FTU: una stella dentro una ciambella magnetica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FTU: una stella dentro una ciambella magnetica"

Transcript

1 FTU: una stella dentro una ciambella magnetica Tutor: Cesidio Cianfarani E mail: cesidio.cianfarani@enea.it Telefono: /09/16 Notte dei Ricercatori 2016 ENEA Frascati 1

2 Introduzione all argomento Il Tokamak èuna macchina in cui un gas, tipicamente idrogeno, viene ionizzato (cioè separato in cariche positive e negative), formando così un plasma, che viene poi riscaldato a milioni di gradi e confinato grazie a potenti campi magnetici prodotti da bobine attraversate da enormi correnti elettriche. Dal 1989 èin funzione in Italia il Tokamak FTU (Frascati Tokamak Upgrade). La caratteristica di FTU sta nel fatto che produce un campo magnetico toroidale molto più elevato di altre macchine dello stesso tipo, il che permette di effettuare studi specifici sulla fisica del plasma che altrove non sono possibili. FTU si inserisce infatti a pieno titolo nel filone di ricerca, iniziato nei lontani anni '50, il cui scopo ultimo è quello di riprodurre le reazioni di fusione nucleare che avvengono nel Sole, il che permetterà un giorno di produrre energia in grande quantità, in modo sicuro e senza la creazione di scorie nucleari. La sfida che questo comporta è comunque di tale ampiezza che le ricadute scientifiche e tecnologiche ripagano già ampiamente gli sforzi in corso. Raggio maggiore (m) Raggio minore (m) 0.3 Corrente di plasma (MA) 1.6 Campo Magnetico (T) 8 Numero di finestre per guardare nel plasma 12 Schema di un Tokamak parametri di FTU plasma all interno di FTU Il Tokamak è circondato da numerosi sensori, posizionati presso le aperture ricavate nella ciambella, che servono ad osservare la radiazione e le particelle provenienti dal plasma (v. figura a destra), in modo da valutarne il comportamento e i parametri caratteristici (densità, temperatura, correnti, campi magnetici, etc.). Le aperture vengono inoltre utilizzate per iniettare nel plasma particelle e/o radiazione elettromagnetica per raggiungere le altissime temperature necessarie a studiare le condizioni per il processo di fusione nucleare.

3 Descrizione attività da svolgere il 30/9 Il dipartimento per la fusione del centro di ricerche ENEA Frascati propone una visita guidata al Frascati Tokamak Upgrade (FTU). Ricercatori esperti coadiuvati da ragazzi delle scuole superiori si occuperanno di introdurre i visitatori al concetto di fusione termonucleare, ai motivi della sua importanza e alla sfida tecnologica in corso che porterà in futuro a disporre di una fonte di energia pulita e inesauribile. Il percorso prevede: 1.Breve introduzione teorica sui principi e le difficoltà della fusione termonucleare controllata. L esposizione avverrà grazie all uso di poster, filmati, leggii espositivi, modellini in scala e componenti reali dismessi dalla macchina stessa 2.Visita alla sala di controllo di FTU e descrizione delle attività di una tipica giornata di sperimentazione dedicata all indagine della fisica del plasma e delle relative tecniche di controllo 3.Ingresso nella hall sperimentale e visita alla macchina e agli apparati che la circondano con descrizione delle principali attrezzature diagnostiche in uso, sistemi di riscaldamento addizionale, sistemi di protezione e controllo L aiuto richiesto agli studenti sarà così articolato: 1)Acquisizione delle conoscenze di base per introdurre i gruppi di visitatori alle problematiche della fusione in modo accattivante 2)Aiuto nella logistica della visita di un gruppo alla sala di controllo / hall sperimentale di FTU La partecipazione è aperta a tutti con suddivisione in gruppi, nel caso di visita in corso si potrà attendere il turno successivo. 30/09/16 Notte dei Ricercatori 2016 ENEA Frascati 3

4 Introduzione di base alla fusione nucleare - I L umanità consuma oggi 13 TW di energia che rischiano di diventare 30 nel Inoltre l uso dei combustibili fossili sta seriamente aumentando il livello di anidride carbonica (CO 2 ) nell atmosfera che, grazie all effetto serra, sta già provocando un significativo aumento della temperatura terrestre che nel lungo periodo porterà a dannosi cambiamenti climatici. Il processo di fusione nucleare, alla base del funzionamento del Sole e delle altre stelle, può essere una risposta: non produce CO 2 il combustibile necessario (Deuterio e Litio) è facilmente reperibile da tutti e praticamente inesauribile i prodotti della fusione non sono radioattivi Il reattore è intrinsecamente sicuro (non può esplodere) Stelle: reazione di fusione protone-protone La fusione è una reazione nucleare in cui due nuclei di elementi leggeri, (e.g. l idrogeno H), si fondono a temperature e pressioni elevate per dare origine ad un nucleo più pesante, (e.g. l elio He), la cui massa è però minore della somma delle masse dei nuclei di partenza. La massa mancante, secondo il principio di equivalenza massa-energia di Einstein (E = Δm c 2 ), viene trasformata in energia cinetica delle particelle prodotte dal processo di fusione. Reazione di fusione Deuterio - Trizio Fra i vari possibili processi di fusione, quello più alla nostra portata è la fusione fra due isotopi dell idrogeno : il deuterio (D) e il trizio (T). I prodotti di questa reazione sono: Neutroni veloci Nuclei di Elio Altre possibilità (quali D-D, D-He 3, o quella protone-protone usata dal Sole) sono per ora impraticabili. H (stabile) D (stabile) T (radioattivo) Isotopi dell idrogeno: in blu il protone, in giallo i neutroni

5 Introduzione di base alla fusione nucleare - II Il Trizio è un elemento radioattivo a vita breve e quindi non presente in natura, ma esso verrebbe prodotto in piccole quantità all interno del reattore e ivi consumato insieme al Deuterio. Per produrlo la camera di reazione viene circondata da un mantello composta da Litio il quale, interagendo coi neutroni prodotti dal processo di fusione, si tramuta in Trizio. Sia il Deuterio che il Litio (combustibili iniziali) sono facilmente reperibili e sufficienti per milioni di anni (ai consumi attuali). Come riferimento si consideri che ci sono circa 33 mg di D per ogni litro d acqua e che nel processo di fusione la quantità di D che è presente in circa 3 litri di acqua di mare fondendo produce l energia che si ottiene da circa 1000 litri di benzina. La fusione dei nuclei è ostacolata dalla forza coulombiana che è repulsiva tra nuclei di carica uguale (positivi) e agisce fino a lunghe distanze. E invece favorita dalla forza nucleare forte, che è attrattiva tra nucleoni, ma agisce solo a distanze molto piccole (10-13 cm). Per favorire la fusione è necessario quindi superare la repulsione coulombiana favorendo l avvicinamento dei nuclei. Ciò si realizza raggiungendo temperature di circa milioni di gradi C. Schema di centrale a fusione nucleare

6 Introduzione di base alla fusione nucleare - II A queste temperature, al contrario della materia «ordinaria» in cui ogni nucleo atomico è circondato dalla sua nuvola elettronica, l unica forma possibile è quella del plasma. Esso è un gas ionizzato, cioè un miscuglio di elettroni e ioni (ovverosia atomi che hanno perso parte o tutti i loro elettroni) che si muovono come entità libere. Come confinare un plasma a milioni di gradi? Non esiste un recipiente che possa contenere il plasma ad una temperatura così elevata. Il sole risolve il problema grazie alla forza gravitazionale, noi invece possiamo sfruttare il confinamento magnetico grazie ad un TOKAMAK che è una struttura a forma di ciambella (toro) in cui si vengono generati potenti campi magnetici. Tali campi costringono qualunque particella carica a ruotare attorno alle loro linee di forza. In questo modo le particelle sono confinate all interno della ciambella. Plasma libero Ovviamente non basta riscaldare il plasma e confinarlo poiché ci sono inevitabili perdite di calore che devono essere tenute sotto controllo. Si hanno infatti perdite per emissione di radiazione, diffusione di particelle (alcune delle quali riescono comunque a sfuggire ai campi magnetici) e attività magnetoidrodinamica (turbolenze simili a quelle che si verificano nei fluidi). Moto delle particelle cariche all interno di una sezione del TOKAMAK

7 Introduzione di base alla fusione nucleare - III Per poter studiare cosa succede durante una scarica di plasma, bisogna poterlo osservare tramite port (finestre) che si affacciano sulla ciambella e che consentano l utilizzo di varie diagnostiche (sistemi per misurare i parametri di interesse del plasma). Ecco di seguito uno spaccato della macchina Tokamak di ricerca di Frascati dove sono evidenziati i principali componenti: Spaccato del TOKAMAK di Frascati

8 Sala controllo di FTU - I Per il funzionamento di FTU è necessaria la collaborazione di una equipe formata da varie figure professionali (fisici, ingegneri, tecnici, ) Queste figure operano in varie postazioni. La sala controllo è il luogo dove trascorrono la maggior parte del loro tempo i vari ricercatori impegnati nella campagna sperimentale in corso. Il nucleo della sala controllo è composto da una serie di monitor e postazioni di lavoro collegate in rete che si può immaginare equivalente alla cabina di pilotaggio di un aereo. Lì arrivano in fatti tutte le informazioni sullo stato degli impianti, sull andamento della scarica di plasma, su eventuali allarmi, etc. e da lì si possono inviare comandi per modificare le varie condizioni operative e avviare gli esperimenti sulla fisica del plasma. La consolle di comando è posizionata di fronte ai tre monitor principali ed è occupata dal Responsabile delle Operazioni (RdO). Quest ultimo è il ricercatore che durante le fasi sperimentali si può considerare come il «pilota» dell aereo. Egli ha la responsabilità ultima di coordinare le varie operazioni necessarie per realizzare un esperimento con FTU avvalendosi della collaborazione di tutte le altre competenze. A lui spetta decidere come raggiungere le condizioni operative richieste e valutare se esse sono compatibili con gli standard di sicurezza oppure se la sperimentazione vada sospesa per eventuali manutenzioni. RdO RS PIC Tecnici di macchina

9 Sala controllo di FTU - II Insieme all RdO, lavorano i tecnici di macchina (che assicurano l efficienza operativa dell impianto), i responsabili delle varie diagnostiche (che si preoccupano del buon funzionamento delle stesse), il responsabile scientifico dell esperimento in corso (RS), il Physicist in Charge (PIC), che sorveglia lo stato di salute degli impianti e delle diagnostiche e, se necessario, attiva l intervento dei vari responsabili. Ad ogni scarica di plasma (che dura circa 1.5 s con un intervallo medio di 20 minuti tra una e l altra) sui tre monitor in alto compaiono i parametri provenienti dalle principali diagnostiche (e.g. temperatura, densità, etc.) e un filmato della scarica in corso proveniente da una videocamera ad alta velocità della scarica in corso. I tre monitor in alto sono la principale fonte d informazione per sapere come sta andando la sperimentazione. Sotto ai tre monitor sono posizionati altri monitor più piccoli che permettono di tenere sotto osservazione lo stato degli impianti (e.g. condizioni di vuoto, alimentazioni elettriche, etc.) necessari al funzionamento di FTU.

10 Riscaldamento alla risonanza elettronica ciclotronica (ECRH) - I Per innescare in un Tokamak le reazioni di fusione nucleare occorre riscaldare il plasma, in particolare i nuclei (nel nostro caso Deuterio e Trizio), ad una temperatura di almeno 100 milioni di gradi. f = 2.45 GHz 10 3 Watt Uno dei modi per farlo è quello di riscaldare prima gli elettroni, i quali poi, attraverso continue collisioni, trasferiscono parte della loro energia cinetica ai nuclei, riscaldandoli. Per riscaldare gli elettroni si iniettano microonde nel plasma, cioè radiazioni elettromagnetiche simili a quelle che vengono utilizzate nei forni a microonde domestici. La potenza necessaria (energia per unità di tempo) è tuttavia in questo caso molto maggiore (decine di mega-watt). Come termine di confronto un forno domestico di solito non supera i 1000 Watt. Le microonde vengono generate all interno di oggetti chiamati Gyrotron e poi trasferite mediante guide d onda, cioè essenzialmente tubi metallici di forma opportuna, fino all ingresso di una apertura (port) praticata nel Tokamak, da cui possono penetrare nel plasma. f = GHz 10 7 Watt d b a e c

11 Riscaldamento alla risonanza elettronica ciclotronica (ECRH) - II Ma come fanno le microonde a scaldare gli elettroni? Si tenga presente che gli elettroni sono intrappolati dal campo magnetico presente nella macchina, che li costringe a ruotare attorno alle sue linee di forza con una frequenza caratteristica, chiamata frequenza ciclotronica. L idea allora è semplice: la frequenza delle microonde viene scelta in modo tale che le onde elettromagnetiche inviate sul plasma vibrino proprio alla frequenza ciclotronica degli elettroni. Quando si verifica questa condizione, chiamata risonanza, gli elettroni assorbono energia dalle microonde e vengono accelerati; in altre parole si riscaldano. Il processo è simile a quello che avviene quando, per esempio, si spinge un altalena: se le spinte vengono date al momento giusto (cioè in risonanza), l ampiezza delle oscillazioni dell altalena aumenta progressivamente. Il nome inglese di questa tecnica (Electron Cyclotron Resonance Heating) significa appunto riscaldamento alla risonanza elettronica ciclotronica.

La fusione nucleare: fonte di energia

La fusione nucleare: fonte di energia La fusione nucleare: fonte di energia La materia intorno a noi è organizzata in strutture infinitesimali: ATOMI La parte centrale (Nucleo) è formata da Protoni (carica positiva) e Neutroni (privi di carica

Dettagli

La fusione. Lezioni d'autore. di Claudio Cigognetti

La fusione. Lezioni d'autore. di Claudio Cigognetti La fusione Lezioni d'autore di Claudio Cigognetti La bomba H (da Ulisse Rai) VIDEO VIDEO Il plasma costituito da un gas di ioni, elettroni, atomi o molecole complessivamente neutro in esso dominano gli

Dettagli

LA FUSIONE TERMONUCLEARE (appunti presi dal sito dell Enea:

LA FUSIONE TERMONUCLEARE (appunti presi dal sito dell Enea: LA FUSIONE TERMONUCLEARE (appunti presi dal sito dell Enea: http://www.fusione.enea.it/) E' la reazione nucleare che avviene nel sole e nelle altre stelle, con produzione di una enorme quantità di energia.

Dettagli

E = MC². È: Una forma di energia che deriva da profonde modificazioni della struttura stessa della materia. ENERGIA NUCLEARE

E = MC². È: Una forma di energia che deriva da profonde modificazioni della struttura stessa della materia. ENERGIA NUCLEARE ENERGIA NUCLEARE È: Una forma di energia che deriva da profonde modificazioni della struttura stessa della materia. La materia Può trasformarsi in energia secondo la legge fisica, scoperta dallo scienziato

Dettagli

Prospettive energetiche della Fusione Termonucleare Controllata. G Bosia Dipartimento difisica. Università di Torino

Prospettive energetiche della Fusione Termonucleare Controllata. G Bosia Dipartimento difisica. Università di Torino Prospettive energetiche della Fusione Termonucleare Controllata G Bosia Dipartimento difisica. Università di Torino 1 Fusione Nucleare 2 Principio fisico della Fusione nucleare Reazione di fusione Reazione

Dettagli

E=mc2. Cosa è ENERGIA NUCLEARE. Fu Albert Einstein a scoprire la legge che regola la quantità di energia prodotta attraverso le reazioni nucleari

E=mc2. Cosa è ENERGIA NUCLEARE. Fu Albert Einstein a scoprire la legge che regola la quantità di energia prodotta attraverso le reazioni nucleari Cosa è L atomo è costituito da: protoni (carica positiva) neutroni (carica neutra); Attorno al nucleo ruotano gli elettroni (carica negativa) L energia nucleare è una forma di energia che deriva da profonde

Dettagli

Dagli esperimenti di Fusione attuali ad ITER

Dagli esperimenti di Fusione attuali ad ITER Dagli esperimenti di Fusione attuali ad ITER Francesco Romanelli Associazione EURATOM-ENEA sulla Fusione UTS Fusione ITER e il risultato del progresso nella comprensione della dinamica dei plasmi termonucleari

Dettagli

Risultati di simulazioni con un codice ibrido Magnetoidrodinamico- Girocinetico (MHD-GK)

Risultati di simulazioni con un codice ibrido Magnetoidrodinamico- Girocinetico (MHD-GK) Risultati di simulazioni con un codice ibrido Magnetoidrodinamico- Girocinetico (MHD-GK) G. Vlad, S. Briguglio, G. Fogaccia Associazione EURATOM-ENEA sulla Fusione, Frascati, (Rome) Italy Seconda Università

Dettagli

ELEMENTI di CHIMICA NUCLEARE. La FISSIONE NUCLEARE

ELEMENTI di CHIMICA NUCLEARE. La FISSIONE NUCLEARE ELEMENTI di CHIMICA NUCLEARE La FISSIONE NUCLEARE Lo scienziato Otto Hahn nel 938 scoprì che l'uranio 35 9U è fissile. La fissione è una rottura dei nuclei pesanti e può avvenire quando un neutrone lento

Dettagli

J. Robert Oppenheimer

J. Robert Oppenheimer SOCIETA' ASTRONOMICA "G.V. SCHIAPARELLI" J. Robert Oppenheimer tra due bombe, politica e logica militare nella Guerra Fredda Varese, 21 Ottobre 2016 Molti libri sono stati scritti su Oppenheimer questo

Dettagli

La Fusione Nucleare per la produzione di energia

La Fusione Nucleare per la produzione di energia La Fusione Nucleare per la produzione di energia Open day della Ricerca Centro Ricerche ENEA Frasca7 29 se:embre 2017 Ore 16:00 22:00 Il problema dell energia: perché? PROBLEMA? q Esaurimento risorse fossili

Dettagli

Lezione 2 Condizioni fisiche per la produzione di energia per mezzo di fusione termonucleare controllata

Lezione 2 Condizioni fisiche per la produzione di energia per mezzo di fusione termonucleare controllata Lezione Condizioni fisiche per la produzione di energia per mezzo di fusione termonucleare controllata G. Bosia Universita di Torino 1 Plasma termo-nucleare Definizione : Un plasma termo nucleare e un

Dettagli

Fissione indotta e fusione nucleare (cenni)

Fissione indotta e fusione nucleare (cenni) Fissione indotta e fusione nucleare (cenni) La fissione spontanea avviene per nuclei molto pesanti Z 2/A > 47 (per 238U, Z 2/A=36 ) Fissione indotta: lo scattering di una particella su di un nucleo fissile

Dettagli

FISICA NUCLEARE. Liceo scientifico Don Bosco Fisica nucleare pag.1

FISICA NUCLEARE. Liceo scientifico Don Bosco Fisica nucleare pag.1 FISICA NUCLEARE Atomo e dimensioni atomiche Elementi chimici e isotopi Le quattro forze fondamentali Forza gravitazionale Forza elettrica Forze nucleari forte Forza nucleare debole Stabilità e radioattività

Dettagli

COME E FATTA LA MATERIA

COME E FATTA LA MATERIA ENERGIA NUCLEARE COME E FATTA LA MATERIA La Materia è composta di mattoni chiamati Atomi Tanti Atomi assieme compongono una Molecola Il nostro corpo e tutti gli oggetti sono fatti di Molecole, ovvero di

Dettagli

Come l Universo produce energia? Energia di legame nucleare

Come l Universo produce energia? Energia di legame nucleare R Cesario Come l Universo produce energia? Energia di legame nucleare 3 L energia si produce da processi spontanei guidati dalle forze fondamentali della natura Forza elettromagnetica +q -q +Q +Q Forza

Dettagli

Albert Einstein fu il primo scienziato ad intuire che dal nucleo si poteva ottenere energia.

Albert Einstein fu il primo scienziato ad intuire che dal nucleo si poteva ottenere energia. ENERGIA NUCLEARE ENERGIA NUCLEARE L energia nucleare è una forma di energia che deriva da profonde modificazioni della struttura stessa della materia. Scaturisce da reazioni che avvengono nel nucleo dell

Dettagli

IL PROGETTO ITER. dalla fusione nucleare l energia per il nostro futuro. Opportunità per le imprese. Alessio Misuri Dintec. Ferrara, 21 novembre 2008

IL PROGETTO ITER. dalla fusione nucleare l energia per il nostro futuro. Opportunità per le imprese. Alessio Misuri Dintec. Ferrara, 21 novembre 2008 IL PROGETTO ITER dalla fusione nucleare l energia per il nostro futuro. Opportunità per le imprese Alessio Misuri Dintec Ferrara, 21 novembre 2008 Cos è il progetto ITER INTERNATIONAL THERMONUCLEAR EXPERIMENTAL

Dettagli

Il Vuoto Fisico. un invito al laboratorio. Andrea Fontana, INFN Pavia

Il Vuoto Fisico. un invito al laboratorio. Andrea Fontana, INFN Pavia Il Vuoto Fisico un invito al laboratorio Andrea Fontana, INFN Pavia Il più potente acceleratore di particelle: LHC LHC ha la particolarità di non avere uno solo, ma tre sistemi di vuoto: 1. vuoto per i

Dettagli

Corso di CHIMICA LEZIONE 1

Corso di CHIMICA LEZIONE 1 Corso di CHIMICA LEZIONE 1 MATERIA tutto ciò occupa spazio e ha massa si presenta in natura sottoforma di Miscugli: sostanze mescolate insieme in vario modo (rocce, acqua marina, aria, cellule) Sostanze

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di: PLASMI E FUSIONE TERMONUCLEARE CONTROLLATA Corso di Laurea Magistrale in INGEGNERIA ELETRICA,

Dettagli

H 2 H 2 H 2. Come geenerare corrente nel plasma di un possible reattore a fusione nucleare è un problema di fondamentale importanza

H 2 H 2 H 2. Come geenerare corrente nel plasma di un possible reattore a fusione nucleare è un problema di fondamentale importanza H 2 H 2 H 2 Come geenerare corrente nel plasma di un possible reattore a fusione nucleare è un problema di fondamentale importanza H 2 H 2 Roberto Cesario Unità Fusione Nulceare Centro Ricerche ENEA Frascati

Dettagli

Diametro del nucleo: m. Diametro dell atomo: m

Diametro del nucleo: m. Diametro dell atomo: m Diametro del nucleo: 10 15 m Diametro dell atomo: 10 9-10 10 m The nuclear atom Thomson (Premio Nobel per la Fisica nel 1907) scopre l elettrone nel 1897 Rutherford (Premio Nobel per la Chimica nel 1908)

Dettagli

ORBITALI E CARATTERISTICHE CHIMICHE DEGLI ELEMENTI

ORBITALI E CARATTERISTICHE CHIMICHE DEGLI ELEMENTI ORBITALI E CARATTERISTICHE CHIMICHE DEGLI ELEMENTI Nelle reazioni chimiche gli atomi reagenti non cambiano mai la loro natura ( nucleo ) ma la loro configurazione elettronica. Nello specifico ad interagire

Dettagli

Italian ITER Business Forum 2014. La Partecipazione Italiana al Programma Internazionale sulla Fusione

Italian ITER Business Forum 2014. La Partecipazione Italiana al Programma Internazionale sulla Fusione Italian ITER Business Forum 2014 La Partecipazione Italiana al Programma Internazionale sulla Fusione Aldo Pizzuto Direttore Unità tecnica Fusione ENEA Milano 26 giugno 2014 ENEA agenzia nazionale per

Dettagli

La chimica nucleare. A cura della prof. ssa. Barone Antonina

La chimica nucleare. A cura della prof. ssa. Barone Antonina La chimica nucleare A cura della prof. ssa Barone Antonina La radioattività Nella seconda metà dell 800, Henry Becquerel, Pierre e Marie Curie, scoprirono che alcuni elementi( uranio, torio, radio) emettevano

Dettagli

SOSTANZE PERICOLOSE. 1 Il numero di massa di un elemento è uguale

SOSTANZE PERICOLOSE. 1 Il numero di massa di un elemento è uguale SOSTANZE PERICOLOSE 1 Il numero di massa di un elemento è uguale a Alla somma del numero dei protoni + quello dei mesoni b alla somma del numero dei protoni, + quello dei neutroni del suo atomo c Alla

Dettagli

il CNR: il più grande ente pubblico italiano di ricerca Fondato nel 1923 (novantesimo compleanno nel 2013)

il CNR: il più grande ente pubblico italiano di ricerca Fondato nel 1923 (novantesimo compleanno nel 2013) IFP-CNR, Open Day, 25 Marzo 2013 il CNR: il più grande ente pubblico italiano di ricerca Fondato nel 1923 (novantesimo compleanno nel 2013) Circa 8000 unità di personale (60% ricercatori) + 3000 ricercatori

Dettagli

Il nucleo dell atomo

Il nucleo dell atomo Il nucleo dell atomo Ci sono quattro interazioni(forze) i i(f tra le particelle: Gravita ElettroMagnetica Nucleare Forte Nucleare Debole Le forze La forza nucleare forte è responsabile del legame tra i

Dettagli

Lezione 4. Vita delle Stelle Parte 2

Lezione 4. Vita delle Stelle Parte 2 Lezione 4 Vita delle Stelle Parte 2 Fusione nucleare 4 atomi di idrogeno si uniscono per formare 1 atomo di elio e produrre energia nucleo H H H He H Due nuclei di idrogeno (due protoni) sospinti l'uno

Dettagli

APPUNTI DI TECNOLOGIA

APPUNTI DI TECNOLOGIA APPUNTI DI TECNOLOGIA ENERGIA NUCLEARE Fissione nucleare Fusione nucleare Centrali nucleari Vantaggi - Svantaggi Produzione DOWNLOAD MAPPA CONCETTUALE NOTA dell autore Prof. Danilo Eandi, docente di Tecnologia

Dettagli

Il nucleo dell atomo

Il nucleo dell atomo Il nucleo dell atomo Ci sono quattro interazioni(forze) i i(f tra le particelle: Gravita ElettroMagnetica Nucleare Forte Nucleare Debole Le forze La forza nucleare forte è responsabile del legame tra i

Dettagli

La strada percorsa e il futuro

La strada percorsa e il futuro La strada percorsa e il futuro La linea Tokamak Francesco De Marco Associazione ENEA-EURATOM sulla Fusione UTS Fusione I giovedì della cultura scientifica-18 Settembre 2003 In un toro le particelle sono

Dettagli

APPUNTI DI TECNOLOGIA. ENERGIA NUCLEARE Fissione nucleare Fusione nucleare Centrali nucleari Vantaggi - Svantaggi Produzione

APPUNTI DI TECNOLOGIA. ENERGIA NUCLEARE Fissione nucleare Fusione nucleare Centrali nucleari Vantaggi - Svantaggi Produzione APPUNTI DI TECNOLOGIA ENERGIA NUCLEARE Fissione nucleare Fusione nucleare Centrali nucleari Vantaggi - Svantaggi Produzione 01 EN. NUCLEARE: MAPPA CONCETTUALE 01b EN. NUCLEARE: FISSIONE NUCLEARE La fissione

Dettagli

Paolo Buratti. Associazione EURATOM-ENEA sulla Fusione, Frascati, Italy

Paolo Buratti. Associazione EURATOM-ENEA sulla Fusione, Frascati, Italy Le energie alternative nel III Millennio Frosinone 3-5 Maggio 2007 La Fusione Nucleare Paolo Buratti Associazione EURATOM-ENEA sulla Fusione, Frascati, Italy Un reattore a fusione di grandi dimensioni

Dettagli

Dipartimento Fusione e Tecnologie per la Sicurezza Nucleare

Dipartimento Fusione e Tecnologie per la Sicurezza Nucleare All. 2 Dipartimento Fusione e Tecnologie per la Sicurezza Nucleare Ruoli divisioni DECLARATORIE DIVISIONI DEL DIPARTIMENTO FUSIONE E TECNOLOGIE PER LA SICUREZZA NUCLEARE Divisione Fisica della Fusione

Dettagli

Esploriamo la chimica

Esploriamo la chimica 1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 7 Le particelle dell atomo 1. La natura elettrica della materia 2. Le particelle fondamentali

Dettagli

Il Nucleo. Dimensioni del nucleo dell'ordine di 10. m Il raggio nucleare R = R 0 -15

Il Nucleo. Dimensioni del nucleo dell'ordine di 10. m Il raggio nucleare R = R 0 -15 Il Nucleo Nucleo e' costituito da nucleoni (protoni e neutroni). Mentre i neutroni liberi sono abbastanza instabili tendono a decadere in un protone ed un elettrone (t 1/2 circa 900 s), i protoni sono

Dettagli

ENERGIA NUCLEARE. Prof. Matteo Cecchini

ENERGIA NUCLEARE. Prof. Matteo Cecchini Prof. Matteo Cecchini CENTRALI ELETTRONUCLEARI nel mondo n. 442 centrali attive e 66 in costruzione (dati marzo 2016) CENTRALI ELETTRONUCLEARI in Europa n. 134 centrali attive e 6 in costruzione solo nell

Dettagli

FISICA delle APPARECCHIATURE per RADIOTERAPIA

FISICA delle APPARECCHIATURE per RADIOTERAPIA Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per RADIOTERAPIA Marta Ruspa 20.01.13 M. Ruspa 1 ONDE ELETTROMAGNETICHE

Dettagli

E= mc2 Nel 1905 Einistein enunciò la sua teoria tra energia e materia, espressa dalla formula E=mc2

E= mc2 Nel 1905 Einistein enunciò la sua teoria tra energia e materia, espressa dalla formula E=mc2 ENERGIA NUCLEARE URANIO L uranio è un metallo di colore bianco argenteo che pesa più del doppio del ferro. si ricava dall uranite. E un minerale che contiene due tipi di elementi 1. Uranio 238 non fissile

Dettagli

FTC - Metodi di Confinamento

FTC - Metodi di Confinamento FTC - Metodi di Confinamento Necessità di far superare ai nuclei reagenti il potenziale Coulombiano di repulsione Fusione ad alta temperatura: - Fusione a confinamento magnetico - Fusione a confinamento

Dettagli

CAPITOLO 20 LA CHIMICA NUCLEARE

CAPITOLO 20 LA CHIMICA NUCLEARE CAPITOLO 20 LA CHIMICA NUCLEARE 20.5 (a) La soma dei numeri atomici e la somma dei numeri di massa, da entrambi i lati dell equazione nucleare, deve coincidere. Dalla parte sinistra di questa equazione

Dettagli

E=mc². E n e r g i a ENERGIA NUCLEARE

E=mc². E n e r g i a ENERGIA NUCLEARE E n e r g i a 5 ENERGIA NUCLEARE L'energia nucleare è una fonte energetica non rinnovabile, seppure alternativa alle fonti energetiche più tradizionali (combustibii fossili). Essa comprende l'energia ricavata

Dettagli

Carbone Petrolio Metano. Fissione Fusione

Carbone Petrolio Metano. Fissione Fusione Carbone Petrolio Metano Fissione Fusione A seconda del grado di fossilizzazione (perdita ossigeno, aumento contenuto carbonio) si divide in: Torba: basso grado fossilizzazione brucia male e produce molto

Dettagli

Stato e Prospettive delle Ricerche sulla Fusione Termonucleare Controllata

Stato e Prospettive delle Ricerche sulla Fusione Termonucleare Controllata Stato e Prospettive delle Ricerche sulla Fusione Termonucleare Controllata Istituto di Fisica del Plasma del Consiglio Nazionale delle Ricerche Associazione EURATOM-ENEA-CNR Maurizio Lontano lontano@ifp.cnr.it

Dettagli

Istituto di fisica del plasma Max Planck. Fusione nucleare Ricerca sull'energia del futuro

Istituto di fisica del plasma Max Planck. Fusione nucleare Ricerca sull'energia del futuro Istituto di fisica del plasma Max Planck Fusione nucleare Ricerca sull'energia del futuro Status: 2018 Istituto di fisica del plasma Max Planck Photo: IPP IPP nel campus di Garching Istituto di fisica

Dettagli

Nane bianche e stelle di neutroni. di Roberto Maggiani

Nane bianche e stelle di neutroni. di Roberto Maggiani Nane bianche e stelle di neutroni di Roberto Maggiani Prendendo in mano una zoletta di zucchero e poi una zolletta di ferro potremmo verificare il maggior peso di quest ultima, infatti, nello stesso volume

Dettagli

Le centrali a combustibile

Le centrali a combustibile Le centrali a combustibile Sono soprattutto centrali termoelettriche che si basano su sistemi di conversione che trasformano l energia chimica dei combustibili fossili (es. carbone) in energia elettrica

Dettagli

Un nuclide è un atomo caratterizzato dal numero atomico Z (numero di protoni) e dal numero di massa A (numero di neutroni e di protoni).

Un nuclide è un atomo caratterizzato dal numero atomico Z (numero di protoni) e dal numero di massa A (numero di neutroni e di protoni). L atomo Il nucleo è costituito da neutroni e protoni (nucleoni). Il neutrone non ha carica e la sua massa è,675 0-27 Kg. Il protone ha una carica positiva di,6022 0-9 C e una massa di,673 0-27 Kg. L'elettrone

Dettagli

ENERGIA NUCLEARE L ENERGIA CHE DERIVA DALL ATOMO

ENERGIA NUCLEARE L ENERGIA CHE DERIVA DALL ATOMO ENERGIA NUCLEARE L ENERGIA CHE DERIVA DALL ATOMO la storia 1950 2000 1945 HIROSHIMA E NAGASAKI 1948-1991 GUERRA FREDDA 1986 INCIDENTE DI CHERNOBIL 2011 FUKUSHIMA Patrizia Dova maggio 2017 1 Cos è l energia

Dettagli

Moto di particelle cariche in presenza di campi elettrici e magnetici

Moto di particelle cariche in presenza di campi elettrici e magnetici Moto di particelle cariche in presenza di campi elettrici e magnetici Forza di Lorentz nella forma più generale : F = q( E + v B) Campi elettrostatici e magnetici possono essere utilizzati per il funzionamento

Dettagli

Cenni di Fisica Nucleare

Cenni di Fisica Nucleare Cenni di Fisica Nucleare Densita' costante r~ r (numero di nucleoni) 1/3 Dimensione finita dei nuclei Cenni di Fisica Nucleare Nomenclatura: N. massa= N. protoni+n. Neutroni = Z+N Simbolo chimico: Ca,

Dettagli

FORME E FONDI DI ENERGIA.

FORME E FONDI DI ENERGIA. FORME E FONDI DI ENERGIA http://tecnologiaduepuntozero.altervista.org/ FORME DI ENERGIA http://tecnologiaduepuntozero.altervista.org/ FORME DI ENERGIA ENERGIA MECCANICA E la somma di: ENERGIA POTENZIALE

Dettagli

Sommario della lezione 2. Materia e definizioni. Struttura dell atomo

Sommario della lezione 2. Materia e definizioni. Struttura dell atomo Sommario della lezione 2 Materia e definizioni Struttura dell atomo La materia è qualsiasi cosa abbia una massa e occupi uno spazio. Esiste in tre stati: Solido Forma e volume determinati Liquido Volume

Dettagli

Con la parola Universo possiamo intendere tutto ciò che ci circonda: le stelle, i pianeti e tutti gli altri oggetti che vediamo nel cielo (insieme ad

Con la parola Universo possiamo intendere tutto ciò che ci circonda: le stelle, i pianeti e tutti gli altri oggetti che vediamo nel cielo (insieme ad Con la parola Universo possiamo intendere tutto ciò che ci circonda: le stelle, i pianeti e tutti gli altri oggetti che vediamo nel cielo (insieme ad una enorme quantità di altre cose che non vediamo)

Dettagli

L origine degli elementi chimici: Le fornaci stellari. Lezioni d'autore

L origine degli elementi chimici: Le fornaci stellari. Lezioni d'autore L origine degli elementi chimici: Le fornaci stellari Lezioni d'autore VIDEO Introduzione La storia sull origine degli elementi chimici è strettamente intrecciata con l evoluzione del nostro universo.

Dettagli

Corso Integrato di Biologia e Radiobiologia:

Corso Integrato di Biologia e Radiobiologia: Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale Corso di Studio in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA (Anno Accademico 2017-2018) Corso Integrato di Biologia e Radiobiologia:

Dettagli

ARGOMENTO: Cenni di Fisica del Nucleo

ARGOMENTO: Cenni di Fisica del Nucleo UNIVERSITA DEGLI STUDI DI GENOVA C.L. TECNICHE DIAGNOSTICHE RADIOLOGICHE CORSO INTEGRATO: MISURE ELETTRICHE ED ELETTRONICHE MATERIA: FISICA APPLICATA 2 (2 anno 1 sem) ARGOMENTO: Cenni di Fisica del Nucleo

Dettagli

Ricerca sulla fisica dei plasmi e della fusione termonucleare a Padova

Ricerca sulla fisica dei plasmi e della fusione termonucleare a Padova Ricerca sulla fisica dei plasmi e della fusione termonucleare a Padova Tommaso Bolzonella A nome dei colleghi del Consorzio RFX e del Centro Ricerche Fusione Un breve inquadramento storico Lo studio del

Dettagli

RICERCA SCIENTIFICA ed ENERGIA DEL FUTURO

RICERCA SCIENTIFICA ed ENERGIA DEL FUTURO RICERCA SCIENTIFICA ed ENERGIA DEL FUTURO G. Turchetti Dipartimento di Fisica Università di Bologna, INFN Sezione di Bologna Le fonti d energia Storia: la disponibilità di energia ha caratterizzato lo

Dettagli

Fusione seconda puntata

Fusione seconda puntata Fusione seconda puntata Dopo le spiegazioni dell altra volta possiamo parlare finalmente di fusione, nucleare Come due auto che si scontrano: volano i pezzi (neutroni) scoppia un sacco di energia e si

Dettagli

Studiamo le stelle su modelli che si basano su due presupposn principali:

Studiamo le stelle su modelli che si basano su due presupposn principali: - - 0 Introduzione. Le forze che agiscono nelle stelle. La stru9ura della materia (approfondimento) 3. Le reazioni di fusione nucleare Le fasi della vita di una stella: 4. La nascita delle stelle 5. Le

Dettagli

L energia solare. L energia solare è un energia pulita, sicura e, da un certo punto di vista. assolutamente gratuita L importanza del sole

L energia solare. L energia solare è un energia pulita, sicura e, da un certo punto di vista. assolutamente gratuita L importanza del sole L energia solare L energia solare è un energia pulita, sicura e, da un certo punto di vista. assolutamente gratuita L importanza del sole I raggi del sole sono un immensa fonte inesauribile di luce e colore

Dettagli

Fusione termonucleare controllata e High Performance Computing. S. Briguglio, G. Fogaccia e G. Vlad ENEA Frascati

Fusione termonucleare controllata e High Performance Computing. S. Briguglio, G. Fogaccia e G. Vlad ENEA Frascati Fusione termonucleare controllata e High Performance Computing S. Briguglio, G. Fogaccia e G. Vlad ENEA Frascati Sommario La fusione nucleare La simulazione particle in cell (PIC) Il porting di un codice

Dettagli

quando la vita di una stella sta per giungere al termine l'idrogeno diminuisce limitando le fusione nucleare all interno

quando la vita di una stella sta per giungere al termine l'idrogeno diminuisce limitando le fusione nucleare all interno le stelle sono corpi celesti che brillano di luce propria hanno la forma di sfere luminose ed emettono radiazioni elettromagnetiche causate dalle reazioni nucleari che avvengono al loro interno (atomi

Dettagli

Le particelle dell atomo

Le particelle dell atomo La carica elettrica I fenomeni elettrici sono noti fin dall antichità: gli antichi Greci usavano la parola elektron per spiegare il fenomeno dell elettrizzazione dell ambra. I Greci sapevano che strofinando

Dettagli

NOZIONI PRELIMINARI ENERGIA NUCLEARE ATOMO ISOTOPI RADIOATTIVITÀ

NOZIONI PRELIMINARI ENERGIA NUCLEARE ATOMO ISOTOPI RADIOATTIVITÀ NOZIONI PRELIMINARI ENERGIA NUCLEARE ATOMO ISOTOPI RADIOATTIVITÀ ENERGIA NUCLEARE: CHE COS È E L ENERGIA CHE TIENE LEGATA LA PARTE INTERNA DELL ATOMO, O MEGLIO LE PARTICELLE CHE FORMANO IL NUCLEO DELL

Dettagli

CHIMICA: studio della composizione e della struttura della materia e delle sue trasformazioni

CHIMICA: studio della composizione e della struttura della materia e delle sue trasformazioni CHIMICA: studio della composizione e della struttura della materia e delle sue trasformazioni Lavoisier e la legge di conservazione della massa Lavoisier riconobbe l importanza delle misurazioni accurate

Dettagli

Dott. GUIDO RUSSO Dipartimento di Scienze Fisiche Università di Napoli Federico II. Struttura e Dinamica della Terra

Dott. GUIDO RUSSO Dipartimento di Scienze Fisiche Università di Napoli Federico II. Struttura e Dinamica della Terra Dott. GUIDO RUSSO Dipartimento di Scienze Fisiche Università di Napoli Federico II Struttura e Dinamica della Terra Alcuni fatti salienti (1) La Crosta si forma quasi subito. E sottile e calda, ma sufficiente

Dettagli

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata Radioattività 1. Massa dei nuclei 2. Decadimenti nucleari 3. Legge del decadimento XVI - 0 Nucleoni Protoni e neutroni sono chiamati, indifferentemente, nucleoni. Il numero di protoni (e quindi di elettroni

Dettagli

ESERCIZI SCIENZE: SISTEMA SOLARE

ESERCIZI SCIENZE: SISTEMA SOLARE ESERCIZI SCIENZE: SISTEMA SOLARE 1. Scrivi i nomi dei pianti del Sistema Solare che compaiono nell immagine Sole= 2. Dai le seguenti definizioni Pianeta terrestre= Satelliti galileiani= Pianeta nano= Stella=

Dettagli

LA TEORIA ATOMICA E L ATOMO Da pagina 81 a pagina 107

LA TEORIA ATOMICA E L ATOMO Da pagina 81 a pagina 107 LA TEORIA ATOMICA E L ATOMO Da pagina 81 a pagina 107 4.1 LA TEORIA ATOMICA La materia è formata da atomi, a loro volta costituiti da particelle subatomiche; Esistono tanti tipi di atomi quanti sono gli

Dettagli

L elettromagnetismo nella ricerca per l energia da fusione nucleare di plasma d idrogeno

L elettromagnetismo nella ricerca per l energia da fusione nucleare di plasma d idrogeno L elettromagnetismo nella ricerca per l energia da fusione nucleare di plasma d idrogeno Roberto Cesario Associazione EURATOM-ENEA sulla Fusione Centro Ricerche ENEA Frascati Sommario del corso integrativo

Dettagli

Bagatti, Corradi, Desco, Ropa. Chimica. seconda edizione

Bagatti, Corradi, Desco, Ropa. Chimica. seconda edizione Bagatti, Corradi, Desco, Ropa Chimica seconda edizione Bagatti, Corradi, Desco, Ropa, Chimica seconda edizione Capitolo 4. Modelli e configurazione SEGUI LA MAPPA e distinguere di massa (A) Spettri 1 e

Dettagli

Le radiazioni e la loro misura

Le radiazioni e la loro misura Le radiazioni e la loro misura Le radiazioni e le radiazioni ionizzanti Nuclei, radioattività, reazioni nucleari Einstein, la legge E = mc 2 e l'energia nucleare Uso degli strumenti di misura Che cosa

Dettagli

Il Sole. Primo Levi 2017 Roberto Bedogni INAF Osservatorio Astronomico di Bologna

Il Sole. Primo Levi 2017 Roberto Bedogni INAF Osservatorio Astronomico di Bologna Il Sole Primo Levi 2017 Roberto Bedogni INAF Osservatorio Astronomico di Bologna http://www.bo.astro.it/~bedogni/primolevi Email :roberto.bedogni@oabo.inaf.it Sole Distanza (km) 149 597 970 km 2 Massa

Dettagli

LA STRUTTURA DELL ATOMO

LA STRUTTURA DELL ATOMO Capitolo 4 LA STRUTTURA DELL ATOMO N.B I concetti proposti sulle slide, in linea di massima seguono l ordine e i contenuti del libro, ma!!!! Ci possono essere delle variazioni Prof. Vincenzo Leo - Chimica

Dettagli

ESERCITAZIONI ASTROFISICA STELLARE

ESERCITAZIONI ASTROFISICA STELLARE ESERCITAZIONI per ASTROFISICA STELLARE (AA 2011-2012) (ultimo aggiornamento: 23/03/2012) Esercizio 1: Una stella con gravita` superficiale pari a 3.42 10 4 cm -2 e luminosita` pari a 562 L ha il massimo

Dettagli

L'elettromagnetismo e la fusione nucleare

L'elettromagnetismo e la fusione nucleare L'elettromagnetismo e la fusione nucleare Tutors Giuliana Fogaccia mail: giuliana.fogaccia@enea.it Ocleto D Arcangelo mail: ocleto.darcangelo@enea.it Introduzione all argomento La fusione termonucleare

Dettagli

Il riscaldamento del plasma di ITER alla frequenza ciclotronica ionica

Il riscaldamento del plasma di ITER alla frequenza ciclotronica ionica Il riscaldamento del plasma di ITER alla frequenza ciclotronica ionica G. Bosia Universita di Torino ITER tokamak Riscaldamento di un plasma alla frequenza Ω ci Il riscaldamento di un plasma a temperature

Dettagli

L'EVOLUZIONE STELLARE

L'EVOLUZIONE STELLARE L'EVOLUZIONE STELLARE Lezioni d'autore di Claudio Censori VIDEO Introduzione (I) La vita delle stelle è condizionata dalla loro massa e dalla tendenza inesorabile al collasso causato dal peso degli strati

Dettagli

Teoria Atomica di Dalton

Teoria Atomica di Dalton Teoria Atomica di Dalton Il concetto moderno della materia si origina nel 1806 con la teoria atomica di John Dalton: Ogni elementoè composto di atomi. Gli atomi di un dato elemento sono uguali. Gli atomi

Dettagli

SOLE, struttura e fenomeni

SOLE, struttura e fenomeni SOLE, struttura e fenomeni Lezioni d'autore di Claudio Censori VIDEO Introduzione (I) Il Sole è la stella più vicina a noi, della quale possiamo pertanto ricavare in dettaglio informazioni dirette. Si

Dettagli

Decadimento a. E tipico dei radioisotopi con Z > 82 (Pb), nei quali il rapporto tra il numero dei neutroni e quello dei protoni è troppo basso.

Decadimento a. E tipico dei radioisotopi con Z > 82 (Pb), nei quali il rapporto tra il numero dei neutroni e quello dei protoni è troppo basso. Decadimento a Nel decadimento vengono emesse particelle formate da 2 protoni e 2 neutroni ( = nuclei di 4He) aventi velocità molto elevate (5-7% della velocità della luce) E tipico dei radioisotopi con

Dettagli

Formazione e ricerca sull energia da fusione termonucleare

Formazione e ricerca sull energia da fusione termonucleare Formazione e ricerca sull energia da fusione termonucleare F. Pegoraro FONDAZIONE INTERNAZIONALE TRIESTE PER IL PROGRESSO E LA LIBERTA DELLE SCIENZE Trieste 31 maggio 2010 Le filiere dell energia, Trieste

Dettagli

Il nucleare non è il diavolo. Il problema:

Il nucleare non è il diavolo. Il problema: 2005 Anno Mondiale della Fisica Il nucleare non è il diavolo Progetto di monitoraggio della radioattività ambientale nelle scuole Sezione di Torino dell INFN e Dipartimenti di Fisica dell Università di

Dettagli

Il programma Ignitor

Il programma Ignitor Il programma Ignitor Paolo Detragiache ENEA-Torino Unità FUS-MAG Casaccia, 18 Settembre 2003 IL PROGRAMMA IGNITOR 1 Sommario Motivazioni Missione Principali caratteristiche della macchina Caratteristiche

Dettagli

Le sostanze chimiche

Le sostanze chimiche Le sostanze chimiche Ingredienti base della materia La materia si presenta con diverse forme. Accade perché esistono moltissimi «ingredienti di base» che mescolandosi tra loro danno innumerevoli combinazioni.

Dettagli

L energia nella scuola

L energia nella scuola L energia nella scuola Enzo De Sanctis INFN-Laboratori Nazionali di Frascati Societa Italiana di Fisica 1 Il Progetto PUBBLICAZIONE DI FASCICOLI SULLE PIÙ IMPORTANTI E PROMETTENTI FONTI ENERGETICHE, LE

Dettagli

Riconnessione magnetica, filamenti ed eventi di espulsione in plasmi di laboratorio

Riconnessione magnetica, filamenti ed eventi di espulsione in plasmi di laboratorio XCVI Congresso Nazionale della Società Italiana di Fisica 20-24 Settembre 2010, Bologna Riconnessione magnetica, filamenti ed eventi di espulsione in plasmi di laboratorio P. Buratti, F. Alladio Associazione

Dettagli

Ricerca e prospettive della fusione nucleare - Il progetto ITER

Ricerca e prospettive della fusione nucleare - Il progetto ITER Ricerca e prospettive della fusione nucleare - Il progetto ITER Paola Batistoni Unità Tecnico Scientifica FUSIONE ENEA - Frascati INFN Sezione di Roma 12 giugno 2006 Che cos è la fusione nucleare? E una

Dettagli

Cosa alimenta le stelle? Stefano Covino INAF / Osservatorio Astronomico di Brera

Cosa alimenta le stelle? Stefano Covino INAF / Osservatorio Astronomico di Brera Cosa alimenta le stelle? Stefano Covino INAF / Osservatorio Astronomico di Brera Dato di ingresso: il Sole splende La quantità di energia che riceviamo dal Sole è nota come Costante Solare (CS): 1,37 kw/m

Dettagli

L energia nella scuola. Enzo De Sanctis INFN-Laboratori Nazionali di Frascati Societa Italiana di Fisica

L energia nella scuola. Enzo De Sanctis INFN-Laboratori Nazionali di Frascati Societa Italiana di Fisica L energia nella scuola Enzo De Sanctis INFN-Laboratori Nazionali di Frascati Societa Italiana di Fisica 1 Il Progetto PUBBLICAZIONE DI FASCICOLI SULLE PIÙ IMPORTANTI E PROMETTENTI FONTI ENERGETICHE, LE

Dettagli

Capitolo 2. Cenni alla Composizione e Struttura dell atomo

Capitolo 2. Cenni alla Composizione e Struttura dell atomo Master in Verifiche di qualità in radiodiagnostica, medicina nucleare e radioterapiar Capitolo 2 Cenni alla Composizione e Struttura dell atomo 24 Atomi, Molecole,, e Ioni L idea di Atomo è antica come

Dettagli

La struttura dell atomo

La struttura dell atomo La Teoria Atomica La struttura dell atomo 10-10 m 10-14 m Proprietà delle tre particelle subatomiche fondamentali Carica Massa Nome (simbolo) relativa assoluta (C) relativa (uma)* Assoluta (g) Posizione

Dettagli

Le onde elettromagnetiche

Le onde elettromagnetiche Campi elettrici variabili... Proprietà delle onde elettromagnetiche L intuizione di Maxwell (1831-1879) Faraday ed Henry misero in evidenza che un campo magnetico variabile genera un campo elettrico indotto.

Dettagli

Lezioni LINCEI per la Scuola Il nucleo atomico

Lezioni LINCEI per la Scuola Il nucleo atomico Lezioni LINCEI per la Scuola Il nucleo atomico Roberto Casalbuoni Dipartimento di Fisica e Astronomia, Sezione INFN, Istituto G. Galilei per la Fisica Teorica (GGI), Terza Cultura Firenze - casalbuoni@fi.infn.it

Dettagli

Lezione 24 Radiazioni Ionizzanti

Lezione 24 Radiazioni Ionizzanti Generalità Lezione 24 Radiazioni Ionizzanti Con il termine radiazione si descrivono fenomeni molto diversi fra loro: Emissione di luce da una lampada Emissione di calore da una fiamma Particelle elementari

Dettagli

Le radiazioni ionizzanti e la radioprotezione

Le radiazioni ionizzanti e la radioprotezione Le radiazioni ionizzanti e la radioprotezione Radiazioni Radiazioniionizzanti ionizzanti Il termine radiazione viene abitualmente usato per descrivere fenomeni apparentemente assai diversi tra loro,

Dettagli