Elementi. di Calcolo Combinatorio. Paola Giacconi
|
|
|
- Sara Costa
- 9 anni fa
- Visualizzazioni
Transcript
1 Elementi di Calcolo Combinatorio di Paola Giacconi
2 Premessa Con la Meccanica Quantistica Il concetto di probabilità è entrato a fare parte integrante della FISICA e quindi della nostra vita La visione deterministica dell'universo è svanita per sempre! Si può solo prevedere la probabilità con la quale un determinato evento si verificherà Il Calcolo Combinatorio è propedeutico al concetto di probabilità
3 Calcolo Combinatorio I numeri con il punto esclamativo Definizione di fattoriale di un numero naturale N!=N(N-1)(N-2)(N-3)...1 0!=1 1!=1
4 Coefficiente Binomiale a b 2 =a 2 b 2 2 a b a b 3 =a 3 b 3 3 a 2 b 3 a b 2... a b n = k=0 n n k a n k b k n = k n! n k! k!
5 Permutazioni Semplici Permutazioni con Ripetizioni Quanti sono gli anagrammi, non importa se abbiano o meno significato, della parola MATEMATICA o della parola FISICA? Quanti numeri di 4 cifre posso scrivere usando le cifre supponendo che essi abbiano tutte le 4 cifre differenti? Oppure quanti numeri di 5 cifre supponendo che contengano 2 volte 1? Supponendo che contengano 2 volte 3? In quanti modi si possono disporre 3 persone su 3 sedie numerate?
6 Permutazioni Semplici Pk 3 persone su 3 poltrone numerate Ci sono 3! = 6 possibilità
7 Permutazioni Semplici 5 amici in pizzeria discutono sulla disposizione dei posti con cui debbono sedersi attorno al tavolo, alla fine si accordano: ogni sera cambieranno posto!! Quante sere sono necessarie per esaurire tutte le possibilità? Permutazioni Semplici: P5 = 5!= 120 Dopo circa 4 mesi hanno esaurito tutte le possibilità!!
8 Permutazioni con Ripetizioni Pk;k k;k1, 1,.. E se tra i 5 amici ci fossero 2 gemelli monozigoti assolutamente indistingubili quanto tempo ci vorrebbe? Permutazioni con Ripetizioni: P5;2 = 5!/2!=60 Anagrammi della parola FISICA Permutazioni con ripetizione: 6!/2!=360 Anagrammi della parola MATEMATICA Permutazioni con ripetizione: P10;2,2,3 =10!/(2!3!2!)=151200
9 Definizioni Permutazioni Semplici di un insieme finito di n elementi sono tutti i possibili raggruppamenti che si possono costruire con gli n elementi considerando distinti i raggruppamenti formati da elementi disposti in ordine diverso Permutazioni con Ripezione Permutazioni con Ripezione di un insieme finito di n elementi di cui k1, k2,... uguali sono tutti i possibili raggruppamenti che si possono costruire con gli n elementi considerando distinti i raggruppamenti formati da elementi disposti in ordine diverso diviso il numero delle permutazioni degli elementi uguali.
10 Disposizioni Semplici Dn,k n>k 1elemento 2elemento... k-1 elemento n Scelte possibili n-1 Scelte possibili n-(k-2) Scelte possibili K elemento n-(k-1) Scelte possibili Le Disposizioni Semplici indicano il numero di modi nel quale si possono raggruppare n oggetti presi k a k rispettando l'ordine
11 Disposizioni Semplici Dn,k n>k In quanti modi diversi possono essere disposti su di una libreria 7 libri presi da un gruppo di 20 libri differenti? In una corsa partono 10 cavalli, quanti sono i possibili ordini di arrivo nelle prime tre postazioni? In un torneo con 16 squadre quante partite andata e ritorno si debbono disputare?
12 Disposizioni Semplici Dn,k Sappiamo che le partite di campionato sono 16x15, si giocano 240 partite. Come si procede per ottenere questo dato? Consideriamo un torneo a 5 squadre le possibili coppie sono: (1,2) (1,3) (1,4) (1,5) (2,1) (2,3) (2,4) (2,5) (3,1) (3,2) (3,4) (3,5) (4,1) (4,2) (4,3) (4,5) (5,1) (5,2) (5,3) (5,4) Cioè D5,2= 5x4 = 5 (5-2+1)= 5! / (5-2)! =5! / 3! Dn,k = n(n-1)...(n-k+1) = n! / (n-k)!
13 Disposizioni Semplici Dn,k...I libri della libreria si possono disporre in D20,7 = 20(20-1)...(20-7+1) = 20!/ (20-7)!= 20!/13!= nelle corsa dei cavalli I possibili ordini sono D10,3 = 10x9x8 = 720 Nelle Disposizioni Semplici di n < k elementi presi k a k è importante l'ordine Se n=k allora = Dn,n Pn
14 Disposizioni con Ripetizione D' D'n,k n e k qualsiasi 1elemento 2elemento... k-1 elemento K elemento n Scelte possibili n Scelte possibili n Scelte possibili n Scelte possibili
15 Disposizioni con Ripetizione D' D'n,k D ' n, k =n k Le D'n,k indica il numero di modi nel quale si possono raggruppare n oggetti presi k a k rispettando l'ordine MA ogni elemento può essere ripetuto nel gruppo k volte Quante colonne si debbono giocare al totocalcio per essere sicuri di fare 13? D ' 3,13 =3 13
16 Combinazioni Semplici Cn,k Nelle Composizioni Semplici di n elementi presi k a k NON conta l'ordine Cn,k Quindi = D / K! n,k Dn,k C n, k = n = k n! n k! k!
17 Combinazioni Semplici Cn,k In quanti modi possibili si possono estrarre 5 numeri al Lotto? C90,5 In una classe di 22 persone si debbono eleggere 2 rappresentanti in quanti modi diversi si può fare la scelta? C22,2 Nel gioco del poker ogni giocatore riceve 5 carte da un mazzo di 32. In quanti modi diversi si possono ricevere le carte? C32,5
18 Combinazion con Ripetizioni C'n,k n e k qualsiasi Le combinazioni di n oggetti di classe k sono i raggruppamenti che si possono formare con gli n elementi di un insieme Ogni gruppo ne contiene k, k gli elementi nel gruppo possono essere ripetuti Due gruppi differiscono tra loro per almeno un elemento C ' n, k = n k 1 = n k 1! k n k! k!
CALCOLO COMBINATORIO
CALCOLO COMBINATORIO CHE COS E? Il calcolo combinatorio è un particolare ramo della matematica applicata avente come scopo la misurazione del numero di raggruppamenti diversi che si possono comporre prendendo
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli
Combinatoria. Lezione del 04/01/2010. Stage di Terni Progetto Olimpiadi
Combinatoria Lezione del 04/01/2010 Stage di Terni Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di tartaglia
Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo
Analisi Ing. Ivano Coccorullo Prof. Ivano Coccorullo ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli possibili. Quando le situazioni diventano
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli
ESERCIZI DI CALCOLO COMBINATORIO
ESERCIZI DI CALCOLO COMBINATORIO (G.T.Bagni) Sintesi delle nozioni teoriche da utilizzare a) Dati n elementi e k n, si dicono disposizioni semplici di n elementi di classe k tutti i raggruppamenti ottenuti
Calcolo combinatorio
Calcolo combinatorio l calcolo combinatorio è il ramo della matematica che studia i modi per raggruppare e/o ordinare secondo date regole gli elementi di un insieme finito di oggetti. Fattoriale l prodotto
Combinatoria. Lezione del 16/12/2009. Stage di Treviso Progetto Olimpiadi
Combinatoria Lezione del 16/12/2009 Stage di Treviso Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di
Test di Matematica di base
Test di Matematica di base Calcolo combinatorio e delle probabilitá Quanti oggetti possiamo differenziare con delle targhe di due simboli di cui il primo é una lettera dell alfabeto italiano e il secondo
ESERCIZI SUL CALCOLO COMBINATORIO
ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUPPARE E CALCOLARE LE SEGUENTI ESPRESSIONI : numero esercizio risoluzione 1) D 3, ) P 4 3) P 6 3 4) 3,3 P 6 5) D ' 3, 6) C 4, 7) C n, n 8) D + D' C 4, 3, 3 3, 9)
Elementi di Calcolo Combinatorio. Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n.
1 Elementi di Calcolo Combinatorio Def.: Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n. ( n 1)... 3 2 1 P n n In quanti modi diversi si possono disporre
Calcolo combinatorio
Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Calcolo combinatorio Ines Campa Probabilità e Statistica - Esercitazioni
IL CALCOLO COMBINATORIO:
1 IL CALCOLO COMBINATORIO: l arte di contare Il calcolo combinatorio permette di stabilire, ad esempio, quanti sono gli anagrammi di una parola, in quanti modi si possono sedere dieci amici attorno a un
Elementi di Analisi Combinatoria
Elementi di Analisi Combinatoria Angelica Malaspina Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata, Italy [email protected] Lo studio dei vari raggruppamenti
COMBINATORIA E PROBABILITA
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO COMBINATORIA E PROBABILITA CALCOLO COMBINATORIO Il Calcolo Combinatorio è lo studio dei
RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO C = =10
RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUARE E CALCOLARE LE SEGUENTI ESRESSIONI : numero esercizio risoluzione 1) D 3, 2 3 2 6 2) 4 3) 6 3 4! 4 3 24 6! 6 5 4 3 120 3! 3 4) 3,3 6 6! 6 5 4 3
ESERCITAZIONI CALCOLO COMBINATORIO
ESERCITAZIONI CALCOLO COMBINATORIO Esercizio 1 (C) La Quinella all ippodromo del luogo consiste nell indicare i cavalli che si classificheranno primo e secondo in una corsa senza riguardo all ordine. Se
Cenni di analisi combinatoria
Cenni di analisi combinatoria In molti problemi concreti di teoria della probabilità e, in particolare, nell ambito della interpretazione classica occorre calcolare quanti sono gli esiti che compongono
Calcolo combinatorio
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
Introduzione. 1.Palline e Scatole Distinguibili
Introduzione L argomento è semplice, quasi infantile: abbiamo a disposizione un certo numero di palline da disporre in un insieme di scatole e ci chiediamo quanti modi ci sono per farlo. Affronteremo il
Calcolo delle Probabilità Soluzioni 2. Calcolo combinatorio
ISTITUZIONI DI STATISTICA A. A. 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona
PROBABILITÁ e CALCOLO COMBINATORIO
PROBABILITÁ e CALCOLO COMBINATORIO Prof. Enrico Terrone A. S: 2008/09 Probabilità e calcolo combinatorio Abbiamo visto la definizione classica di probabilità: probabilità dell evento = (casi favorevoli)
CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica
) Un urna contiene 0 palline numerate da a 0. Si calcoli la probabilità che: a) estraendo successivamente palline, rimettendo ogni volta la pallina estratta nell urna, si abbiano due numeri primi; b) estraendo
Quanti sono...? Introduzione al Calcolo Combinatorio
Prof.ssa Garagnani Elisa ISIS Archimede Quanti sono...? Introduzione al Calcolo Combinatorio Per cominciare... aiutati con un grafo ad albero Noti 3 vincitori, in quanti modi diversi possono salire sul
Il calcolo combinatorio
Il calcolo combinatorio Per "calcolo combinatorio" (C.C.) si intende una branca della matematica che studia i modi di raggruppare ed ordinare oggetti presi da un insieme assegnato, con l'obiettivo finale
In una scuola di ballo sono iscritte dodici donne e sette uomini. Quante sono le possibili coppie che si possono formare [84]
Abbiamo cinque palline nere numerate da 1 a 5 e tre palline bianche numerate da 1 a 3. Quante coppie di palline una 1 nera ed una bianca entrambe dispari possiamo formare? [6] 2 In una scuola di ballo
Calcolo Combinatorio e Probabilità
Calcolo Combinatorio e Probabilità Andrea Galasso 1 Calcolo Combinatorio Definizione 1 Fissati n, k N, con k n, indicheremo con D n,k := n! (n k)! le disposizioni di n oggetti in k posti e con DR n,k :=
Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)
Calcolo delle probabilità e calcolo combinatorio (di aolo Urbani maggio 0) efinizioni rova casuale: prova il cui esito è legato al caso. Evento casuale: evento che può verificarsi o meno a seconda del
0.1 Esercizi calcolo combinatorio
0.1 Esercizi calcolo combinatorio Esercizio 1. Sia T l insieme dei primi 100 numeri naturali. Calcolare: 1. Il numero di sottoinsiemi A di T che contengono esattamente 8 pari.. Il numero di coppie (A,
.. x n k. n 1 x n 2. La differenza fra i due casi precedenti sta nella possibilità di ripetere oppure no una stessa scelta.
Calcolo combinatorio Problema Quante parole di 3 lettere si possono scrivere utilizzando solo le 4 lettere a, b, c, d? Soluzione: scriviamole tutte e poi le contiamo Esercizio 2 Quante sono le parole di
In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno.
Definizione Oggetto del calcolo combinatorio è quello di determinare il numero dei modi mediante i quali possono essere associati, secondo prefissate regole, gli elementi di uno stesso insieme o di più
combiniamo le lettere, ciascuna presa una sola volta per formare parole di n lettere;
CALCOLO COMBINATORIO Il calcolo combinatorio si occupa di contare i raggruppamenti che si possono fare con n oggetti di un insieme finito, secondo determinate regole. Vediamo di seguito come, a seconda
Esercizi di Calcolo combinatorio: disposizioni
Calcolo combinatorio: disposizioni La Big Triple all ippodromo del luogo consiste nell indicare il corretto ordine di arrivo dei cavalli classificati tra i primi tre nella nona corsa. Se ci sono 12 cavalli
Esercizi di Probabilità - Matematica Applicata a. a Doriano Benedetti
Esercizi di Probabilità - Matematica Applicata a. a. 01-014 Doriano Benedetti 6 marzo 014 1 Esercizio 1 In quanti modi diversi si può vestire una persona che possiede 10 abiti, paia di scarpe e cappelli?
Raggruppamenti. Esercizio 1
Raggruppamenti Nelle prossime lezioni ci occuperemo delle basi del calcolo combinatorio. Per semplicità partiremo da un esercizio e poi analizzeremo il caso generale con la definizione e la formula da
Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4.
CALCOLO COMBINATORIO Ad una gara partecipano 20 concorrenti; quanti terne di primi tre classificati si possono formare? (nell'ipotesi che non vi siano degli ex aequo) [6.840] Nelle ipotesi del precedente
Corso di probabilità e statistica
Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof.ssa L.Morato) Esercizi Parte I: probabilità classica e probabilità combinatoria,
LEZIONE 5: CALCOLO COMBINATORIO
LEZIONE 5: CALCOLO COMBINATORIO e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 31 Ottobre 2012 Cos è il calcolo combinatorio?
Corso di preparazione ai Giochi di Archimede Calcolo combinatorio & Probabilità
Corso di preparazione ai Giochi di Archimede Calcolo combinatorio & Probabilità ) Quante quaterne (x, x2, x3, x4) di numeri interi non negativi soddisfano l equazione x+x2+x3+x4=7? a) 25 b) 289 c) 40 d)
Il Calcolo combinatorio.
Il Calcolo combinatorio. 1) Disporre persone. a) Andrea e Bea frequentano la stessa classe e sono vicini di banco. Sapendo che i banchi sono posizionati due a due, in quali e quanti modi possono disporsi?....
Matematica con elementi di statistica ESERCIZI: probabilità
Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.
9 = Soluzione. Soluzione
Esercizio 1 Un'urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare la probabilità di avere a) una pallina bianca; b) una pallina nera; e) una pallina non bianca; d) una pallina
APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15
APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15 Elementi di calcolo combinatorio. Primi elementi di probabilita: denizioni
Cenni sul calcolo combinatorio
Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un
IL CALCOLO COMBINATORIO
IL CALCOLO COMBINATORIO A cosa serve???? Wiki says: Il calcolo combinatorio studia i modi per raggruppare e/o ordinare secondo date regole gli elementi di un insieme finito di oggetti. In altre parole.
La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio
La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio Massimo Buzzi, Lucio Alberto Monti 1 Mappe Riassuntive 1.1 Calcolo combinatorio 1.2 Probabilità 1 2 Glossario
Domande di teoria. Esercizi
1 Domande di teoria 1. Vedi pp. 131-132 2. Vedi pp. 132-134 3. Vedi p. 134 4. Vedi p. 135 5. Vedi pp. 136-142 6. Vedi pp. 138-139 7. Vedi pp. 141-142 8. Vedi pp. 143-146 9. Vedi pp. 146-148 Esercizi Esercizio
Binomio di Newton. Pertanto, il numero di sottoinsiemi di S, compreso il sottoinsieme vuoto ; elostessos, è dato da. = 2 n, r. (a + b) n = a r b n r,
Binomio di Newton Osserviamo che, volendo costruire un generico sottoinsieme I S, si deve eseguire una procedura di n passi, con alternative in ogni passo. Infatti, occorre decidere per ciascuno degli
P (A) = P (B) = P (A ^ B) = P (A _ B) = P (A _ A c B)= P ([A _ B] ^ [A c _ B c ]) =
Esercizio 7 2 Un esperimento consiste nel lanciare una moneta e nell estrarre una pallina da un urna contenente 4 palline numerate da 1 a 4. Consideriamo gli eventi: A = Esce Testa, B = Si estrae la pallina
(5 sin x + 4 cos x)dx [9]
FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN SCIENZE NATURALI II Modulo di Matematica con elementi di statistica. Esercitazioni A.A. 009.00. Tutor: Mauro Soro, [email protected] Integrali definiti Risolvere
CALCOLO COMBINATORIO. Psicometria 1 - Lezione 5 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek
CALCOLO COMBINATORIO Psicometria 1 - Lezione 5 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek 1 Il problema del calcolo combinatorio è stabilire in quanti modi diversi una sequenza di eventi
p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4
CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,
Giochi matematici. Olimpiadi della matematica * Giochi di Archimede 23/11/2016
Giochi matematici Istituto Poliziano a.s. 2016/2017 Olimpiadi della matematica * Giochi di Archimede 23/11/2016 2h mattina Biennio - Triennio * Classi prime 02/02/2017 * Fase distrettuale 21/02/17 * Gara
PREREQUISITI MATEMATICI TEORICI DI BASE PER LA PSICOMETRIA
PREREQUISITI MATEMATICI TEORICI DI BASE PER LA PSICOMETRIA INTRODUZIONE ALLO STUDIO Nell ambito di un progetto di ricerca dell Università di Cagliari riguardante i prerequisiti teorici matematici di base
STATISTICA ESERCITAZIONE 9
STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione
VINCERE AL SUPERENALOTTO
VINCERE AL SUPERENALOTTO Il sogno di tutti gli italiani è vincere al Superenalotto. Ma quale è l effettiva possibilità di realizzare una vincita a quel gioco? Il discorso è abbastanza semplice (si fa per
Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo
Statistica 2 Esercitazioni Dott. L 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: [email protected]
Statistica ARGOMENTI. Calcolo combinatorio
Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità
Esempio II.1.2. Esempio II.1.3. Esercizi
Calcolo combinatorio Il calcolo combinatorio consiste nello sviluppo di nozioni e tecniche per contare i possibili ordinamenti di un insieme e le possibili scelte di sottoinsiemi di un insieme Ha numerosi
Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica.
Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Probabilità Ines Campa Probabilità e Statistica - Esercitazioni -
Laboratorio di Giochi Matematici
UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI MATEMATICA ʺF. ENRIQUESʺ Progetto Lauree Scientifiche Laboratorio di Giochi Matematici (responsabile Prof. Stefania De Stefano) Incontro presso il Liceo
Indice. 1 Calcolo combinatorio 1
Indice 1 Calcolo combinatorio 1 2 1 Calcolo combinatorio Esercizio 1 In un mazzo da 52 carte (4 semi, 13 ranghi) in quanti modi si possono pescare in blocco 3 carte a) dello stesso seme? b) dello stesso
Dagli insiemi al calcolo combinatorio
Dagli insiemi al calcolo combinatorio Il calcolo combinatorio è una parte della matematica che si occupa di contare gli elementi di un insieme finito, ottenuto a partire da altri insiemi, dei quali si
IL CALCOLO DELLA PROBABILITÀ
IL LOLO LL PROILITÀ 1 Una scatola contiene quattro dischetti rossi numerati da 1 a 4, sei dischetti verdi numerati da 1 a e cinque dischetti bianchi numerati da 1 a 5. Si estrae un dischetto. Scrivi gli
NOTE DI CALCOLO COMBINATORIO
NOTE DI CALCOLO COMBINATORIO VINCENZO C. NARDOZZA 1. Richiami Ricordiamo molto brevemente gli strumenti di calcolo combinatorio esaminati durante le lezioni e i risultati ottenuti. Se X n, il suo insieme
Cenni di calcolo combinatorio
Cenni di calcolo combinatorio 1 Introduzione Calcolare quanti sono i diversi modi di ordinare un insieme di oggetti è un problema interessante. Quante sigle diverse si possono fare con le tre lettere RST?
Calcolo combinatorio
Calcolo combinatorio (da un file della Prof.ssa Marchisio, con alcune modifiche e integrazioni) Calcolo combinatorio branca della matematica che studia i modi per raggruppare e/o ordinare, secondo date
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA IV -VE
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA IV -VE Scheda : Funzioni circolari, Equazioni e disequazioni goniometriche Risolvi la seguente equazione: sin + 4 sin cos + 5 = 0
ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina?
ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? [4/52] 2. Estratta una Q, P che ad una seconda estrazione si presenti ancora
Derangement. Laboratorio di combinatorica. Marta Lucchini, II anno
Derangement Laboratorio di combinatorica Marta Lucchini, II anno Anno accademico 2008-2009 Introduzione Un derangement (o dismutazione) è una permutazione che non fissa alcun punto: se è il gruppo delle
Appunti di CALCOLO COMBINATORIO
Appunti di CALCOLO COMBINATORIO Giulia Fidanza Indice Premessa Le sequenze ordinate ed il Principio Generale. Sequenze ordinate................................. Il Principio Generale del Calcolo Combinatorio................
Calcolo combinatorio
1 Calcolo combinatorio Ricordiamo che uno spazio di probabilità (Ω, P(Ω), P) si dice uniforme se Ω è un insieme finito e si ha P(A) = A Ω, per ogni A Ω. Pertanto, il calcolo della probabilità di un evento
Calcolo delle Probabilità 2013/14 Foglio di esercizi 2
Calcolo delle Probabilità 2013/1 Foglio di esercizi 2 Calcolo combinatorio. Esercizio 1. In un mazzo di 52 carte da Poker ogni carta è identificata da un seme (cuori, quadri, fiori, picche e da un tipo
FINALE 30 agosto 2008
FINALE 30 agosto 2008 INIZIO CATEGORIA CE 1- LE SETTE CARTE (coefficiente 1) Matilde ha messo 7 carte sulla tavola una dopo l'altra. In che ordine lo ha fatto? 2 - LE GOBBE (coefficiente 2) Una carovana
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità
0 Insiemi, funzioni, numeri
Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo
Scheda 1: funzioni circolari, equazioni e disequazioni goniometriche
Scheda : funzioni circolari, equazioni e disequazioni goniometriche Risolvi la seguente equazione: sin + sin cos + 5 = 0 5 = 5 cos + sin Suggerimento dell insegnante: ricorda che ( ) Risolvi la seguente
Matematica e scacchi. Patrizia Previtali. Livello d'età:
Matematica e scacchi Patrizia Previtali Livello d'età: Classi seconda e terza superiore Competenze in esercizio e nuclei tematici: utilizzare strumenti di rappresentazione per la modellizzazione e la risoluzione
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 05-6 P.Baldi Lista di esercizi, 8 gennaio 06. Esercizio Si sa che in una schedina
Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile pag. 15
Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile 2012- pag. 15 Casi Possibili B= La lancetta indica il Blu V= La lancetta indica il Verde
CUPIDO. Per giocare occorrono anche carta e penna.
CUPIDO Gioco di carte per 2 o 4 giocatori Da sempre Cupido si aggira per il mondo cercando di portare l'amore tra gli uomini e far sì che ognuno conosca la sua anima gemella. Ma le coppie perfette sono
ESERCIZI DI CALCOLO COMBINATORIO
ESERCIZI DI CALCOLO COMBINATORIO 1. Calcolare il numero degli anagrammi che possono essere formati con le lettere della parola Amore. [120] 2. Quante partite di poker diverse possono essere giocate da
Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità
Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Università Roma Tre - Dipartimento di Matematica e Fisica 3 novembre 2016 Introduzione La probabilità nel linguaggio comune I E probabile
Il Corso di Fisica per Scienze Biologiche
Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: [email protected] Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/
Si gioca con due mazzi di carte francesi inclusi i jolly per un totale di 108 carte.
Regole del Burraco Il mazzo di carte Si gioca con due mazzi di carte francesi inclusi i jolly per un totale di 108 carte. I giocatori possono selezionare il tipo di carte (francesi standard, francesi Dal
ESERCIZI SULLA PROBABILITA
PROBABILITA CLASSICA ESERCIZI SULLA PROBABILITA 1) Si estrae una carta da un mazzo di 40 carte ; calcolare la probabilità che la carta sia: a. una figura; b. una carta di danari; c. un asso. 2) Un urna
