Laboratorio di Crittografia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Laboratorio di Crittografia"

Transcript

1 Laboratorio di Crittografia Scuola Secondaria Inferiore Attività n. 1: Divisi a coppie, ognuno scriva sulla propria scitala un messaggio e consegni al compagno la striscia di carta srotolata. Il compagno dovrà ricostruire il messaggio in chiaro riavvolgendolo sulla scitala. Attività n. 2: Divisi a coppie, ognuno dovrà cifrare sei messaggi a scelta utilizzando il proprio disco col cifrario di Cesare e trasmetterli al compagno. Il compagno, a sua volta, dovrà decifrare i sei messaggi, sempre utilizzando il disco col Cifrario di Cesare. Domanda: Per cifrare i messaggi, come ruoterò il disco? Di quante posizioni e in che verso? E per decifrare il messaggio? Potete anche far corrispondere ad ogni lettera dell alfabeto un numero da 0 ( = A) a 25 ( = Z) in questo modo: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

2 ed utilizzare l Applet opportuno sul Cifrario di Cesare.. Vogliamo ora generalizzare il metodo di Cesare in questo modo: Più in generale si dice codice di Cesare un codice nel quale la lettera del messaggio chiaro viene spostata di un numero fisso di posti, non necessariamente tre. I cifrari che comportano una "rotazione" dell'alfabeto sono detti anche cifrari ROT n, dove n è il numero di posizioni di cui bisogna spostarsi nell alfabeto per cifrare il messaggio in chiaro. Così, Cesare si chiama anche ROT Divisi a coppie, ognuno dovrà cifrare tre messaggi a scelta utilizzando il disco di Cesare e ruotandolo rispettivamente di 1 posizione, poi di 5 e infine di 13 posizioni, cioè utilizzando prima un cifrario ROT1 ( A B), poi ROT5 ( A F)e infine ROT13 ( A N). Domanda: che particolarità ha il cifrario ROT13? Come si fa a decifrare un messaggio scritto utilizzando il cifrario ROT13? ed utilizzare l Applet opportuno sul Cifrario ROTn.. Attività n. 3: Il metodo di Blaise Vigenère (1586) è una evoluzione del codice di Cesare; invece di spostare sempre dello stesso numero di posti la lettera da cifrare, questa viene spostata di un numero di posti variabile, determinato in base ad una parola chiave, da concordarsi tra mittente e destinatario, e da scriversi sotto il messaggio, carattere per carattere; la parola è detta verme (una password), dato che, essendo più corta del messaggio, deve essere ripetuta molte volte sotto questo, come nel seguente esempio:

3 Supponiamo che la parola chiave o verme sia: SCUOLA Testo chiaro Verme Testo cifrato A R R I V A N O I R I N F O R Z I S C U O L A S C U O L A S C U O L S T L W G A F Q C F T N X Q L N T Il testo cifrato si ottiene spostando la lettera chiara di un numero fisso di caratteri, pari al numero ordinale della lettera corrispondente del verme. Di fatto si esegue una somma aritmetica tra l'ordinale del chiaro (A = 0, B = 1, C = 2...) e quello del verme; se si supera l'ultima lettera, la Z, si ricomincia da A, secondo la logica delle aritmetiche finite. Per semplificare questa operazione il Vigénère propose l'uso della seguente tavola quadrata, composta da alfabeti ordinati spostati. Volendo ad esempio cifrare la prima R di ARRIVANO si individuerà la colonna della R, quindi si scenderà lungo la colonna fino alla riga corrispondente della corrispondente lettera del verme (qui C); la lettera trovata all'incrocio è la lettera cifrata (qui T); la seconda R invece sarà cifrata con la lettera trovata sulla riga della U di SCUOLA, e cioè con la L. 1. Usando la tavola di Vigenere riportata nella pagina seguente, prova a cifrare il seguente messaggio usando il tuo nome come parola chiave: Noi siamo gli alunni delle Scuole Medie 2. Verifica la correttezza del tuo messaggio cifrato usando l Applet sul sito 3. Hai intuito come, nota la parola chiave, puoi decifrare il messaggio? 4. Dopo i giochi sul Cifrario di Cesare e quello di Vigenere, puoi dire come si fa a traslare di 5 lettere la lettera X? E come si fa a traslare di 20 lettere la letterav? Quindi, se traslando la lettera di n posizioni arriviamo fino all ultima lettera Z e non abbiamo ancora conteggiato tutto n, dobbiamo. In sostanza: X ( = 23) + 5 = = 28, ma a che lettera corrisponde il numero 28? Come devo fare? Confronta la tabella dell alfabeto/numeri pag Introduzione alle aritmetiche finite!

4 Tavola di Vigenere:

5 Attività n. 4: Ecco a te la tabella dei primi 100 numeri naturali: applica correttamente il Crivello di Eratostene e trova tutti i numeri primi da 2 a 100! ed osserva l Applet opportuno sul Crivello di Eratostene..

Storia della Crittografia. dalle origini al XVI secolo

Storia della Crittografia. dalle origini al XVI secolo Storia della Crittografia dalle origini al XVI secolo Stefano Zingale Introduzione La crittografia (dal greco Kryptòs, che significa "nascosto" e gràphein che significa "scrittura") è la scienza che si

Dettagli

Università degli Studi di Milano

Università degli Studi di Milano Università degli Studi di Milano Corso di Laurea in Sicurezza dei Sistemi e delle Reti Informatiche FABIO SCOTTI I cifrari polialfabetici: Vigenère Laboratorio di programmazione per la sicurezza Indice

Dettagli

a b c d e f g h i l m n o p q r s t u v z

a b c d e f g h i l m n o p q r s t u v z Tavola n. 1A CIFRARIO DI CESARE 1) Prepara l alfabeto cifrante (in lettere maiuscole), spostando di 7 lettere aiutandoti con la griglia. Il numero 7 è la chiave cifrante. a b c d e f g h i l m n o p q

Dettagli

QUADRATO MAGICO DI ORDINE PARI (n=4)

QUADRATO MAGICO DI ORDINE PARI (n=4) QUADRATO MAGICO DI ORDINE PARI (n=4) Costruiamo un quadrato magico di ordine n=4 ovvero un quadrato formato da 4 righe + 4 colonne per un totale di 16 caselle (4x4=16). La Costante Magica CM=nx(n²+1)/2

Dettagli

CODICI. Crittografia e cifrari

CODICI. Crittografia e cifrari CODICI Crittografia e cifrari CRITTOGRAFIA - La crittografia è una scrittura convenzionale segreta, decifrabile solo da chi conosce il codice. - La parola crittografia deriva da 2 parole greche, ovvero

Dettagli

Il cifrario di Vigenère. Bizzoni Stefano De Persiis Angela Freddi Giordana

Il cifrario di Vigenère. Bizzoni Stefano De Persiis Angela Freddi Giordana Il cifrario di Vigenère Bizzoni Stefano De Persiis Angela Freddi Giordana Cifrari monoalfabetico e polialfabetico mono: cifrari a sostituzione o a trasposizione, associano ad ogni lettera dell alfabeto

Dettagli

c) ogni numero ha infiniti multipli

c) ogni numero ha infiniti multipli Multipli e divisori Def: Si dice MULTIPLO di un numero naturale ogni numero che si ottiene moltiplicando tale numero per qualsiasi numero naturale. Es: è un multiplo di perché. Osservazioni: Es: b) ogni

Dettagli

Elementi di Algebra e di Matematica Discreta Cenno di un applicazione alla crittografia

Elementi di Algebra e di Matematica Discreta Cenno di un applicazione alla crittografia Elementi di Algebra e di Matematica Discreta Cenno di un applicazione alla crittografia Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra e di Matematica Discreta

Dettagli

Breve storia della crittografa

Breve storia della crittografa Breve storia della crittografa Il problema di codificare o cifrare un messaggio è stato affrontato, generalmente per usi militari, attraverso tutta la storia della civiltà umana. Plutarco descrive la scitala

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

Esercizi

Esercizi Esercizi Si implementi una funzione che riceve in input una matrice NxM di float. Definito picco un numero circondato in tutte le posizioni intorno solo da numeri strettamente inferiori alla sua metà,

Dettagli

Laboratorio Crittografia e numeri primi

Laboratorio Crittografia e numeri primi Questo materiale è frutto della collaborazione di molte persone: Maria Rita Agostini, Paola Bulzomì, Andreina D Arpino, Marco Evangelista, Angela Fanti, Laura Lamberti, Anna Maria Mancini, Cristina Musumeci,

Dettagli

CALCOLO LETTERALE. Le espressioni letterali sono espressioni contenenti operazioni fra numeri e lettere:

CALCOLO LETTERALE. Le espressioni letterali sono espressioni contenenti operazioni fra numeri e lettere: CALCOLO LETTERALE Le espressioni letterali sono espressioni contenenti operazioni fra numeri e lettere: 5x. x + y ab + c, In generale le lettere rappresentano numeri generici. Ad esempio, se vogliamo convertire

Dettagli

DATTILORITMICA Introduzione dell apparecchio Esecuzione delle operazioni aritmetiche: Addizioni:

DATTILORITMICA Introduzione dell apparecchio Esecuzione delle operazioni aritmetiche: Addizioni: DATTILORITMICA Introduzione dell apparecchio Familiarizzare con l apparecchio Spiegare che un gruppo da 4 in realtà è un punto braille. Per i numeri servono soltanto i puntini 1,2,4 e 5 Scrivi i numeri

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: [email protected] 1 SOLUZIONI:

Dettagli

L'enigma dei numeri primi

L'enigma dei numeri primi L'enigma dei numeri primi Bardonecchia 16-18 Dicembre 2016 Introduzione I numeri primi: sono un concetto semplice; ruolo fondamentale nella vita di tutti i giorni; stanno lasciando una lunga scia di congetture.

Dettagli

CIFRARI MONOALFABETICI

CIFRARI MONOALFABETICI Il sistema crittografico utilizza un alfabeto per il testo in chiaro e una sua permutazione per il testo cifrato 1 Esempio Codici di Cesare 1 2 3 4 5 6 7 8 9 10 11 12.. 3 4 5 6 7 8 9 10 1112 13 14.. A

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli

Didattiche disciplinari integrate SSIS A.A. 2008/2009 Modulo di Matematica Docente L. Parenti

Didattiche disciplinari integrate SSIS A.A. 2008/2009 Modulo di Matematica Docente L. Parenti Didattiche disciplinari integrate SSIS A.A. 28/29 Modulo di Matematica Docente L. Parenti SSIS _ DDI Didattica della Matematica SCHEDE LAVORO La seguente rassegna di esempi deve essere analizzata nella

Dettagli

Elementi di crittografia

Elementi di crittografia Elementi di crittografia Francesca Merola a.a. 2010-11 informazioni orario: ma, (me), gio, 14-15.30, aula N1 ricevimento: su appuntamento ma, me, gio, 11.30-12.30 studio 300 dipartimento di matematica

Dettagli

Esercizi 2. Marco Anisetti

Esercizi 2. Marco Anisetti Esercizi 2 Marco Anisetti Verifica del funzionamento con RAPTOR Implementare in RAPTOR i seguenti programmi visti a lezione Moltiplicazione per somme (la versione più efficiente) Divisione per sottrazione

Dettagli

Elementi di Crittografia

Elementi di Crittografia Elementi di Crittografia Algoritmi Messaggio in chiaro messaggio crittografato M X =C k (M C ) Messaggio crittografato messaggio in chiaro M C =D k (M X ) Per la codifica/decodifica è necessario un parametro

Dettagli

2. Completa scrivendo il numeratore o il denominatore mancante in modo da avere frazioni tutte equivalenti.

2. Completa scrivendo il numeratore o il denominatore mancante in modo da avere frazioni tutte equivalenti. Esercizi per le vacanze estive classe 2^C Svolgere nell ordine tutti gli esercizi indicati su fogli a quadretti con buchi. Gli esercizi andranno consegnati all insegnante al rientro dalle vacanze e saranno

Dettagli

La segretezza nella Storia

La segretezza nella Storia La segretezza nella Storia Mondo virtuale L'attuale società che scambia una enorme quantità di informazioni ad una velocità sorprendente La necessità di rendere inaccessibili le informazioni è diventata

Dettagli

Kangourou della Matematica 2006 finale nazionale italiana Mirabilandia, 8 maggio 2006

Kangourou della Matematica 2006 finale nazionale italiana Mirabilandia, 8 maggio 2006 LIVELLO ÉCOLIER E1. (5 punti ) Qual è il multiplo di 11 più vicino a 1000? E2. (7 punti ) Le lettere della parola ELA sono tutte distinte fra loro. Fa corrispondere ad ogni lettera di questa parola una

Dettagli

Archimede UNDER 14 Dal ritagliare al dimostrare: i rettangoli isoperimetrici. La seguente proposta didattica mostra

Archimede UNDER 14 Dal ritagliare al dimostrare: i rettangoli isoperimetrici. La seguente proposta didattica mostra RUBRICA Dal ritagliare al dimostrare: i rettangoli isoperimetrici di Monica Testera La seguente proposta didattica mostra come, da attività semplici e manipolative quali il ritaglio di figure su cartoncini

Dettagli

CONCORSO ALLIEVI MARESCIALLI CARABINIERI 2018 TAVOLE SINOTTICHE RAGIONAMENTO NUMERICO. Anteprima

CONCORSO ALLIEVI MARESCIALLI CARABINIERI 2018 TAVOLE SINOTTICHE RAGIONAMENTO NUMERICO. Anteprima CONCORSO ALLIEVI MARESCIALLI CARABINIERI 2018 TAVOLE SINOTTICHE RAGIONAMENTO NUMERICO Anteprima Ragionamento numerico CONCORSO ALLIEVI MARESCIALLI CARABINIERI 2018 Introduzione Il presente file è solo

Dettagli

Lo sviluppo di un semplice programma e la dimostrazione della sua correttezza

Lo sviluppo di un semplice programma e la dimostrazione della sua correttezza Il principio di induzione Consideriamo inizialmente solo il principio di induzione per i numeri non-negativi, detti anche numeri naturali. Sia P una proprietà (espressa da una frase o una formula che contiene

Dettagli

ESERCIZI DI STATISTICA SOCIALE

ESERCIZI DI STATISTICA SOCIALE ESERCIZI DI STATISTICA SOCIALE FREQUENZA ASSOLUTA Data una distribuzione semplice di dati, ovvero una serie di microdati, si chiama frequenza assoluta di ogni modalità del carattere studiato il numero

Dettagli

CRITTOGRAFIA 2014/15 Appello del 13 gennaio Nome: Cognome: Matricola:

CRITTOGRAFIA 2014/15 Appello del 13 gennaio Nome: Cognome: Matricola: CRITTOGRAFIA 2014/15 Appello del 13 gennaio 2015 Esercizio 1 Crittografia ellittica [9 punti] 1. Descrivere l algoritmo di Koblitz per trasformare un messaggio m, codificato come numero intero, in un punto

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Campi finiti: Introduzione

Campi finiti: Introduzione I CAMPI FINITI Campi finiti: Introduzione Ci occupiamo ora di campi finiti Rivestono un ruolo importante nella moderna crittografia AES, curva ellittica, IDEA, chiave pulica Avremo a che fare con operazioni

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

numeratore linea di frazione denominatore

numeratore linea di frazione denominatore numeratore denominatore linea di frazione A cura di Paola Arlandini, Stefania Ferrari, Deanna Mantovani Scuola Media A.Volta Bomporto a.s. 00/0 Questo articolo è stato scaricato da www.glottonaute.it INDICE

Dettagli

Statistica Elementare

Statistica Elementare Statistica Elementare 1. Frequenza assoluta Per popolazione si intende l insieme degli elementi che sono oggetto di una indagine statistica, ovvero l insieme delle unità, dette unità statistiche o individui

Dettagli

BREVE RIEPILOGO SULLE FRAZIONI

BREVE RIEPILOGO SULLE FRAZIONI BREVE RIEPILOGO SULLE FRAZIONI ---> Numeratore = numero di parti uguali considerate Linea di frazione Denominatore = numero di parti uguali in cui è diviso l'intero la frazione si

Dettagli

Introduzione agli Algoritmi 4. Problemi. Dal Problema alla Soluzione

Introduzione agli Algoritmi 4. Problemi. Dal Problema alla Soluzione Sommario Problemi e soluzioni Definizione informale di algoritmo e esempi Proprietà degli algoritmi Input/Output, Variabili Algoritmi senza input o output 1 2 Problema Definizione (dal De Mauro Paravia):

Dettagli

SCHEDA DI LAVORO: CALCOLO LETTERALE

SCHEDA DI LAVORO: CALCOLO LETTERALE SCHEDA DI LAVORO: CALCOLO LETTERALE ALUNNO:...CLASSE... CALCOLO LETTERALE...PERCHE? GUARDATI INTORNO E DESCRIVI IL NUMERO DI CIO' CHE VEDI: 1 COMPUTER 1 LIM 23 SEDIE... IN PRATICA QUANDO PARLI DI NUMERI

Dettagli

Preparazione Olimpiadi della Matematica

Preparazione Olimpiadi della Matematica Preparazione Olimpiadi della Matematica Marco Vita Liceo Scientifico G. Galilei Ancona 18 novembre 2015 ( Liceo Scientifico G. Galilei Ancona) Preparazione Olimpiadi della Matematica 18 novembre 2015 1

Dettagli

La crittografia. La crittografia è un'arte antica, risale almeno ai Greci (Tucidide, scitala lacedemonica).

La crittografia. La crittografia è un'arte antica, risale almeno ai Greci (Tucidide, scitala lacedemonica). Problema State viaggiando in autostrada, e decidete di fermarvi in un autogrill. Chiudete la macchina con il telecomando che aziona la chiusura centralizzata a distanza, andate al bar, tornate. Aprite

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2014/15 Programmazione Assembly

Laboratorio di Architettura degli Elaboratori A.A. 2014/15 Programmazione Assembly Laboratorio di Architettura degli Elaboratori A.A. 2014/15 Programmazione Assembly Scrivere il codice ARM che implementi le specifiche richieste e quindi verificarne il comportamento usando il simulatore

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

In quanto segue ci interesseranno particolarmente le forme che si comportano come l esempio del quadrato A qui sopra. Le chiameremo forme di tipo A.

In quanto segue ci interesseranno particolarmente le forme che si comportano come l esempio del quadrato A qui sopra. Le chiameremo forme di tipo A. I MOSAICI E IL CONCETTO DI GRUPPO (triennio sc.sec II grado) Qui sotto avete una griglia, che rappresenta una normale quadrettatura, come quella dei quaderni a quadretti; nelle attività che seguono dovrete

Dettagli

CRITTOGRAFIA E NUMERI PRIMI TFA A059 ANNA NOBILI OTTAVIANO ROSI

CRITTOGRAFIA E NUMERI PRIMI TFA A059 ANNA NOBILI OTTAVIANO ROSI CRITTOGRAFIA E NUMERI PRIMI TFA A059 ANNA NOBILI OTTAVIANO ROSI Cenni Storici Nasce dall esigenza di avere metodi efficienti per comunicare in modo segreto e sicuro. La crittografia non mira a nascondere

Dettagli

I NUMERI INTERI RELATIVI

I NUMERI INTERI RELATIVI I NUMERI INTERI RELATIVI Alunn... 2M. 1. Completa: a. I numeri relativi risolvono l esigenza di poter eseguire sempre la... b. Si chiamano numeri relativi i numeri il cui valore è relativo al... che li

Dettagli

Crittografia per la sicurezza dei dati

Crittografia per la sicurezza dei dati Crittografia per la sicurezza dei dati Esigenza di sicurezza in rete significa: -garanzia di riservatezza dei dati in rete (e-mail) -garanzia di transazioni sicure (e-commerce, home banking) La crittografia

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Terza.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Terza. Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

Laboratorio Crittografia e numeri primi

Laboratorio Crittografia e numeri primi Questo materiale è frutto della collaborazione di molte persone: Maria Rita Agostini, Paola Bulzomì, Andreina D Arpino, Marco Evangelista, Angela Fanti, Laura Lamberti, Anna Maria Mancini, Cristina Musumeci,

Dettagli

IL TANGRAM. Il quadrato della saggezza. Il tangram e un' antica invenzione cinese e forse il più antico puzzle di carattere geometrico.

IL TANGRAM. Il quadrato della saggezza. Il tangram e un' antica invenzione cinese e forse il più antico puzzle di carattere geometrico. IL TANGRAM. Il quadrato della saggezza. Il tangram e un' antica invenzione cinese e forse il più antico puzzle di carattere geometrico. Consiste in un quadrato diviso in 7 parti, chiamati tan, come indicate

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

Mappe di Karnaugh G. MARSELLA UNIVERSITÀ DEL SALENTO

Mappe di Karnaugh G. MARSELLA UNIVERSITÀ DEL SALENTO Mappe di Karnaugh 1 G. MARSELLA UNIVERSITÀ DEL SALENTO Introduzione Le semplificazioni di una funzione logica possono essere effettuate mediante i teoremi dell'algebra di Boole. Esiste però un metodo molto

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

Lab 04 Programmazione Strutturata"

Lab 04 Programmazione Strutturata Fondamenti di Informatica e Laboratorio T-AB Ingegneria Elettronica e Telecomunicazioni Lab 04 Programmazione Strutturata" Lab04 1 Valutazione in cortocircuito (1)" In C, le espressioni booleane sono valutate

Dettagli

Giochi matematici: giochi logici

Giochi matematici: giochi logici Giochi matematici: giochi logici I gatti dell isola di Man, in Inghilterra, non hanno la coda. Nel paese di Douglas, capoluogo dell isola, ci sono gatti originari dell isola e gatti di turisti, che hanno

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

METODO DEI MINIMI QUADRATI

METODO DEI MINIMI QUADRATI METODO DEI MINIMI QUADRATI Torniamo al problema della crescita della radice di mais in funzione del contenuto di saccarosio nel terreno di coltura. Ripetendo varie volte l esperimento con diverse quantità

Dettagli

ESEMPIO. x = Rappresentazione in base 10 dei numeri reali.

ESEMPIO. x = Rappresentazione in base 10 dei numeri reali. Rappresentazione in base 10 dei numeri reali. Rivisitiamo alcune nozioni sulla rappresentazione in base 10 dei numeri reali. Come è noto ogni reale non nullo è la somma di una parte intera appartenente

Dettagli

Laboratorio di programmazione

Laboratorio di programmazione Laboratorio di programmazione 9 novembre 2016 Sequenze di Collatz Considerate la seguente regola: dato un numero intero positivo n, se n è pari lo si divide per 2, se è dispari lo si moltiplica per 3 e

Dettagli

CRITTOGRAFIA. Docente: Fornasiero Marianna. IT «V. Bachelet»-Ferrara

CRITTOGRAFIA. Docente: Fornasiero Marianna. IT «V. Bachelet»-Ferrara CRITTOGRAFIA Docente: Fornasiero Marianna IT «V. Bachelet»-Ferrara Crittografia vuol dire scrittura segreta. Cosa èla crittografia? Parola derivata dal greco, composta da kryptós (= nascosto) e graphía(=

Dettagli

Lettura Moto uniformemente accelerato

Lettura Moto uniformemente accelerato Moto uniformemente accelerato Le cose che devi già conoscere per svolgere l attività Le definizioni di velocità media e di accelerazione media e la legge oraria del moto uniformemente accelerato. Come

Dettagli