ASO catalogate in questa regione nel 3 months catalogue Figura 7.33: Mappa del Centro Galattico, 7 < l < 7, 4 < b < 4, per E > 1 GeV (scala SquareRoot). Sono indicate le sorgenti gamma ASO catalogate in questa regione nel 3 months catalogue 86

88 Figura 7.34: Mappa del Centro Galattico, 2.5 < l < 2.5, 1.5 < b < 1.5, per E > 200 MeV. Sono indicate le sorgenti gamma ASO catalogate in questa regione nel 3 months catalogue Figura 7.35: Mappa del Centro Galattico, 2.5 < l < 2.5, 1.5 < b < 1.5, per E > 1 GeV. Sono indicate le sorgenti gamma ASO catalogate in questa regione nel 3 months catalogue 87

89 Figura 7.36: Le 4 sorgenti trovate da PGwave2d nel Centro Galattico in una regione con 2.5 < l < 2.5, 1.5 < b < 1.5, per E > 1. La sorgente denominata PGwave src3 si trova nel centro galattico in prossimità di ASO386, già catalogata ed associata alla sorgente 3EGj Quindi 3 possibili nuove sorgenti sono state trovate in una regione di 2.5 intorno al centro galattico. Una possibile associazione di tali sorgenti è mostrata in figura L associazione delle sorgenti è stata effettuata cercando nel database astronomico SIMBAD tutte le potenziali sorgenti γ - pulsars, SNR, sorgenti X e così via - presenti entro un raggio di 0.5 intorno alle 3 sorgenti trovate. Entro un raggio di 0.2 dalla sorgente PGwave src1 è stata trovata la Pulsar PSR J , di coordinate l= e b=0.8430, periodo di rotazione di 98 ms ed una età di anni. Ho avuto l opportunità di presentare la rivelazione di tale sorgente e la sua associazione con la PSR J nel corso di un meeting online con il gruppo che si occupa di studiare la Dark Matter ed il centro galattico. Tale Pulsar era in realtà già stata individuata ma non ancora stata catalogata. L dentificazione di questa sorgente nel corso del lavoro di tesi può quindi essere considerata come una scoperta indipendente. Una SuperNova Remnant e circa un centinaio di sorgenti X sono state trovate entro un raggio di 0.2 gradi dalla sorgente denominata PGwave src2. Una sorgente X, la 1RXS J è stata trovata vicino alla sorgente denominata PGwave src4, entro 0.1 gradi, vicina anche alla sorgente ASO380 entro un raggio di 0.2. In prossimità della sorgente PGwave src1 sembra essercene un altra, più debole e non rivelata da PGwave2d, in una regione intorno al punto di coordinate l=359.00, b=-0.5. Due sorgenti X ed una SNR, indicate nella mappa di figura 7.37 si trovano in questa regione. Un maggiore tempo di esposizione darà la possibilità di stabilire l effettiva es- 88

90 Figura 7.37: Mappa del centro galattico in una regione con 2.5 < l < 2.5, 1.5 < b < 1.5, per E > 1, in cui sono indicate le 4 possili sorgenti trovate da PGwave2d ed una possibile associazione con sorgenti gia note. istenza o meno di questa sorgente. Come ulteriore strumento di analisi del Centro Galattco, e come verifica dei risultati ottenuti con PGwave2d, sono state create con Gttsmap delle mappe di significanza di una regione di interesse di 2.5 intorno al Centro Galattico, per E > 1 GeV ed E > 5 GeV. Si ricorda che le mappe di significanza vengono utilizzate per la rivelazione di sorgenti non modellate, calcolando in ogni punto della mappa la Maximum Likelihood ottenuta aggiungendo una nuova sorgente. I dati osservativi sono stati confrontati con il fondo galattico diffuso, il quale è stato modellato usando il file mapcube 54 59Xvarh7S. Le immagini di figura 7.38 e 7.39 mostrano le mappe di TS in una regione di 2.5 gradi intorno al centro galattico, con una risoluzione di 0.1 gradi/pixel, per E > 1 GeV ed E > 5 GeV rispettivamente. Tutte e 4 le sorgenti trovate da PGwave2d presentano picchi nei valori della significanza nelle mappe di TS. Ciò vuol dire che i risultati trovati da PGwave2d trovano conferma nelle mappe di TS. Nella mappa di significanza effettuate per E > 1 GeV si trova TS = 193 per la sorgente PGwave src1, TS = 145 per la sorgente PGwave src2, TS = 856 per la sorgente PGwave src3 e TS = 61 per la sorgente PGwave src4. Nella mappa di significanza per E > 5 GeV, TS = 35 per la sorgente PGwave src1, TS = 22 per la sorgente PGwave src2, TS = 194 per la sorgente PGwave src3 e TS = 20 per la sorgente PGwave src4. Un ulteriore spot è inoltre visibile nella mappa effettuata per E >5 GeV, in una regione molto vicina al Centro Galattico intorno al punto di coordinate l=0.1, b=-0.6, con TS = 22. Due sorgenti X sono state trovate in questa regione, entro un raggio di 0.2 gradi. E ancora 89

91 Figura 7.38: Ts map per E > 1 GeV in una regione di 2.5 gradi intorno al centro galattico. Sono indicate le 4 possibili sorgenti trovate da PGwave2d. La coordinata sull asse x è invertita rispetto alle mappe di conteggi. Figura 7.39: Ts map per E > 5 GeV in una regione di 2.5 gradi intorno al centro galattico. Sono indicate le 4 possibili sorgenti trovate da PGwave2d. La coordinata sull asse x è invertita rispetto alle mappe di conteggi. 90

92 Figura 7.40: Mappa di conteggi del centro galattico, 2.5 < l < 2.5, 1.5 < b < 1.5, per E > 5 GeV da stabilire la natura di questo spot, che non ha per ora corrispondente nelle mappe di conteggi alla stessa energia (figura 7.40). 91

93 7.3.2 Analisi Spettrale In questa analisi spettrale del centro galattico sono state prese in considerazione le 4 sorgenti trovate da PGwave2d. Lo studio è stato fatto su una regione di 2.5 gradi intorno ad (l, b)=(0, 0) ed E > 200 MeV. Sono stati studiati diversi modelli, che si differenziano tra loro dallo spettro usato per descrivere la sorgente nel Centro Galattico, la src 3. Le altre 3 sorgenti presenti in questa regione sono sempre modellate con una power law 1. le 4 sorgenti nel Centro Galattico sono modellate con una power law. 2. la sorgente nel Centro Galattico e modellata con uno spettro di tipo Dark Matter, con profilo puntiforme, canale di annichilazione b b e masse di 80 GeV e 50 GeV. 3. il fit della sorgente nel Centro Galattico è effettuato usando DMFIT, con canali di annichilazione b b, µ + µ, τ + τ. La massa è lasciata come parametro libero. 4. la sorgente nel Centro Galattico è modellata con una broken power law 5. la sorgente nel Centro Galattico è modellata con una Pulsar, il cui spettro è descritto da un Exponential cut-off del tipo dove E C è l energia di cut-off ( ) dn E γ1 de = N 0 e ( ) E γ2 Ec E 0 La componente del fondo galattico diffuso e stata modellata, in tutti i casi, con il file 54 59Xvarh7S. Di seguito sono riportati i risultati dell analisi Modello 1 SRC 1: Indice Spettrale= -2.13, TS= 364, σ = 19 SRC 2: Indice Spettrale= -1.97, TS= 94, σ = 9.7 SRC 3: Indice Spettrale= -2.05, TS= 1253, σ = 35.4 SRC 4: Indice Spettrale= -2.10, TS= 171 σ = 13.1 Modello 2 DM50 GeV SRC 1: Indice Spettrale= -2.21, TS= 376, σ = 19.4 SRC 2: Indice Spettrale= -2.01, TS= 83, σ = 9.1 b b50: TS= 1447, σ = 38 SRC 4: Indice Spettrale= -2.12, TS= 166, σ =

94 DM80 GeV SRC 1: Indice Spettrale= -2.28, TS= 394, σ = 19.5 SRC 2: Indice Spettrale= -2.07, TS= 98 σ = 10 b b80: TS= 1340, σ =36.6 SRC 4: Indice Spettrale= -2.11, TS= 158, σ = 12.6 Modello 3 Canale: b b Massa= 44.3 GeV, TS= 1470, σ = 38.3 Src 1: Indice Spettrale= -2.21, TS= 370, σ = 19.2 Src 2: Indice Spettrale= -2.10, TS= 78, σ = 8.9 Src 4: Indice Spettrale= -2.13, TS= 166, σ = 12.9 Canale: µ + µ Massa= 35.9 GeV, TS= 639, σ = 25.3 Src 1: Indice Spettrale= -2.16, TS= 420, σ = 20.5 Src 2: Indice Spettrale= -2.06, TS= 235, σ = 15.3 Src 4: Indice Spettrale= -2.04, TS= 131, σ = 11.4 Canale: τ + τ Massa= 8.6 GeV, TS= 1327, σ = 36.4 Src 1: Indice Spettrale= -2.28, TS= 364, σ = 19 Src 2: Indice Spettrale= -2.27, TS= 74, σ = 8.6 Src 4: Indice Spettrale= -2.13, TS= 143, σ = 12 Modello 4 SRC 1: Indice Spettrale= -2.2, TS= 385, σ = 19 SRC 2: Indice Spettrale= -2.0, TS= 92, σ = 9.6 SRC 3: Indice Spettrale 1= -1.0, Indice Spettrale 2= -3.3 Break Value= 2500, TS= 1483, σ = 38.5 SRC 4: Indice Spettrale= -2.11, TS= 174 σ = 13.2 Modello 5 SRC 1: Indice Spettrale= -2.16, TS= 359, σ = 19 SRC 2: Indice Spettrale= -1.9, TS= 85, σ = 9.2 SRC 3: Indice Spettrale 1= -1.4, Indice spettrale 2= 0.77 Cutoff= 3034, TS= 1529, σ = 39 SRC 4: Indice Spettrale= -2.15, TS= 190 σ =

95 Figura 7.41: Modello 1: Fit dei dati in una regione di 2.5 gradi intorno al Centro Galattico, per E > 200 MeV. Le quattro possibili sorgenti trovate in questa regione sono modellate con una power law. In rosso il fondo galattico diffuso Figura 7.42: Modello 1: Residui del fit dei dati in una regione di 2.5 gradi intorno al Centro Galattico, per E > 200 MeV. Le quattro possibili sorgenti trovate in questa regione sono modellate con una power law 94

96 Figura 7.43: Modello 2: Fit dei dati in una regione di 2.5 gradi intorno al Centro Galattico, per E > 200 MeV. La sorgente nel centro galattico e modellata con un profilo spettrale di tipo Dark Matter con canale di annichilazione b b, massa 50 GeV e profilo spaziale point source. Figura 7.44: Modello 2: Residui del fit dei dati in una regione di 2.5 gradi intorno al Centro Galattico, per E > 200 MeV. La sorgente nel centro galattico e modellata con un profilo spettrale di tipo Dark Matter con canale di annichilazione b b, massa 50 GeV e profilo spaziale point source 95

97 Figura 7.45: Modello 2: Fit dei dati in una regione di 2.5 gradi intorno al Centro Galattico, per E > 200 MeV. La sorgente nel centro galattico e modellata con un profilo spettrale di tipo Dark Matter con canale di annichilazione b b, massa 80 GeV e profilo spaziale point source Figura 7.46: Modello 2: Residui del dei dati in una regione di 2.5 gradi intorno al Centro Galattico, per E > 200 MeV. La sorgente nel centro galattico e modellata con un profilo spettrale di tipo Dark Matter con canale di annichilazione b b, massa 80 GeV e profilo spaziale point source 96

98 Figura 7.47: Modello 3: Fit dei dati in una regione di 2.5 gradi intorno al Centro Galattico, per E > 200 MeV. La sorgente nel centro galattico e modellata con DMFIT, con canale di annichilazione b b e profilo spaziale point source lasciando la massa come parametro libero. Dal fit si trova Mχ = 44.3 GeV Figura 7.48: Modello 3: Residui del dei dati in una regione di 2.5 gradi intorno al CG, per E > 200 MeV. La sorgente nel centro galattico e modellata con DMFIT, con canale di annichilazione b b e profilo spaziale point source 97

99 Figura 7.49: Modello 3: Fit dei dati in una regione di 2.5 gradi intorno al CG, per E > 200 MeV. La sorgente nel centro galattico e modellata con DMFIT, con canale di annichilazione µ + µ e profilo spaziale point source lasciando la massa come parametro libero. Dal fit si trova Mχ = 35.9 GeV Figura 7.50: Modello 3: Residui del dei dati in una regione di 2.5 gradi intorno al CG, per E > 200 MeV. La sorgente nel centro galattico e modellata con DMFIT, con canale di annichilazione µ + µ e profilo spaziale point source 98

100 Figura 7.51: Modello 3: Fit dei dati in una regione di 2.5 gradi intorno al CG, per E > 200 MeV. La sorgente nel centro galattico e modellata con DMFIT, con canale di annichilazione τ + τ e profilo spaziale point source lasciando la massa come parametro libero. Dal fit si trova Mχ = 8.6 GeV Figura 7.52: Modello 3: Residui del dei dati in una regione di 2.5 gradi intorno al CG, per E > 200 MeV. La sorgente nel centro galattico e modellata con DMFIT, con canale di annichilazione µ + µ e profilo spaziale point source 99

101 Figura 7.53: Modello 4: Fit dei dati in una regione di 2.5 gradi intorno al CG, per E > 200 MeV. La sorgente nel centro galattico e modellata con una broken power law Figura 7.54: Modello 4: Residui del dei dati in una regione di 2.5 gradi intorno al CG, per E > 200 MeV. La sorgente nel centro galattico e modellata con una broken power law 100

102 Figura 7.55: Modello 5: Fit dei dati in una regione di 2.5 gradi intorno al CG, per E > 200 MeV. La sorgente nel centro galattico e modellata con una Pulsar Figura 7.56: Modello 5: Residui del dei dati in una regione di 2.5 gradi intorno al CG, per E > 200 MeV. La sorgente nel centro galattico e modellata con una Pulsar 101

103 7.3.3 Analisi del profilo spaziale del Centro Galattico Si è voluto in questa parte studiare il profilo spaziale della parte più interna del centro galattico, in una regione di interesse di 2 di raggio, per cercare di discriminare se esso è più vicino ad un profilo puntiforme o ad una sorgente spazialmente estesa. Allo scopo, sono state simulate due sorgenti γ date dall annichilazione di Dark Matter: una con profilo spaziale puntiforme, ed un altra con profilo spaziale di tipo NFW. Le normalizzazioni delle sorgenti sono scelte in modo tale che il valore di picco dei conteggi corrispondesse a quello trovato nelle mappe di conteggi dei dati del Fermi nella stessa regione. Dopo aver simulato le sorgenti sono state create delle mappe di conteggi per E > 1 GeV e risoluzione spaziale di 0.1 /pixel. I conteggi contenuti entro un rettangolo dato da 1 < l < 1 e 0.5 < b < 0.3 sono stati proiettati lungo l asse b, e ne è stato calcolato il valore medio. Questa operazione è stata effettuata per la mappa di conteggi dei dati del LAT, effettuata per E > 1 GeV, e per le mappe di conteggi delle sorgenti simulate. E stata inoltre effettuata una simulazione del fondo diffuso galattico nella stessa regione di interesse e nello stesso intervallo temporale dei dati utilizzati, e ne è stata effettuata una mappa di conteggi per E > 1 GeV. Infine, è stato calcolato il valore medio dei fotoni del fondo diffuso entro la regione definita da 1 < l < 1 e 0.5 < b < 0.3, e questo valore è stato sottratto dal valore medio dei conteggi dei dati lungo l asse b. Le 3 proiezioni, dei dati meno il fondo diffuso, della simulazione della Dark Matter puntiforme, e della simulazione della Dark Matter con profilo NFW, sono infine state confrontate. Il risultato è mostrato in figura Conclusioni Le mappe di conteggi hanno evidenziato un eccesso di conteggi nel Centro Galattico, dovuto a nuove potenziali sorgenti non catalogate. Lo studio di questa regione con PGwave e le mappe di significanza ha reso possibilie l individuazione di 3 nuove possibili sorgenti con una significanza 8σ intorno alla sorgente nel Centro Galattico. Tra queste, è stata individuata la Pulsar PSR J , con significanza σ 14 che è fino ad ora la Pulsar γ più vicina al Centro Galattico. L eccesso di conteggi individuato nell analisi spettrale effettuata nella parte seconda è presente anche in questa terza analisi, con una statistica migliore: da tutti i fit e evidente una carenza di eventi tra 1 GeV e 10 Gev. Tale eccesso di conteggi potrebbe essere modellato con uno spettro di tipo Dark Matter con massa dell ordine di qualche decina di GeV. I fit in cui la sorgente nel centro galattico e modellata con una point source con spettro di tipo Dark Matter forniscono dei residui inferiori ed una significanza maggiore rispetto al modello 2, nel quale tale sorgente e modellata con una point source con spettro di power law. I fit effettuati con DMFIT con canale 102

104 Figura 7.57: Proiezione, lungo l asse b, dei conteggi contenute entro la regione definita da 1 < l < 1 e 0.5 < b < 0.3 per un modello di Dark Matter puntiforme (nero), Dark Matter con profilo spaziale di tipo NFW (blu), ed i dati ottenuti dal LAT dopo la sottrazione del fondo galattico simulato (rosso) 103

105 di annichilazione b b forniscono come miglior valore della massa M b b = 44.3 GeV. I canali di annichilazione τ + τ e µ + µ non sembrano fornire dei fit altrettanto buoni. Il modello in cui la sorgente nel Centro Galattico ha uno spettro di tipo exponential cutoff, usato per descrivere le Pulsar, fornisce il miglior valore della significanza (σ = 39). Tuttavia non è stato osservato fino ad ora alcun segnale pulsato proveniente dal Centro Galattico. Tale spettro è comunque molto simile a quello derivante dall annichilazione di neutralino, ed entrambe descrivono la sorgente nel Centro Galattico meglio di una legge di pontenza. L estensione spaziale della sorgente nel Centro Galattico sembra essere compresa tra una NFW ed una sorgente puntiforme. 104

106 Figura 7.58: Le 205 sorgenti con significanza > di 10σ rivelate dal LAT 7.4 I risultati ottenuti dal telescopio Fermi Dopo il suo lancio nel Giugno 2008, il telescopio Fermi ha cominciato lo studio del cielo nei raggi γ ad Agosto. Il LAT ha prodotto in 3 mesi di osservazione una mappa del cielo γ migliore di qualsiasi altra precedente missione spaziale. E di recente pubblicazione [24] un articolo del Fermi LAT Collaboration Group nel quale vengono presentate le 205 sorgenti con una significanza maggiore di 10σ rivelate dal LAT per E > 100 MeV. Come termine di confronto, va menzionato che EGRET trovò poco più di 30 sorgenti con una significanza maggiore di 10σ durante tutta la sua missione. Tra le 205 sorgenti rivelate dal Fermi, 32 sono state identificate come Pulsar, tra le quali 12 nuove Pulsar e 13 Pulsar precedentemente note solo nella banda Radio. Tra le nuove Pulsar scoperte, va citata la prima γ-pulsar che emette solo nei raggi gamma, situata all interno della Supernova Remnant CTA1 [25]. La Pulsar CTA1 ha un periodo di rotazione di ms, ed una età di 104 anni. Si pensa che la maggior parte delle sorgenti gamma Galattiche non identificate associate con regioni di formazione stellare possano essere Pulsar di così giovane età. Tra le sorgenti ad alta significanza rivelate dal telescopio Fermi per b >10, 106 hanno un alta confidenza di associazione con AGN conosciuti, la cui lista è presentata in un altra pubblicazione da parte del Fermi LAT Collaboration Group [26]. Tra questi AGN, 2 sono stati classificati come radio Galassie, e 104 come Blazar. Sulla base delle rivelazioni del LAT, sono stati scoperti 4 nuovi AGN. Un altro degli oggetti di studio in questi primi mesi della missione Fermi, è l eccesso GeV osservato da EGRET su tutto il cielo. Nelle figure 7.60 e 7.61 sono mostrati, rispettivamente, lo spettro dei dati di EGRET per 0.5 < l < 60.5 e < l < 359.5, e 10.5 < b < 0.5, e 0.5 < l <

107 Figura 7.59: Le Pulsars rivelate nei primi mesi della missione Fermi e < l < 359.5, e 20.5 < b < 10.5 confrontati con un modello del fondo galattico diffuso basato sullo spettro locale dei CR. Si osserva, per E > 1 GeV, un eccesso di conteggi pari al 100% rispetto al modello teorico. Con il LAT è stata cercata la conferma dell eccesso GeV nella regione con 10 < b < 20 ed 0 < l < 360. La figura 7.62 mostra lo spettro ottenuto dai dati del LAT in questa regione, confrontati con un modello che include decadimento del π 0, effetto compton inverso, bremsstrahlung, ed una componente isotropica data dal fondo Extra Galattico diffuso e strumentale. Le sorgenti non sono rimosse, ma sono una componente minore, pari a circa il 5%. In rosso sono indicati i dati ricavati da EGRET ed in blu quelli del LAT. Gli errori del LAT sono solamente sistematici, pari a circa 10% in una stima preliminare. I dati di EGRET sono afflitti da un errore sistematico pari al 15%. Lo spettro mostra che al di fuori del piano galattico l eccesso trovato da EGRET non è stato riscontrato dal LAT. Lo spettro gamma a latitudini intermedie puo quindi essere spiegato dalla propagazione dei raggi cosmici basata sugli spettri locali di nuclei ed elettroni. L eccesso GeV di EGRET potrebbe essere dovuto ad una erronea stima della sua Area Efficace, che ha portato ad una sovrastima dei conteggi. E di recente pubblicazione [27] il paper sull osservazione della Pulsar Vela da parte del LAT. In esso è mostrato lo spettro di Vela così come visto da EGRET e dal LAT (figura 7.63): anche nel caso della Pulsar Vela, è osservabile una sovrastima dei conteggi da parte di EGRET per E > 2 GeV. 106

108 Figura 7.60: Spettro del cielo osservato da EGRET, 0.5 < l < 60.5 e < l < 359.5, e 10.5 < b < 0.5, confrontato con il modello dell emissione diffusa: in rosso la componente all emissione diffusa data dal decadimento del π 0, in verde quella dovuta all effetto compton inverso, in turchese la componente data dal bremsstrahlung, ed in nero una componente isotropica data dal fondo Extra Galattico. Figura 7.61: Spettro del cielo osservato da EGRET 0.5 < l < e < l < 359.5, e 20.5 < b < confrontato con il modello dell emissione diffusa: in rosso la componente all emissione diffusa data dal decadimento del π 0, in verde quella dovuta all effetto compton inverso, in turchese la componente data dal bremsstrahlung, ed in nero una componente isotropica data dal fondo Extra Galattico. 107

109 Figura 7.62: Spettro del cielo ottenuto con i dati del LAT per 0 l 360 e 10 b 20, confrontati con un modello che include decadimento del π 0, effetto compton inverso, bremsstrahlung, ed una componente isotropica data dal fondo Extra Galattico e strumentale. In rosso i dati di EGRET, in blu quelli del LAT Figura 7.63: Confronto dello spettro della pulsar Vela osservato da EGRET e dal LAT 108

110 Capitolo 8 Conclusioni Il Large Area Telescope LAT a bordo del Telescopio Spaziale Fermi ha già ottenuto importanti risultati scientifici in poco più di 6 mesi di attività, confermando di poter essere, come ci si aspettava prima del suo lancio, un punto di riferimento nei prossimi anni per l osservazione del cielo nei raggi gamma di alta energia. Il Centro della Galassia è una delle più complesse regioni da studiare, a causa della difficoltà nel modellare correttamente l emissione diffusa dovuta all interazione dei raggi cosmici con il complesso delle nubi molecolari in questa regione, ed a numerose possibili sorgenti immerse nell enorme flusso di fotoni proveniente da questa zona. Ma è anche una delle regioni più interessanti per la ricerca di Dark Matter, poichè da questa regione è aspettato il più grande flusso di raggi γ dovuto alla sua annichilazione, a causa dell incremento della densità di Dark Matter previsto in questa zona dai modelli teorici. Figura 8.1: Il Centro Galattico visto da EGRET dopo la sottrazione dell emissione diffusa prevista dal modello, per E >1 GeV Il Centro Galattico osservato da EGRET era costituito da un unica sorgente entro una regione di diversi gradi. Grazie alla sua maggiore risoluzione 109

La Fisica nello Spazio: Astroparticelle

La Fisica nello Spazio: Astroparticelle La Fisica nello Spazio: Astroparticelle Elisa Antolini Università di Perugia & INAF Dario Gasparrini INFN sez. Perugia ASI Science Data Center Fisica delle Astroparticelle Radiazione elettromagnetica ad

Dettagli

Astrofisica e particelle elementari

Astrofisica e particelle elementari Astrofisica e particelle elementari aa 2007-08 Lezione 10 Bruno Borgia RAGGI GAMMA 2 ASSORBIMENTO γ Assorbimento dovuto alle interazioni dei gamma con la radiazione di fondo e con l infrarosso.!(k 1 )

Dettagli

Materia oscura nell Universo

Materia oscura nell Universo Materia oscura nell Universo Biblioteca Civica Archimede Settimo Torinese, aprile 2013 Alessandro Bottino Università di Torino/INFN Un viaggio in tre tappe nell Universo Pi Prima tappa: Le osservazioni

Dettagli

MAGIC...una finestra sull'universo. seconda parte

MAGIC...una finestra sull'universo. seconda parte MAGIC......una finestra sull'universo seconda parte L'emissione della Via Lattea Il cielo ad altissima energia Come sono prodotti i raggi gamma? Emissione termica (equilibrio) --> esempio luce (IR) di

Dettagli

Dove siamo con la ricerca sulla materia oscura?

Dove siamo con la ricerca sulla materia oscura? Dove siamo con la ricerca sulla materia oscura? Seminari di Fisica Dipartimento di Fisica dell Universita di Torino 26 gennaio 2016 Alessandro Bottino Evidenze osservative di presenza di materia oscura

Dettagli

Tutti i colori dell Universo. Roberto Battiston INFN e Universita di Perugia Laboratori di Frascati 6 ottobre 2004

Tutti i colori dell Universo. Roberto Battiston INFN e Universita di Perugia Laboratori di Frascati 6 ottobre 2004 Tutti i colori dell Universo Roberto Battiston INFN e Universita di Perugia Laboratori di Frascati 6 ottobre 2004 1 2 3 L universo si studia osservando le informazioni = particelle che esso ci invia 4

Dettagli

Sull Espansione dell Universo. Silvano Massaglia Dipartimento di Fisica Università di Torino

Sull Espansione dell Universo. Silvano Massaglia Dipartimento di Fisica Università di Torino Sull Espansione dell Universo Silvano Massaglia Dipartimento di Fisica Università di Torino Seminario Didattico 2014 1 Sommario Il quadro osservativo in cosmologia Il Big Bang, l inflazione e L Universo

Dettagli

GLAST-LAT: risultati delle calibrazioni su fascio

GLAST-LAT: risultati delle calibrazioni su fascio GLAST-LAT: risultati delle calibrazioni su fascio Claudia Monte per la collaborazione GLAST claudia.monte@ba.infn.it Dipartimento Interateneo di Fisica M. Merlin dell Università e del Politecnico di Bari

Dettagli

Il lato oscuro dell universo

Il lato oscuro dell universo Gran Sasso Science Institute - L'Aquila 25-26 Ottobre 2018 Nuovi orizzonti di una scienza in divenire Il lato oscuro dell universo Marco Bersanelli Dipartimento di Fisica Università degli Studi di Milano

Dettagli

Nuclei Galattici Attivi nei raggi X. Sunday, December 16, 12

Nuclei Galattici Attivi nei raggi X. Sunday, December 16, 12 Nuclei Galattici Attivi nei raggi X - SED degli AGN: emissione X in forte eccesso rispetto alla coda attesa per un disco di accrescimento - Emissione 0.1-100 kev: 1-20% della luminosita totale - E una

Dettagli

LHC e la struttura dell Universo. Luca Lista INFN

LHC e la struttura dell Universo. Luca Lista INFN LHC e la struttura dell Universo Luca Lista INFN Dalle particelle elementari all Universo Perché le particelle elementari sono importanti per capire la struttura dell Universo? L origine dell Universo:

Dettagli

Calibrazione dei cristalli del prototipo del calorimetro di Gamma400 con fasci di ioni

Calibrazione dei cristalli del prototipo del calorimetro di Gamma400 con fasci di ioni Calibrazione dei cristalli del prototipo del calorimetro di Gamma400 con fasci di ioni Miriam Olmi 30 Aprile 2013 Raggi cosmici Il flusso si attenua di oltre 30 ordini di grandezza al variare dell'energia

Dettagli

Ricostruzione di tracce in un telescopio erenkov sottomarino per neutrini astrofisici di alta energia

Ricostruzione di tracce in un telescopio erenkov sottomarino per neutrini astrofisici di alta energia Tesi di Laurea in Fisica Ricostruzione di tracce in un telescopio erenkov sottomarino per neutrini astrofisici di alta energia Facoltà di Scienze Matematiche, Fisiche e Naturali Candidato Dario Benvenuti

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

B8 Principi di Astrofisica Radio-loud AGNs

B8 Principi di Astrofisica Radio-loud AGNs B8 Principi di Astrofisica Radio-loud AGNs Radio-loud AGN definiti come L 5GHz > 10 24 W/Hz Ma definizione arbitraria: AGN che presentano luminosità radio più basse presentano caratterisiche simile ai

Dettagli

Astrofisica e particelle elementari

Astrofisica e particelle elementari Astrofisica e particelle elementari aa 2007-08 Lezione 13 Bruno Borgia Ancora neutrini 2 Oscillazione dei neutrini nella materia Il meccanismo MSW si basa sulla evoluzione temporale alla Schroedinger degli

Dettagli

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L.

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Lozzi Testi degli esercizi svolti in aula Corpo Nero 1. Il corpo

Dettagli

Fondamenti di Astrofisica

Fondamenti di Astrofisica Fondamenti di Astrofisica Lezione 13 AA 2010/2011 Alessandro Marconi Dipartimento di Fisica e Astronomia Le curve di rotazione delle spirali Consideriamo una galassia a spirale (a disco) e misuriamo le

Dettagli

Introduzione alla Fisica di EEE plus

Introduzione alla Fisica di EEE plus Introduzione alla Fisica di EEE plus Emanuele Biolcati Liceo Classico Massimo D Azeglio 28 settembre 2018 Emanuele Biolcati 1 Poniamoci alcune domande 1 Raggi cosmici Cosa sono? Perché si studiano? Come

Dettagli

Ricerca di segnali elettromagnetici di GW con Fermi-LAT

Ricerca di segnali elettromagnetici di GW con Fermi-LAT Ricerca di segnali elettromagnetici di GW con Fermi-LAT Niccolò Di Lalla niccolo.dilalla@pi.infn.it Collaborazione Fermi-LAT Milano, 5 Aprile 2018 IFAE 2018 L osservatorio Fermi Lanciato dalla NASA l 11

Dettagli

06b Principi di Astrofisica Radio-loud AGNs

06b Principi di Astrofisica Radio-loud AGNs 06b Principi di Astrofisica Radio-loud AGNs Radio-loud AGN definiti come L 5GHz > 10 24 W/Hz Ma definizione arbitraria: AGN che presentano luminosità radio più basse presentano caratterisiche simile ai

Dettagli

L Universo Invisibile. Dr. Massimo Teodorani, Ph.D. astrofisico

L Universo Invisibile. Dr. Massimo Teodorani, Ph.D. astrofisico L Universo Invisibile Dr. Massimo Teodorani, Ph.D. astrofisico CONTENUTO DELLA PRESENTAZIONE 1. Onde elettromagnetiche e le varie frequenze 2. Fotografia nell infrarosso e nell ultravioletto 3. Intensificazione

Dettagli

Modello Cosmologico Standard Paola M. Battaglia

Modello Cosmologico Standard Paola M. Battaglia Modello Cosmologico Standard Paola M. Battaglia l alba dell universo I primi risultati cosmologici del satellite Planck Università degli Studi di Milano - Dipartimento di Fisica 11 aprile 2013 Cosmologia

Dettagli

L Effetto Sunyaev-Zel dovich

L Effetto Sunyaev-Zel dovich L Effetto Sunyaev-Zel dovich Raffaele Pontrandolfi Corso di Astrofisica e Particelle Elementari Motivazione Mostrare in modo introduttivo come dall effetto Sunyaev-Zel dovich termico si può ricavare la

Dettagli

Cosmologia e particelle

Cosmologia e particelle Cosmologia e particelle Ivan De Mitri Dipartimento di Fisica Università di Lecce Istituto Nazionale di Fisica Nucleare Due domande fondamentali: Quali sono i costituenti fondamentali della materia? Quali

Dettagli

Introduzione alla Cosmologia Fisica Lezione 13

Introduzione alla Cosmologia Fisica Lezione 13 Introduzione alla Cosmologia Fisica Lezione 13 Gli ammassi di galassie, le grandi strutture, la tappezzeria dell Universo Giorgio G.C. Palumbo Università degli Studi di Bologna Dipartimento di Astronomia

Dettagli

quando la vita di una stella sta per giungere al termine l'idrogeno diminuisce limitando le fusione nucleare all interno

quando la vita di una stella sta per giungere al termine l'idrogeno diminuisce limitando le fusione nucleare all interno le stelle sono corpi celesti che brillano di luce propria hanno la forma di sfere luminose ed emettono radiazioni elettromagnetiche causate dalle reazioni nucleari che avvengono al loro interno (atomi

Dettagli

Fondamenti di Astrofisica

Fondamenti di Astrofisica Fondamenti di Astrofisica Lezione 12 AA 2010/2011 Alessandro Marconi Dipartimento di Fisica e Astronomia Hubble Ultra-Deep Field (HUDF) Come visto nella prima lezione l HUDF è l esposizione più profonda

Dettagli

Misteri nell Universo

Misteri nell Universo Misteri nell Universo Quali sono le forme di materia ed energia nell universo osservabile? Quale e la ricetta (ingredienti e proporzioni) del nostro universo? 1 L eredità di Copernico Quale è la relazione

Dettagli

Prospettive future, oltre il modello standard?

Prospettive future, oltre il modello standard? Prospettive future, oltre il modello standard? La scoperta del bosone di Higgs chiave di volta per la consistenza del modello standard: a)generazione della massa dei mediatori e dei fermioni; b)regolarizzazione

Dettagli

Determinazione della curva di luce e della massa di NGC 2748

Determinazione della curva di luce e della massa di NGC 2748 Determinazione della curva di luce e della massa di NGC 2748 Marco Berton, Liceo Scientifico U. Morin - Mestre Alessio Dalla Valle, Liceo Scientifico G. Bruno Mestre Luca Marafatto, Liceo Classico M. Foscarini

Dettagli

Rivelatori di Particelle. Danilo Domenici

Rivelatori di Particelle. Danilo Domenici Rivelatori di Particelle Danilo Domenici mappa concettuale cadimento nucleare rivelare adiazione cosmica particella radiazione rivelatore di particelle tracciare terazioni in n collisore identifica m

Dettagli

La Sezione di Padova dell INFN

La Sezione di Padova dell INFN La Sezione di Padova dell INFN Le sedi INFN 19 Sezioni 11 Gruppi collegati 4 Laboratori Centro Nazionale di Calcolo VIRGO : European Gravitational Observatory F. Murtas La missione dell INFN Promuovere,

Dettagli

Oltre il Sistema Solare

Oltre il Sistema Solare Corso di astronomia pratica Oltre il Sistema Solare Gruppo Astrofili Astigiani Andromedae LE STELLE Nascita di una stella Una nube di gas (soprattutto idrogeno) Inizia a collassare sotto l azione della

Dettagli

Meccanica quantistica Mathesis 2016 Prof. S. Savarino

Meccanica quantistica Mathesis 2016 Prof. S. Savarino Meccanica quantistica Mathesis 2016 Prof. S. Savarino Quanti Corpo nero: è un oggetto che assorbe tutta la radiazione senza rifletterla. Come una corda legata agli estremi può produrre onde stazionarie

Dettagli

Astrofisica e particelle elementari

Astrofisica e particelle elementari Astrofisica e particelle elementari aa 2010-11 Lezione 6 Origine dei gamma cosmici Sorgenti Osservatori nello spazio Compton Gamma Ray Observatory Terzo catalogo EGRET Beppo-SAX Bruno Borgia ORIGINE DEI

Dettagli

Lucio Paternò Dipartimento di Fisica e Astronomia Università di Catania

Lucio Paternò Dipartimento di Fisica e Astronomia Università di Catania Lucio Paternò Dipartimento di Fisica e Astronomia Università di Catania EINSTEIN 1915 Nascita della Relatività Generale e della Cosmologia Moderna R - g R + g = (8 G/c 4 )T R tensore di curvatura di Ricci

Dettagli

Radiazioni ionizzanti

Radiazioni ionizzanti Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radiazioni ionizzanti 11/3/2005 Struttura atomica Atomo Nucleo Protone 10 10 m 10 14 m 10 15 m ev MeV GeV 3 3,0 0,3 0 0 0 Atomo Dimensioni lineari

Dettagli

Raggi X e Raggi γ dalle Stelle

Raggi X e Raggi γ dalle Stelle Raggi X e Raggi γ dalle Stelle Enrico Virgilli Attività di Stage Nel laboratorio di Astrofisica Dipartimento di Fisica Università di Ferrara Circa 70 anni fa lo scenario cambia improvvisamente e si scopre

Dettagli

Università degli Studi di Milano. Percorsi della laurea Magistrale in Fisica

Università degli Studi di Milano. Percorsi della laurea Magistrale in Fisica Università degli Studi di Milano Percorsi della laurea Magistrale in Fisica Docente Tutor: prof. Emanuela Meroni Corsi Obbligatori AMBITO DISCIPLINARE "Sperimentale Applicativo Elettrodinamica Classica

Dettagli

0.1 Introduzione... 1

0.1 Introduzione... 1 Indice 0.1 Introduzione............................ 1 1 Raggi cosmici e interazioni adroniche 5 1.1 Composizione dei raggi cosmici................. 5 1.2 Spettro dei raggi cosmici.....................

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare

Istituzioni di Fisica Nucleare e Subnucleare Istituzioni di Fisica Nucleare e Subnucleare Roberta Sparvoli Rachele Di Salvo Università di Roma Tor Vergata Lezione 21 A.A. 2016-2017 Roberta Sparvoli Rachele Di Salvo (UniversitàIstituzioni di Roma

Dettagli

ESERCITAZIONI ASTROFISICA STELLARE

ESERCITAZIONI ASTROFISICA STELLARE ESERCITAZIONI per ASTROFISICA STELLARE (AA 2011-2012) (ultimo aggiornamento: 23/03/2012) Esercizio 1: Una stella con gravita` superficiale pari a 3.42 10 4 cm -2 e luminosita` pari a 562 L ha il massimo

Dettagli

Astronomia INTRODUZIONE

Astronomia INTRODUZIONE Astronomia 2015-16 INTRODUZIONE Contenuti: Corso di Astronomia 2015-2016 Prof. Marco Bersanelli Fondamenti Struttura stellare Evoluzione stellare Strumentazione per astrofisica Astrofisica galattica Astrofisica

Dettagli

Nane bianche e stelle di neutroni. di Roberto Maggiani

Nane bianche e stelle di neutroni. di Roberto Maggiani Nane bianche e stelle di neutroni di Roberto Maggiani Prendendo in mano una zoletta di zucchero e poi una zolletta di ferro potremmo verificare il maggior peso di quest ultima, infatti, nello stesso volume

Dettagli

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg.

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg. Reazioni nucleari Un nucleo instabile può raggiungere una nuova condizione di stabilità attraverso una serie di decadimenti con emissione di particelle α, β, γ o di frammenti nucleari (fissione). Emissione

Dettagli

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 10 Radioattività... 2 L atomo... 3 Emissione di raggi x... 4 Decadimenti nucleari. 6 Il decadimento alfa.... 7 Il decadimento beta... 8 Il decadimento gamma...... 9 Interazione dei fotoni

Dettagli

Fondamenti di Astrofisica. Alessandro Marconi

Fondamenti di Astrofisica. Alessandro Marconi Alessandro Marconi Contatti, Bibliografia e Lezioni Prof. Alessandro Marconi Dipartimento di Astronomia e Scienza dello Spazio, Largo E. Fermi 2 email: marconi@arcetri.astro.it, alessandro.marconi@unifi.it

Dettagli

Le nebulose. Le nebulose sono agglomerati di idrogeno, polveri e plasma.

Le nebulose. Le nebulose sono agglomerati di idrogeno, polveri e plasma. Le nebulose Le nebulose sono agglomerati di idrogeno, polveri e plasma. Esistono vari tipi di nebulosa: nebulosa oscura all interno della quale avvengono i fenomeni di nascita e formazione di stelle; nebulosa

Dettagli

ed infine le interazioni nucleari forte e debole? dove E rappresenta l energia cinetica della particella α, e K è: K = e2 2Z

ed infine le interazioni nucleari forte e debole? dove E rappresenta l energia cinetica della particella α, e K è: K = e2 2Z Introduzione 1. Stima il valore delle energie dei fotoni necessarie per risolvere distanze atomiche, e poi nucleari. 2. Per quali ragioni fisiche le interazioni fondamentali sono state storicamente identificate

Dettagli

G. Bracco -Appunti di Fisica Generale

G. Bracco -Appunti di Fisica Generale Equazioni di Maxwell ε 0 E= ρ B= 0 E= - B / t B = μ 0 J+ ε 0 μ 0 E / t= μ 0 (J+ ε 0 E / t) il termine ε 0 E / t è la corrente di spostamento e fu introdotto da Maxwell per rendere consistenti le 4 equazioni

Dettagli

Si fuit aliquod tempus antequam faceres caelum et terram

Si fuit aliquod tempus antequam faceres caelum et terram Si fuit aliquod tempus antequam faceres caelum et terram Alessandro De Angelis Dipartimento di Fisica dell Universita di Udine e INFN Trieste Giornate Scientifiche di Udine e Pordenone, Marzo 2002 Time

Dettagli

G.Battistoni Neutrini Atmosferici

G.Battistoni Neutrini Atmosferici Neutrini Atmosferici Interazione dei cosmici in atmosfera Sciame adronico Cosmico primario Raggi cosmici secondari Sciame atmosferico Il flusso di neutrini p In un regime in cui tutti i π decadono ν µ

Dettagli

Effetto Cherenkov - 1

Effetto Cherenkov - 1 Effetto Cherenkov - 1 Particelle cariche, che attraversano un mezzo denso con velocità superiore a quella con cui si propaga la luce nello stesso mezzo, emettono radiazione elettromagnetica che si propaga

Dettagli

Galassie, Quasar e Buchi neri

Galassie, Quasar e Buchi neri Galassie, Quasar e Buchi neri Stefano Ciroi Università degli Studi di Padova Asiago, 25 Febbraio 2016 La Via Lattea Nord Sud Scheda tecnica della Via Lattea Galassia a spirale barrata Diametro circa 30

Dettagli

Astronomia Parte I Proprietà fondamentali delle stelle

Astronomia Parte I Proprietà fondamentali delle stelle Astronomia 2017-18 Parte I Proprietà fondamentali delle stelle 8 Masse stellari Relazione massa-luminosità per stelle di MS (relazione empirica): 288 stelle binarie L L M M α α 3.5 α 2 α 4 α 3 M < 0.3M

Dettagli

Olimpiadi Italiane di Astronomia MAGNITUDINI

Olimpiadi Italiane di Astronomia MAGNITUDINI Olimpiadi Italiane di Astronomia Preparazione alla fase interregionale delle Olimpiadi Italiane di Astronomia MAGNITUDINI By Giuseppe Cutispoto Magnitudine apparente La magnitudine apparente (m) di una

Dettagli

Interazione radiazione materia Dott.ssa Alessandra Bernardini

Interazione radiazione materia Dott.ssa Alessandra Bernardini Interazione radiazione materia Dott.ssa Alessandra Bernardini 1 Un po di storia Lo studio delle radiazioni ionizzanti come materia di interesse nasce nel novembre del 1895 ad opera del fisico tedesco Wilhelm

Dettagli

Theory Italiano (Italy)

Theory Italiano (Italy) Q3-1 Large Hadron Collider (10 punti) Prima di iniziare questo problema, leggi le istruzioni generali nella busta a parte. In questo problema è discussa la fisica dell acceleratore di particelle del CERN

Dettagli

UNIVERSO SPECULARE (MIRROR UNIVERSE)

UNIVERSO SPECULARE (MIRROR UNIVERSE) UNIVERSO SPECULARE (MIRROR UNIVERSE) Seminari di Fisica Dipartimento di Fisica dell Universita di Torino 14 marzo 2017 Alessandro Bottino Quali motivazioni per l esistenza di un Universo Speculare (US)?

Dettagli

Universo in evoluzione. Universo statico. modifica delle equazioni di campo della R.G. costante cosmologica. Albert Einstein

Universo in evoluzione. Universo statico. modifica delle equazioni di campo della R.G. costante cosmologica. Albert Einstein 1917 G µν = k T µν Universo in evoluzione Universo statico modifica delle equazioni di campo della R.G. Albert Einstein G µν Λ g µν = k T µν costante cosmologica 1922 G µν = k T µν Universo in espansione

Dettagli

Magnitudini e Diagramma H-R Giuseppe Cutispoto

Magnitudini e Diagramma H-R Giuseppe Cutispoto Magnitudini e Diagramma H-R Giuseppe Cutispoto INAF Osservatorio Astrofisico di Catania gcutispoto@oact.inaf.it Versione: 4 febbraio 018 Magnitudine apparente La magnitudine apparente (m) di una stella

Dettagli

Lezione 4. Vita delle Stelle Parte 2

Lezione 4. Vita delle Stelle Parte 2 Lezione 4 Vita delle Stelle Parte 2 Fusione nucleare 4 atomi di idrogeno si uniscono per formare 1 atomo di elio e produrre energia nucleo H H H He H Due nuclei di idrogeno (due protoni) sospinti l'uno

Dettagli

Modello Standard e oltre. D. Babusci MasterClass 2007

Modello Standard e oltre. D. Babusci MasterClass 2007 Modello Standard e oltre D. Babusci MasterClass 2007 Fisica delle Particelle Elementari (FdP) Si interessa del comportamento fisico dei costituenti fondamentali del mondo, i.e. di oggetti al contempo molto

Dettagli

Raggi Cosmici. Messaggeri dallo Spazio profondo

Raggi Cosmici. Messaggeri dallo Spazio profondo Raggi Cosmici Messaggeri dallo Spazio profondo Da quando siete entrati in questa Aula il vostro corpo è stato attraversato da 5,000,000 di Raggi Cosmici Benvenuti! I raggi cosmici sono particelle energetiche

Dettagli

Tracciamento di raggi cosmici con il telescopio EEE Esperienza 1

Tracciamento di raggi cosmici con il telescopio EEE Esperienza 1 Laboratorio di Fisica delle Interazioni Fondamentali Università di Pisa Tracciamento di raggi cosmici con il telescopio EEE Esperienza 1 Introduzione L esperienza consiste nella misura dell intensità e

Dettagli

Astronomia Lezione 23/1/2012

Astronomia Lezione 23/1/2012 Astronomia Lezione 23/1/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

The dark side of the Universe. Francesco Berrilli Dipartimento di Fisica Universita` di Roma Tor Vergata

The dark side of the Universe. Francesco Berrilli Dipartimento di Fisica Universita` di Roma Tor Vergata The dark side of the Universe Francesco Berrilli Dipartimento di Fisica Universita` di Roma Tor Vergata E spesso ha molto rilievo con quali altri elementi e in quale posizione si uniscano i corpuscoli

Dettagli

SOLE, struttura e fenomeni

SOLE, struttura e fenomeni SOLE, struttura e fenomeni Lezioni d'autore di Claudio Censori VIDEO Introduzione (I) Il Sole è la stella più vicina a noi, della quale possiamo pertanto ricavare in dettaglio informazioni dirette. Si

Dettagli

Astroparticelle: uno strumento per indagare l universo

Astroparticelle: uno strumento per indagare l universo Le Donne nella Scienza Astroparticelle: uno strumento per indagare l universo l Ofelia Pisanti Dipartimento di Scienze Fisiche e INFN - Napoli Interazioni fondamentali e Struttura dell Universo Napoli,

Dettagli

Rivelatori Caratteristiche generale e concetti preliminari

Rivelatori Caratteristiche generale e concetti preliminari Rivelatori Caratteristiche generale e concetti preliminari Stage Residenziale 2012 Indice Caratteristiche generali sensibilità, risposta, spettro d ampiezza, risoluzione energetica, efficienza, tempo morto

Dettagli

La nuova Fisica. Ora siamo qui. E.x=h

La nuova Fisica. Ora siamo qui. E.x=h La nuova Fisica Ora siamo qui E.x=h barbarino@na.infn.it Estremi limiti della materia a noi nota Atomo Verifica ad energie estreme delle Interazioni fondamentali delle particelle elementari. Teorie delle

Dettagli

Astroparticelle: uno strumento per indagare l universo

Astroparticelle: uno strumento per indagare l universo Le Donne nella Scienza Astroparticelle: uno strumento per indagare l universo l Ofelia Pisanti Dipartimento di Scienze Fisiche e INFN - Napoli Interazioni fondamentali e Struttura dell Universo Napoli,

Dettagli

la forma esplicita delle correzioni

la forma esplicita delle correzioni la forma esplicita delle correzioni al leading order (ma nei programmi di fit le correzioni si spingono, a seconda dei casi, ad ordini superiori) e per m H >m W le correzioni dipendenti dal flavour sono

Dettagli

Un Universo di Galassie. Lezione 14

Un Universo di Galassie. Lezione 14 Un Universo di Galassie Lezione 14 Schema della Lezione La famiglia delle galassie: classificazione morfologica. La scala delle distanze extragalattiche e la legge di Hubble. Massa e materia oscura. Ammassi

Dettagli

Le Stringhe alla base del nostro Universo

Le Stringhe alla base del nostro Universo Le Stringhe alla base del nostro Universo Michele Cicoli DESY, Amburgo Pesaro, 17 Dicembre 2009 Sommario Stato della conoscenza attuale sulle leggi alla base del nostro Universo Problemi fondamentali Soluzione:

Dettagli

Cosmologia. AA 2012/2013 Alessandro Marconi Dipartimento di Fisica e Astronomia

Cosmologia. AA 2012/2013 Alessandro Marconi Dipartimento di Fisica e Astronomia Cosmologia AA 2012/2013 Alessandro Marconi Dipartimento di Fisica e Astronomia Contatti, Bibliografia e Lezioni Prof. Alessandro Marconi Dipartimento di Fisica e Astronomia, stanza 254 (2 o piano) Via

Dettagli

Il Modello Standard delle particelle

Il Modello Standard delle particelle Il Modello Standard delle particelle Vittorio Del Duca INFN LNF Stages Estivi 12 giugno 2012 Elementi La materia è fatta di elementi con definite proprietà chimiche Atomi Ciascun elemento ha come mattone

Dettagli

L esperimento AMS-02 per la ricerca di Antimateria e Materia Oscura nei Raggi Cosmici. Francesca Spada 23/5/08 1

L esperimento AMS-02 per la ricerca di Antimateria e Materia Oscura nei Raggi Cosmici. Francesca Spada 23/5/08 1 L esperimento AMS-02 per la ricerca di Antimateria e Materia Oscura nei Raggi Cosmici Francesca Spada 23/5/08 1 Sommario L Universo da dieci anni a questa parte Dov è l antimateria? Origine della materia

Dettagli

Cosmologia. AA 2011/2012 Alessandro Marconi Dipartimento di Fisica e Astronomia

Cosmologia. AA 2011/2012 Alessandro Marconi Dipartimento di Fisica e Astronomia Cosmologia AA 2011/2012 Alessandro Marconi Dipartimento di Fisica e Astronomia Contatti e Materiale Didattico Alessandro Marconi alessandro.marconi@unifi.it tel: 055 2055227 Largo Fermi 2 Porta Osservatorio

Dettagli

Fenomenologia del Modello Standard Prof. A. Andreazza. Lezione 13. La scoperta del W

Fenomenologia del Modello Standard Prof. A. Andreazza. Lezione 13. La scoperta del W Fenomenologia del Modello Standard Prof. A. Andreazza Lezione 13 La scoperta del W Premio Nobel 1984 Articolo 12.5, Collaborazione UA1, Experimental observation of isolated large transverse electrons with

Dettagli

Nuclei Galattici Attivi e Buchi Neri. Lezione 15

Nuclei Galattici Attivi e Buchi Neri. Lezione 15 Nuclei Galattici Attivi e Buchi Neri Lezione 15 Buchi neri nei nuclei galattici Nell ipotesi che gli AGN siano alimentati da accrescimento di massa su un buco nero l attività AGN deva lasciare un resto

Dettagli

Astrofisica e cosmologia

Astrofisica e cosmologia Astrofisica e cosmologia Lezioni d'autore Claudio Cigognetti La radiazione cosmica di fondo (SuperQuark Rai) VIDEO L'energia oscura (parte prima) VIDEO L'energia oscura (parte seconda) VIDEO La misura

Dettagli

Evidenza delle diverse famiglie di neutrini

Evidenza delle diverse famiglie di neutrini Fenomenologia del Modello Standard Prof. A. Andreazza Lezione 2 Evidenza delle diverse famiglie di neutrini Diversi tipi di neutrini Agli inizi degli anni 60 si sapeva che il numero leptonico era conservato

Dettagli

Un Universo di Galassie. Lezione 14

Un Universo di Galassie. Lezione 14 Un Universo di Galassie Lezione 14 Schema della Lezione La famiglia delle galassie: classificazione morfologica. La scala delle distanze extragalattiche e la legge di Hubble. Massa e materia oscura. Ammassi

Dettagli

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti materiali in funzione dell'energia del fascio dei fotoni Esperto Qualificato LNF - INFN Interazioni delle particelle indirettamente ionizzanti con la materia Le particelle indirettamente ionizzanti, principalmente

Dettagli

E F F E T T O. Doppler

E F F E T T O. Doppler E F F E T T O Doppler Effetto Doppler La frequenza di un onda percepita da un osservatore può essere diversa da quella prodotta dalla sorgente Ciò si verifica quando sorgente e osservatore sono in moto

Dettagli

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica CURRICULUM ASTROFISICA E FISICA DELLO SPAZIO Anno Accademico 2011-2012 PROGRAMMA

Dettagli

TEORIA DELLA RELATIVITA

TEORIA DELLA RELATIVITA Cenni sulle teorie cosmologiche TEORIA DELLA RELATIVITA Nasce dalla constatazione che il movimento è relativo, e dipende dal sistema di riferimento. La teoria è formulata da Einstein che coniuga la precedente

Dettagli

Fondamenti di Astrofisica. Alessandro Marconi

Fondamenti di Astrofisica. Alessandro Marconi Alessandro Marconi La Via Lattea Ottico (~4000-7000 Å) Infrarosso (~1-4 μm) Il Centro Galattico nell IR Piano del Disco Galattico Ammasso di Stelle nel centro galattico! Centro Galattico 3 Osservazioni

Dettagli

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Astronomia Lezione 11/12/2014 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Quali sono i processi nucleari? Nucleosintesi:

Dettagli

L origine degli elementi chimici: Le fornaci stellari. Lezioni d'autore

L origine degli elementi chimici: Le fornaci stellari. Lezioni d'autore L origine degli elementi chimici: Le fornaci stellari Lezioni d'autore VIDEO Introduzione La storia sull origine degli elementi chimici è strettamente intrecciata con l evoluzione del nostro universo.

Dettagli

Appunti di Cosmologia

Appunti di Cosmologia Appunti di Cosmologia Corso di Cosmologia AA 2013/2014 Prof. Alessandro Marconi Dipartimento di Fisica e Astronomia Università di Firenze Dispense e presentazioni disponibili all indirizzo http://www.arcetri.astro.it/

Dettagli

L essenziale è invisibile agli occhi: la materia oscura

L essenziale è invisibile agli occhi: la materia oscura L essenziale è invisibile agli occhi: la materia oscura Prof. Armando Pisani, M. Peressi e G. Pastore I.S.I.S. (Lic. Classico) D. Alighieri (GO), A.S. 2013-14 Indice Introduzione Di che cosa è fatto l

Dettagli

Le particelle elementari e la fisica di frontiera a LHC

Le particelle elementari e la fisica di frontiera a LHC Le particelle elementari e la fisica di frontiera a LHC Valentina Zaccolo 26/03/19 e INFN Trieste Valentina Zaccolo Particelle e LHC Università 1 Dal mondo visibile... Dal macro al micro 26/03/19 Valentina

Dettagli

5 CORSO DI ASTRONOMIA

5 CORSO DI ASTRONOMIA 5 CORSO DI ASTRONOMIA Evoluzione dell Universo e Pianeti Extrasolari 13 febbraio 2016 spiegazioni di Giuseppe Conzo Parrocchia SS. Filippo e Giacomo Oratorio Salvo D Acquisto SOMMARIO Parte Prima La Teoria

Dettagli

Galassie Anomale : Starburst. Lezione 9

Galassie Anomale : Starburst. Lezione 9 Galassie Anomale : Starburst Lezione 9 Formazione stellare Traccianti di formazione stellare traccianti di stelle OB Le stelle OB sono caratterizzate da una luminosità molto elevata ed emettono principalmente

Dettagli