Calcolo combinatorio - Quesiti esame di stato
|
|
|
- Martino Jacopo Perini
- 6 anni fa
- Visualizzazioni
Transcript
1 Calcolo combinatorio - Quesiti esame di stato 1. Nello sviluppo di 2 a 2 3b 3 n compare il termine 1080 a 4 b 9. Qual è il valore di n? [Q3 2014] 2. Con le cifre da 1 a 7 è possibile formare 7!=5040 numeri corrispondenti alle permutazioni delle 7 cifre. Ad esempio i numeri e corrispondono a due di queste permutazioni. Se i 5040 numeri ottenuti dalle permutazioni si dispongono in ordine crescente, qual è il numero che occupa la settima posizione, quale quello che occupa la 5036-esima posizione e quale quello che occupa la 1441-esima posizione? [Q6 PNI 2013] 3. Quanti sono i numeri di 5 cifre con almeno una cifra dispari? Quanti quelli con almeno una cifra pari? [Q3 Com 2014] 4. Tommaso ha costruito un modello di tetraedro regolare e vuole colorare le 4 facce, ognuna con un colore diverso. In quanti modi può farlo se ha a disposizione 10 colori? E se invece si fosse trattato di un cubo? [Q8 sup 2013] 5. Dati nello spazio n punti P 1, P 2, P 3,, P n, quanti sono i segmenti che li congiungono a due a due? Quanti i triangoli che hanno per vertici questi punti (supposto che nessuna terna sia allineata)? Quanti i tetraedri (se nessuna quaterna è complanare)? [Q5 PNI 2012] 6. Un docente deve scegliere 4 studenti cui affidare un compito tra i 10 che ne hanno fatto richiesta. Quante scelte può fare? [Q1 Ame 2012] 7. Dato l insieme A = {1, 2, 5, 8}: determinare quanti numeri a due cifre si possono scrivere con gli elementi di A, considerando che sono ammesse le ripetizioni. [Q6 Ame 2012] 8. Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi? [Q1 Eur 2012] 9. Quanti sono i numeri di 6 cifre che contengono: 2 volte esatte la cifra 1, 2 volte esatte la cifra 2 e non contengono la cifra 0? [Q8 Eur 2012] 10.Il numero delle combinazioni di n oggetti a 4 a 4 è uguale al numero delle combinazioni degli stessi oggetti a 3 a 3. Si trovi n. [Q4 PNI 2011] 11.Si mostri che, nello sviluppo di a b n, il coefficiente del termine a k b n k è uguale a: n! k! n k!. [Q5 Com 2012] 12.Se n 3 e n 1 n n 2, n n 3, n sono in progressione aritmetica, qual è il valore di n? [Q8 PNI 2010] 13.In quanti modi 10 persone possono disporsi su dieci sedili allineati? E attorno ad un tavolo
2 circolare? [Q3 PNI str 2010] 14.Dimostra l identità k 1 n = k n n k k 1 con n e k naturali e n k. [Q7 PNI 2009] 15.Quanti sono i numeri di quattro cifre (distinte tra loro) che è possibile scrivere utilizzando le cifre pari, diverse da zero? [Q6 Ame 2009] 16.Se 1 n, n 2, n con n 3, sono in progressione aritmetica, qual è il valore di n? 3 [Q6 2008] 17.Quale significato attribuisci al simbolo k n? Esiste un k tale che 12 k k 3 = 12? [Q3 Ame 2008] 18.Quanti sono i numeri di quattro cifre (distinte tra loro) che è possibile scrivere utilizzando le cifre dispari? [Q5 Aus 2008] 19.Quanti sono i numeri di 5 cifre con almeno una cifra dispari? Quanti quelli con almeno una cifra pari? [Q3 Com 2014] 20.È possibile che nello sviluppo della potenza 2 a 2 3b 3 7 compaia il monomio ka 10 b 6? E il monomio k a 8 b 8? (k numero reale ). Nel caso affermativo si trovi il valore di k motivando esaurientemente la risposta. [Q3 Ame 2014] 21.Quanti colori si possono formare mediante le combinazioni dei sette colori fondamentali dello spettro? (contando, cioè, i colori presi separatamente, a 2 a 2, a 3 a 3,...,a 7 a 7). [Q8 Ame 2014] 22.Lo sviluppo della potenza x 3 y k 20 contiene il termine la cui parte letterale è: x 21 y 26. Si trovi il valore di k. [Q4 Eur 2014] 23.Si risolva l equazione: 4 n 4 =15 n 2 3. [Q8 2007] 3. [Q10 PNI sup 2007] 24.Si risolva la disequazione 5 x 3 x 2 25.Si risolva la disequazione x x 2 26.Si illustrino il significato e l ambito di utilizzo del simbolo m n. Si risolva l equazione: 2 x 2 =3 x 1 2. [Q10 sup 2007]. [Q4 Aus 2007] 27.Si dimostri che la somma dei coefficienti dello sviluppo di a b n è uguale a 2 n per ogni n N. (Quesito riproposto in varie occasioni) [Q5 PNI 2006] 28.Cinque ragazzi sono contrassegnati con i numeri da 1 a 5. Altrettante sedie, disposte attorno a un
3 tavolo, sono contrassegnate con gli stessi numeri. La sedia «1», posta a capotavola, è riservata al ragazzo «1», che è il caposquadra, mentre gli altri ragazzi si dispongono sulle sedie rimanenti in maniera del tutto casuale. Calcolare in quanti modi i ragazzi si possono mettere seduti attorno al tavolo. [Q10 sup 2006] 29.Quanti sono i numeri di tre cifre (distinte tra loro) che è possibile scrivere utilizzando le cifre pari, diverse da zero? [Q2 Aus sup 2006] 30.Come si definisce n! (n fattoriale) e quale ne è il significato nel calcolo combinatorio? Quale è il suo legame con i coefficienti binomiali? Perché? [Q7 PNI 2005] 31.Elenca i coefficienti che compaiono nello sviluppo del binomio a b 10 e giustifica in modo esauriente la risposta. [Q9 sup 2005] 32.Una classe è formata da 27 alunni: 15 femmine e 12 maschi. Quante sono le possibili delegazioni di 5 alunni, di cui 3 femmine e 2 maschi? [Q10 sup 2005] 33.Dimostrare la seguente formula: n k = n 1 k n 1 k 1, dove n, k sono numeri naturali tali che 0 k n. Essa spiega una delle regole sulle quali è basata la costruzione del «triangolo di Tartaglia» (da Niccolò Fontana, detto Tartaglia, 1505 ca ): enunciarla. (Quesito riproposto in varie occasioni) [Q9 str 2005] 34.Calcola quante sono le possibili «cinquine» che si possono estrarre da un urna contenente i numeri naturali da 1 a 90, ognuna delle quali comprenda i numeri 1, 2 e 3. [Q10 str 2005] 35.Dati gli insiemi A={1, 2, 3, 4} e B={a, b, c} quante sono le applicazioni (o funzioni) di A in B? [Q4 PNI 2004] 36.In una classe di 25 alunni bisogna estrarre a sorte una rappresentanza di 3 elementi. Calcolare quante sono le possibili terne di rappresentanti. [Q9 str 2004] 37.Alla finale dei 200 m piani partecipano 8 atleti, fra i quali figurano i nostri amici Antonio e Pietro. Calcolare il numero dei possibili ordini di arrivo che registrino i nostri due amici fra i primi tre classificati. [Q10 str 2004] 38.Un professore interroga i suoi alunni a due per volta. Stabilire quante possibili coppie diverse può interrogare, sapendo che la classe è di 20 studenti. [Q8 Ame 2004] 39.Quante partite di calcio della serie A vengono disputate complessivamente (andata e ritorno) nel campionato italiano a 18 squadre? [Q1 PNI 2003] 40.Si consideri una data estrazione in una determinata Ruota del Lotto. Calcolare quante sono le possibili cinquine che contengono i numeri 1 e 90. [Q9 2003] 41.Dimostrare la formula che esprime il numero delle combinazioni semplici di n oggetti presi a k a k in funzione del numero delle disposizioni semplici degli stessi oggetti presi a k a k e delle
4 permutazioni semplici su k oggetti. [Q6 PNI str 2002] 42.Considerati i 90 numeri del gioco del Lotto, calcolare quante sono le cinquine che, in una data estrazione, realizzano un determinato terno. [Q9 str 2002] 4. [Q3 Com 2015] 43.Risolvere l equazione: 5 n 1 5 =21 n 1 44.In una fabbrica lavorano 35 operai e 25 operaie. Si deve formare una delegazione comprendente 3 operai e 2 operaie. Quante sono le possibili delegazioni? [Q5 Bor 2005] 45.Una classe è formata da 30 alunni, fra i quali Aldo e il suo amico fidato Giacomo. Si deve formare una delegazione costituita da 4 studenti della classe. Calcolare quante sono le possibili quaterne comprendenti Aldo e Giacomo. [Q7 Eur 2004] 46.Calcola il numero naturale n per il quale risulta: n k=0 n = [Q3 sup 2001] k 47.Ricava la formula del numero di combinazioni semplici di n elementi a k a k. [Q5 Est 2001] 48.Considera la successione di termine generale a n = f n 3 n, dove: f n = n 0 n 1 n 2... n n. a. Dimostra che n =2 n. b. Determina il più piccolo valore di n per cui risulta a n c. Spiega perché, se n è dispari, risulta: f n =2[ 0 n 1 n n 2... n n 1 /2 ], fornendo la dimostrazione di ogni eventuale formula a cui si fa ricorso. Scrivi un'espressione equivalente di f n quando n è pari. [P3 sup 2000] 49.Si dimostri che k 1 n 1 = k 1 n k n. [P4 1976] 50.Per progettare un sito web è necessario generare dei codici unici di accesso. Si vogliono utilizzare, a tale scopo, due lettere maiuscole dell'alfabeto inglese seguite da una serie di cifre compresi tra 0 e 9. Tutti i codici di accesso dovranno avere lo stesso numero di cifre ed è ammessa la ripetizione di lettere e numeri. Qual è il numero minimo di cifre da impostare in modo da riuscire a generare almeno 5 milioni di codici di accesso diversi? Giustificare la risposta. [Q5 2^Sim 2015] 51.Si risolva l equazione 6[ x 2 x 3 ] =x x Spiega se è possibile che sia: n k = k 1 n 1 [Q str]. [Q8 PNI str 2014]
5 53.Qual è il numero delle cinquine che si possono ottenere completando l ambo {3,25}? [Q10 PNI str 2014]
Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo
Analisi Ing. Ivano Coccorullo Prof. Ivano Coccorullo ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli possibili. Quando le situazioni diventano
ESERCIZI SUL CALCOLO COMBINATORIO
ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUPPARE E CALCOLARE LE SEGUENTI ESPRESSIONI : numero esercizio risoluzione 1) D 3, ) P 4 3) P 6 3 4) 3,3 P 6 5) D ' 3, 6) C 4, 7) C n, n 8) D + D' C 4, 3, 3 3, 9)
RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO C = =10
RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUARE E CALCOLARE LE SEGUENTI ESRESSIONI : numero esercizio risoluzione 1) D 3, 2 3 2 6 2) 4 3) 6 3 4! 4 3 24 6! 6 5 4 3 120 3! 3 4) 3,3 6 6! 6 5 4 3
Elementi di Analisi Combinatoria
Elementi di Analisi Combinatoria Angelica Malaspina Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata, Italy [email protected] Lo studio dei vari raggruppamenti
Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti
Compito in classe 4D/17 Gennaio 006 1 Oggetto: compito in Classe 4D/PNI Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 10 minuti Argomenti: Calcolo combinatorio e calcolo delle probabilità.
0 Insiemi, funzioni, numeri
Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo
ESERCIZI DI CALCOLO COMBINATORIO
ESERCIZI DI CALCOLO COMBINATORIO (G.T.Bagni) Sintesi delle nozioni teoriche da utilizzare a) Dati n elementi e k n, si dicono disposizioni semplici di n elementi di classe k tutti i raggruppamenti ottenuti
Rispondere in modo conciso ai seguenti quesiti nelle apposite caselle. 1
Liceo Scientifico L. Cremona TEST DI MATEMATICA. Combinatoria. Classe: Docente: M. Saita Cognome: Nome: Maggio 2015 Rispondere in modo conciso ai seguenti quesiti nelle apposite caselle. 1 Esercizio 1.
Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4.
CALCOLO COMBINATORIO Ad una gara partecipano 20 concorrenti; quanti terne di primi tre classificati si possono formare? (nell'ipotesi che non vi siano degli ex aequo) [6.840] Nelle ipotesi del precedente
IL CALCOLO COMBINATORIO:
1 IL CALCOLO COMBINATORIO: l arte di contare Il calcolo combinatorio permette di stabilire, ad esempio, quanti sono gli anagrammi di una parola, in quanti modi si possono sedere dieci amici attorno a un
Combinatoria. Lezione del 12/02/2014. Stage di Parma Progetto Olimpiadi
Combinatoria Lezione del 12/02/2014 Stage di Parma Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di tartaglia
Test di Matematica di base
Test di Matematica di base Calcolo combinatorio e delle probabilitá Quanti oggetti possiamo differenziare con delle targhe di due simboli di cui il primo é una lettera dell alfabeto italiano e il secondo
CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica
) Un urna contiene 0 palline numerate da a 0. Si calcoli la probabilità che: a) estraendo successivamente palline, rimettendo ogni volta la pallina estratta nell urna, si abbiano due numeri primi; b) estraendo
«l arte di contare senza contare»
«l arte di contare senza contare» Numero di oggetti disponibili Numero di oggetti che costituiscono una sola estrazione Regole per costruire le estrazioni: se si possono utilizzare tutti gli oggetti o
Probabilità e Statistica
Corso PON Competenze per lo sviluppo Liceo Scientifico "Bonaventura Rescigno Ing. Ivano Coccorullo Prof.ssa Angela D Ambrosio Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici
Combinatoria. Lezione del 04/01/2010. Stage di Terni Progetto Olimpiadi
Combinatoria Lezione del 04/01/2010 Stage di Terni Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di tartaglia
In una scuola di ballo sono iscritte dodici donne e sette uomini. Quante sono le possibili coppie che si possono formare [84]
Abbiamo cinque palline nere numerate da 1 a 5 e tre palline bianche numerate da 1 a 3. Quante coppie di palline una 1 nera ed una bianca entrambe dispari possiamo formare? [6] 2 In una scuola di ballo
Esercizi Svolti Lezione 2
Esercizi Svolti Lezione 2 Università Mediterranea di Reggio Calabria Disposizioni D n,k (orinate, senza ripetizione) n 1 e 1 k n k¹ i1 n i 1 npn 1q pn k 1q n! pn kq! Le permutazioni sono un caso particolare
Calcolo delle Probabilità Soluzioni 2. Calcolo combinatorio
ISTITUZIONI DI STATISTICA A. A. 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli
Appunti di CALCOLO COMBINATORIO
Appunti di CALCOLO COMBINATORIO Giulia Fidanza Indice Premessa Le sequenze ordinate ed il Principio Generale. Sequenze ordinate................................. Il Principio Generale del Calcolo Combinatorio................
Calcolo combinatorio
Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Calcolo combinatorio Ines Campa Probabilità e Statistica - Esercitazioni
Elementi. di Calcolo Combinatorio. Paola Giacconi
Elementi di Calcolo Combinatorio di Paola Giacconi Premessa Con la Meccanica Quantistica Il concetto di probabilità è entrato a fare parte integrante della FISICA e quindi della nostra vita La visione
QUESITO 1. Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi?
www.matefilia.it Quesiti QUESITO Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi? Ad ogni elemento di A deve corrispondere uno ed un solo elemento di
Corso di preparazione ai Giochi di Archimede Calcolo combinatorio & Probabilità
Corso di preparazione ai Giochi di Archimede Calcolo combinatorio & Probabilità ) Quante quaterne (x, x2, x3, x4) di numeri interi non negativi soddisfano l equazione x+x2+x3+x4=7? a) 25 b) 289 c) 40 d)
Combinatoria. Lezione del 16/12/2009. Stage di Treviso Progetto Olimpiadi
Combinatoria Lezione del 16/12/2009 Stage di Treviso Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di
Calcolo combinatorio
Probabilità e Statistica a.a. 2016/2017 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Meccanica e dei Materiali, Ingegneria Gestionale, Ingegneria Informatica C.d.L.: Ingegneria Elettronica
Calcolo combinatorio
Calcolo combinatorio l calcolo combinatorio è il ramo della matematica che studia i modi per raggruppare e/o ordinare secondo date regole gli elementi di un insieme finito di oggetti. Fattoriale l prodotto
Elementi di Calcolo Combinatorio. Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n.
1 Elementi di Calcolo Combinatorio Def.: Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n. ( n 1)... 3 2 1 P n n In quanti modi diversi si possono disporre
Cenni di analisi combinatoria
Cenni di analisi combinatoria In molti problemi concreti di teoria della probabilità e, in particolare, nell ambito della interpretazione classica occorre calcolare quanti sono gli esiti che compongono
Risposte ai primi 14 quesiti PUNTEGGIO TOTALE. Istruzioni SQUADRA: SCUOLA: Valutazione esercizi da 1 a 14 A risposta esatta: x5
U.M.I. - I. T. C. G. Pitagora - Calvosa Castrovillari OLIMPIADI DI MATEMATICA 2012- DISTRETTO DI COSENZA Gara a squadre del 2 Febbrio 2012 Istruzioni 1) La prova consiste di 17 problemi divisi in 3 gruppi.
PROBABILITÀ. a) 0,04 b) 0,8 c) 0,25 d) 0,64 e) 0,96
QUESITI 1 PROBABILITÀ 1. (Da Medicina e Odontoiatria 2015) La probabilità con cui un paziente deve attendere meno di dieci minuti il proprio turno in un ambulatorio medico è 0,8. Qual è la probabilità
Calcolo combinatorio
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
COMBINATORIA E PROBABILITA
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO COMBINATORIA E PROBABILITA CALCOLO COMBINATORIO Il Calcolo Combinatorio è lo studio dei
Quesito 1 Si calcoli. 3 2 2 4 3 3 = 3 2 4 3 = 2 ln3 = 8 81 2,3. 1 = 2 3 2 3 = 2 3 1+1 2 1 = = =ln81. Soluzione 1
ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 0 PIANO NAZIONALE INFORMATICA Questionario Quesito Si calcoli 3 3 è 0 0 Applicando De L Hospital si ha: -,3 3 3 4 3 3 = infatti: 0 = 3 4 3 3 = 3 4
Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico.
Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Funzione esponenziale e logaritmica. a) Riepilogo delle proprietà delle potenze.
Quesito 1. Cosa rappresenta il limite seguente e qual è il suo valore? = = 5. Soluzione Il limite :
ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2012 CORSO DI ORDINAMENTO Questionario Quesito 1 Cosa rappresenta il limite seguente e qual è il suo valore? Il limite : 1 5 2 +h 5 1 2 = 1 h 2 1
ORDINAMENTO 2005 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 5 SESSIONE STRAORDINARIA - QUESITI QUESITO Si considerino un tronco di piramide quadrangolare regolare, la cui base maggiore abbia area quadrupla della minore, e un piano a
ANNO SCOLASTICO 2015/2016
ANNO SCOLASTICO 2015/2016 SCUOLA SECONDARIA DI PRIMO GRADO U. FOSCOLO RELAZIONE DI MATEMATICA IL TRIANGOLO DI TARTAGLIA ALUNNO: NICOLÒ BAGNASCO CLASSE: 3 B PROFESSORE: DANIELE BALDISSIN CENNI STORICI Tartaglia
PNI 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2
www.matefilia.it PNI 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovano ai lati opposti di un grattacielo, a livello del suolo. La cima dell edificio dista 1600 metri dal primo
INDICAZIONI PER IL RECUPERO
INDICAZIONI PER IL RECUPERO Equazioni e disequazioni irrazionali e in modulo Argomenti da ripassare da pag. 49 a pag. 57 da pag. 67 a pag. 76 per le equazioni si veda anche il testo del 2 anno Goniometria
DISTRIBUZIONI DI OGGETTI DISTINTI
DISTRIBUZIONI Pagina 1 DISTRIBUZIONI DI OGGETTI DISTINTI 12:09 r oggetti distinti, n scatole distinte # distribuzioni di r oggetti distinti in n scatole distinte # stringhe di lunghezza r i cui elementi
combiniamo le lettere, ciascuna presa una sola volta per formare parole di n lettere;
CALCOLO COMBINATORIO Il calcolo combinatorio si occupa di contare i raggruppamenti che si possono fare con n oggetti di un insieme finito, secondo determinate regole. Vediamo di seguito come, a seconda
Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1
Liceo Scientifico di ordinamento anno 00-00 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno 00-00 PROBLEMA Punto a Indicati rispettivamente con V ed S il volume e l area totale di T e con
Preparazione all esame in italiano del ALGEBRA -
TEST PSICOMETRICO Preparazione all esame in italiano del 2014 - - Febbraio Marzo 2014 Docente: Giacomo Sassun E-mail: [email protected] [email protected] Realizzato grazie al contributo dell UNIONE DELLE
In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno.
Definizione Oggetto del calcolo combinatorio è quello di determinare il numero dei modi mediante i quali possono essere associati, secondo prefissate regole, gli elementi di uno stesso insieme o di più
Abbiamo visto come si possa determinare il numero di possibili anagrammi di una parola, con lettere tutte distinte o con alcune lettere ripetute.
MODELLI (Approfondimenti) Approfondiamo i 3 modelli più frequentemente utilizzati nell'analisi Combinatoria e nel Calcolo delle Probabilità, precisamente il modello ANAGRAMMA, il modello ESTRAZIONE e il
Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile pag. 15
Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile 2012- pag. 15 Casi Possibili B= La lancetta indica il Blu V= La lancetta indica il Verde
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 2005 - SESSIONE SUPPLETIVA QUESITO 1 È dato un trapezio rettangolo, in cui le bisettrici degli angoli adiacenti al lato obliquo si intersecano in un punto del lato perpendicolare
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità
Modulo 9: Combinatoria III
Modulo 9: Combinatoria III Ambo secco su una ruota Un ambo secco si realizza quando si giocano due numeri su una ruota e vengono estratti esattamente quei due numeri su quella ruota. 2 / Bet on Math: un
Calcolo combinatorio
Probabilità e Statistica a.a. 2017/2018 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Calcolo combinatorio Marco Pietro Longhi Probabilità e Statistica - a.a. 2017/2018
CALCOLO CALCOL COMBINATORIO COMBINAT
CALCOLO COMBINATORIO INDICE Che cos è il calcolo combinatorio? Concetto di raggruppamenti semplici e di raggruppamenti con ripetizione Disposizioni Combinazioni Permutazioni PROBLEMI 1. In quanti modi
PROBABILITÁ e CALCOLO COMBINATORIO
PROBABILITÁ e CALCOLO COMBINATORIO Prof. Enrico Terrone A. S: 2008/09 Probabilità e calcolo combinatorio Abbiamo visto la definizione classica di probabilità: probabilità dell evento = (casi favorevoli)
CALCOLO COMBINATORIO
CALCOLO COMBINATORIO CHE COS E? Il calcolo combinatorio è un particolare ramo della matematica applicata avente come scopo la misurazione del numero di raggruppamenti diversi che si possono comporre prendendo
Kangourou Italia Gara del 17 marzo 2005 Categoria Junior Per studenti di seconda o terza superiore
junior_05_d.qxp 21/02/2005 16.13 Pagina 22 Kangourou Italia Gara del 17 marzo 2005 Categoria Per studenti di seconda o terza superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. A Kangourou
Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni
Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 2 ARGOMENTO: Calcolo combinatorio (LEZIONE N 2) ATTIVITA' N 1: In quanti
LINGUAGGIO MATEMATICO DI BASE, MODELLIZZAZIONE E RAGIONAMENTO
LINGUAGGIO MATEMATIO I ASE, MOELLIZZAZIONE E RAGIONAMENTO. Per tutti i valori di p e q diversi da zero, l espressione è equivalente a p q (q + 2p) A p + 2 q [*] p + 2 q p + 2p q q p + 2 q Argomenti:. Algebra
IL CALCOLO COMBKNATORIO
IL CALCOLO COMBKNATORIO Nella vita quotidiana può capitare dì dover rispondere a domande come quelle qui riportate. - Quante parole diverse dì 4 lettere si possono formare avendo a disposizione 10 lettere?
INTRODUZIONE 13. INDICAZIONI PER I PARTECIPANTI AI CORSI ALPHA TEST 21 Informazioni e modalità di iscrizione ai corsi Alpha Test...
INDICE INTRODUZIONE 13 SUGGERIMENTI PER AFFRONTARE LA PROVA A TEST 15 Bando di concorso e informazioni sulla selezione... 15 Regolamento e istruzioni per lo svolgimento della prova... 15 Domande a risposta
Kangourou Italia Gara del 21 marzo 2019 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado
Kangourou Italia Gara del 21 marzo 2019 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Il popolo dei Maya
LINGUAGGIO MATEMATICO DI BASE, MODELLIZZAZIONE E RAGIONAMENTO
LINGUGGIO MTEMTIO I SE, MOELLIZZZIONE E RGIONMENTO. Per tutti i valori di p e q diversi da zero, l espressione è equivalente a p q (q + 2p) p + 2 q p + 2 q p + 2p q q p + 2 q 2. L indice di massa corporea
1 Le espressioni algebriche letterali
1 Le espressioni algebriche letterali DEFINIZIONE. Chiamiamo espressione algebrica letterale un insieme di numeri, rappresentati anche da lettere, legati uno all altro da segni di operazione. ESEMPI 2a
LINGUAGGIO MATEMATICO DI BASE, MODELLIZZAZIONE E RAGIONAMENTO
LINGUGGIO MTEMTIO I SE, MOELLIZZZIONE E RGIONMENTO. Per tutti i valori di p e q diversi da zero, l espressione è equivalente a p q (q + 2p) p + 2 q [*] p + 2 q p + 2p q q p + 2 q rgomenti:. lgebra Parole
