Per regnare occorre tenere divisi i nemici e trarne vantaggio. fai ad ogni passo la scelta più conveniente

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Per regnare occorre tenere divisi i nemici e trarne vantaggio. fai ad ogni passo la scelta più conveniente"

Transcript

1 Progetto di algoritmi sequenziali (un solo esecutore ) Divide et Impera Per regnare occorre tenere divisi i nemici e trarne vantaggio Greedy fai ad ogni passo la scelta più conveniente Buoni risultati immediati possono dare buoni risultati anche a lungo termine

2 Backtrack Prova a fare qualche cosa; se non funziona, disfala e prova qualcos altro Programmazione dinamica Filosofia Divide et Impera portata all estremo: se non si sa quali sottoproblemi risolvere, si può provare a risolverli tutti e conservare i risultati per poterli usare successivamente per risolvere il problema di dimensioni più grandi Ricerca locale Pianifica il metodo di soluzione del problema in modo che sia applicabile dinamicamente a dati di dimensione via via crescente Non guardare più in là del proprio orto

3 Algoritmi di approssimazione Per molti problemi di ottimizzazione c è poca speranza di progettare un algoritmo che trovi la soluzione ottima con complessità polinomiale. In tali casi, comunque, ci si può spesso accontentare di una soluzione che sia abbastanza vicina a quella ottima. Algoritmi probabilistici La computazione dipende dai valori prodotti da un generatore di numeri casuali

4 Algoritmi euristici Forniscono una soluzione ammissibile, non necessariamente ottima nè approssimata. Spesso basati su tecniche greedy o di ricerca locale Algoritmi paralleli (più di un esecutore )

5 Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente

6 Divide et impera - Schema generale Divide-et-impera (P, n) if n k then risolvi direttamente else dividi P in sottoproblemi P 1, P 2,,P h di dimensione n 1, n 2,, n h risp. for i 1 to h do Divide-et-impera (P i, n i ) combina i risultati di P 1,, P h per ottenere quello di P

7 Divide et impera - Complessità Il costo dell algoritmo è di solito costante per i casi in cui la soluzione viene costruita direttamente; per i casi in cui non è immediata, il costo può essere espresso come somma di h + 2 costi: il costo di dividere il problema nei sottoproblemi il costo di combinare i risultati dei sottoproblemi per ottenere il risultato del problema gli h costi delle soluzioni dei sottoproblemi T(n) = c n k = D(n) + C(n) + Σ i=1..h T(n i ) n > k

8 Problema: è relativamente semplice esprimere la complessità con una relazione di ricorrenza, è però piuttosto complicato risolvere la relazione di ricorrenza per trovare la complessità asintotica. Ci sono tre modi per trovare la soluzione: metodo di sostituzione metodo iterativo metodo principale

9 Il metodo di sostituzione Ipotizza un limite asintotico verifica l ipotesi con una dimostrazione per induzione esempio: T(n) = 4T(n/2) + n possiamo provare T(n) = O(n 3 ) mostriamo che esistono c ed n 0 : T(n) c n 3 per tutti gli n n 0 Supponendo T(k) c k 3 per tutti i k < n, si ottiene T(n) = 4T(n/2) + n 4c(n/2) 3 + n = cn 3 - (c/2 n 3 - n) cn 3 per c 2 e n 1 Anche T(1) deve essere c 1 3

10 un tentativo migliore: T(n) = O(n 2 ) Cerchiamo di dimostrare che T(n) c n 2 per tutti gli n n 0 Supponendo T(k) c k 2 per tutti i k < n, si ottiene T(n) = 4T(n/2) + n 4c(n/2) 2 + n = cn 2 + n cn 2 per nessun c 0 Dobbiamo modificare l ipotesi: T(n) c n 2 - d n, d 1 T(n) = 4T(n/2) + n 4 (c(n/2) 2 - d(n/2)) + n = cn 2-2dn + n = cn 2 - dn - (dn - n) cn 2 - dn Si può scegliere d = 1.

11 Bisogna fare attenzione alle condizioni al contorno. Non è sempre scontato che esse siano limitate da c f(n). Ad esempio supponiamo di aver dimostrato per la ricorrenza T(n) = 2 T(ºn/2ß) + n che T(n) c n lgn e sia T(1) = 1 Allora non si ottiene T(1) c 1 lg1 per nessun c, essendo lg1 = 0 La difficoltà può essere superata ricordando che la notazione asintotica richiede di dimostrare T(n) c n lgn per gli n n 0, dove n 0 è una costante. Consideriamo allora T(2) e T(3), in quanto per n > 3, la relazione non dipende più da T(1). T(2) = 4 c 2 lg2 T(3) = 5 c 3 lg3 Basta scegliere c 2

12 Un inconveniente del metodo di sostituzione è che non esiste una regola per trovare la soluzione corretta per ogni ricorrenza. Di solito bisogna provare più tentativi, ma se la ricorrenza è simile ad una di cui si conosce la soluzione, si può provare la stessa soluzione. Ad esempio: T(n) = 2T( n/2 + 15) + n Intuitivamente per n grande la differenza tra n/2 e n/ non è molto significativa. Si può perciò tentare con la soluzione T(n) = O(n lgn), che sappiamo risolvere la ricorrenza T(n) = 2T( n/2 ) + n.

13 Dimostriamo il risultato anticipato prima che la ricorrenza T(n) = 2T (ºn/2ß) + n appartiene all insieme O(n lgn) Proviamo T(n) c n lgn T(n) = 2T (ºn/2ß) + n ( ºn/2ß n/2 ) 2 (c (n/2) lg(n/2)) + n = c n lgn - c n lg2 + n = c n lgn - c n + n c n lgn per c 1

14 Il metodo iterativo Sviluppare la ricorrenza ed esprimerla come somma di termini che dipendono solo da n e dalle condizioni al contorno. Per risolvere la ricorrenza si applicano le tecniche per limitare le sommatorie. Consideriamo di nuovo l equazione T(n) = 4T(n/2) + n T(n) = n + 4T(n/2) = n + 4 ( n/2 + 4 T(n/4)) = n + 2n (n/4 + 4 T(n/8) ) = n + 2n + 4n (n/8 + 4 T(n/16) ) = n + 2n lgn-1 n + 2 lgn T(1) = n ( lgn-1 ) + n Θ(1) = n (2 lgn - 1) + Θ(n) = n 2 - n + Θ(n) = Θ(n 2 )

15 Alberi di ricorsione Disegnamo l unfolding della ricorrenza T(n) = n + 4T(n/2) T(n) n T(n/2) T(n/2) T(n/2) T(n/2)

16 n n n/2 n/2 n/2 n/2 2n lgn n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 4n 2 lgn Θ(1) Totale: lgn-1 n Σ 2 i + 2 lgn Θ(1) = n (n - 1) + n Θ(1) i=0 = Θ(n 2 )

17 Insertion-sort (A) {length[a] 1} 1 Insertion-sort for j 2 to length[a] (A) do 2 key A[j] {A[1..j-1] è ordinato} for j 2 to length[a] do key A[j] 3 {inserisci A[j] nella sequenza A[1..j-1] spostando a destra gli elementi > di A[j]} 4 i j-1 5 while {inserisci i > 0 A[j] and nella A[i] > sequenza key do A[1..j-1] 6 spostando A[i+1] a destra A[i] gli elementi > di A[j]} i j-1 7 i i-1 8 A[i+1] key while i > 0 and A[i] > key do A[i+1] A[i] i i-1 A[i+1] key {A[1..length[A]] è ordinato}

18 Al j-esimo passo: {A[1..j-1] e` ordinato} A j j length[a] 6 key A i j j

19 A j j length[a] A A j j i=2 key j {A[1..j] e` ordinato e l insieme degli elementi è ricostruito}

20 Insertion-sort (A) { A[1..j-1] è ordinato } for j 2 to n do key A[j] {inserisci A[j] nella sequenza A[1..j-1] spostando a destra gli elementi > di A[j]} i j-1 {A[1..j-1] è ordinato & A[i+1..j-1] > key} while i > 0 and A[i] > key do A[i+1] A[i] i i-1 {A[1..j-1] è ordinato & A[i+1..j-1] > key & A[i] key} A[i+1] key {A[1..n] è ordinato} O(n 2 )

21 Insertion-sort = O(n 2 ) n = length[a] Un algoritmo di ordinamento Divide et Impera Merge-Sort (A, p, q) if p < q then r (p + q)/2 Merge-Sort (A, p, r) Merge-Sort (A, r+1, q) Merge (A, p, r, q) n = q - p + 1 T(n) = T( n/2 ) + T( n/2 ) + Θ(n) per n 2

22 T(n) soddisfa T(n) = Θ(1) per n = 1 T(n) = 2T(n/2) + Θ(n) per n 2 n n lgn n/2 n/2 n n/4 n/4 n/4 n/4 n 2 lgn Θ(1) Totale: (lg n - 1) n + 2 lgn Θ(1) = Θ(n lgn)

23 T(n) = Q(n lgn) L algoritmo Merge-Sort è perciò asintoticamente migliore dell algoritmo Insertion-sort Si può inoltre dimostrare che Θ(n lgn) confronti sono necessari nel caso peggiore per ordinare n numeri per qualunque algoritmo basato sui confronti. Quindi l algoritmo Merge-Sort è (asintoticamente) ottimo.

24 Il metodo principale Teorema principale - versione semplificata Siano a 1, b > 1 e c 0 delle costanti. T(n) sia definita dalla seguente ricorrenza: T(n) = a T(n/b) + Θ(n c ) dove n/b rappresenta n/b oppure n/b. Allora T(n) è asintoticamente limitato nel modo seguente: se c < log b a allora T(n) = Θ(n log b a ) se c = log b a allora T(n) = Θ(n c lgn) se c > log b a allora T(n) = Θ(n c )

25 Esempi di uso del teorema principale Il tempo di calcolo per l algoritmo DI-Massimo-ricorsivo soddisfa la ricorrenza: T(n) = 2 T(n/2) + Θ(1) a = b = 2 c = 0 < 1 = log b a Caso 1 del teorema principale: T(n) = Θ(n log 2 2 ) = Θ(n)

26 Il tempo di calcolo per l algoritmo Merge-Sort soddisfa la ricorrenza: T(n) = 2 T(n/2) + Θ(n) a = b = 2 c = 1 = log b a Caso 2 del teorema principale: T(n) = Θ(n c lgn) = Θ(n lgn)

27 Ancora qualche esempio: 1. T(n) = 8 T(n/2) + n 2 a = 8 b = 2 c = 2 < 3 = log b a Caso 1 del teorema principale: T(n) = Θ(n log 2 8 ) = Θ(n 3 ) 2. T(n) = 7 T(n/2) + Θ(n 2 ) a = 7 b = 2 c = 2 < log b a Caso 1 del teorema principale: T(n) = Θ(n log 2 7 ) = O(n 3 )

28 Per le equazioni di ricorrenza: 1. T 1 (n) = 4 T(n/2) + n 2. T 2 (n) = 4 T(n/2) + n 2 3. T 3 (n) = 4 T(n/2) + n 3 Si applicano rispettivamente i casi 1, 2 e 3 del teorema principale: a = 4 b = 2 c = i log b a = 2 Si ha allora 1. T 1 (n) = Θ(n 2 ) 2. T 2 (n) = Θ(n 2 lgn) 3. T 3 (n) = Θ(n 3 )

29 Come possiamo leggere le complessità ottenute? Caso 1. T 1 (n) = 4 T(n/2) + n = Θ(n 2 ) si applica se il costo della divisione in sottoproblemi e della costruzione della soluzione a partire da quella dei sottoproblemi (n c ) è trascurabile rispetto al costo della soluzione dei sottoproblemi stessi (a T(n/b)). Caso 2. T 2 (n) = 4 T(n/2) + n 2 = Θ(n 2 lgn) si applica se il costo della divisione in sottoproblemi e della costruzione della soluzione a partire da quella dei sottoproblemi (n c ) è analogo al costo della soluzione dei sottoproblemi stessi (a T(n/b)). Caso 3. T 3 (n) = 4 T(n/2) + n 3 = Θ(n 3 ) si applica se il costo della divisione in sottoproblemi e della costruzione della soluzione a partire da quella dei sottoproblemi (n c ) è il fattore dominante

Tecniche Algoritmiche: divide et impera

Tecniche Algoritmiche: divide et impera Tecniche Algoritmiche: divide et impera Una breve presentazione F. Damiani - Alg. & Lab. 04/05 Divide et impera (o Divide and conquer) Per regnare occorre tenere divisi i nemici e trarne vantaggio F. Damiani

Dettagli

Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente

Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente Divide et impera - Schema generale Divide-et-impera (P, n) if n k then risolvi direttamente

Dettagli

Notazione asintotica. notazione Ω. notazione O. notazione o notazione ω. Marina Zanella Algoritmi e strutture dati Richiami matematici 1

Notazione asintotica. notazione Ω. notazione O. notazione o notazione ω. Marina Zanella Algoritmi e strutture dati Richiami matematici 1 Notazione asintotica Sebbene si possa talvolta determinare il tempo esatto di esecuzione di un algoritmo, l estrema precisione non giustifica lo sforzo del calcolo; infatti, per input sufficientemente

Dettagli

In questa lezione. Il Mergesort: primo esempio di applicazione della tecnica divide et impera analisi tempo di esecuzione del Mergesort

In questa lezione. Il Mergesort: primo esempio di applicazione della tecnica divide et impera analisi tempo di esecuzione del Mergesort In questa lezione Il Mergesort: primo esempio di applicazione della tecnica divide et impera analisi tempo di esecuzione del Mergesort [CLRS] par. 2.3. Prof. E. Fachini - Intr. Alg.!1 Progettazione di

Dettagli

In questa lezione: correttezza del mergesort Analisi del mergesort: relazioni di ricorrenza e alberi della ricorsione

In questa lezione: correttezza del mergesort Analisi del mergesort: relazioni di ricorrenza e alberi della ricorsione In questa lezione: correttezza del mergesort Analisi del mergesort: relazioni di ricorrenza e alberi della ricorsione Prof E Fachini - Intr Alg 1 MergeSort: correttezza MergeSort (A,p,r) if p < r then

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Modelli di calcolo e metodologie di analisi Domenico Fabio Savo 1 Notazione asintotica f(n) = tempo di esecuzione / occupazione di memoria di un algoritmo su input di dimensione

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 I conigli di Fibonacci Ricerca Binaria L isola dei conigli

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Ricorrenze Maria Rita Di Berardini 2, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino 2 Polo di Scienze Università di Camerino ad Ascoli Piceno

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino I conigli di Fibonacci Ricerca Binaria L isola dei conigli Leonardo da

Dettagli

Algoritmi e strutture di dati 2

Algoritmi e strutture di dati 2 Algoritmi e strutture di dati 2 Paola Vocca Lezione 1: Divide et Impera 1 Paradigma del divide et impera Strutturato in tre fasi. Sia Π() istanza di dimensione di un problema computazionale Π (dove è immediato

Dettagli

Definizioni di base. Algoritmo: procedura computazionale ben definita che prende valori in input e produce valori in output.

Definizioni di base. Algoritmo: procedura computazionale ben definita che prende valori in input e produce valori in output. ANALISI DELLA COMPLESSITÀ DEGLI ALGORITMI Definizioni di base Algoritmo: procedura computazionale ben definita che prende valori in input e produce valori in output. Un algoritmo è uno strumento per risolvere

Dettagli

Analisi algoritmi ricorsivi e relazioni di ricorrenza

Analisi algoritmi ricorsivi e relazioni di ricorrenza Analisi algoritmi ricorsivi e relazioni di ricorrenza Punto della situazione Finora abbiamo affrontato: il tempo di esecuzione di un algoritmo, l analisi asintotica con le notazioni asintotiche e la tecnica

Dettagli

Sostituire cf(n) a ciascun termine O(f(n)), dove c è una costante reale simbolica specifica per quel termine

Sostituire cf(n) a ciascun termine O(f(n)), dove c è una costante reale simbolica specifica per quel termine Esempio 1 Ricorrenza da risolvere BASE T(1) = O(1) INDUZIONE T(n) = O(1) + T(n 1) per n > 1 Procedimento Sostituire cf(n) a ciascun termine O(f(n)), dove c è una costante reale simbolica specifica per

Dettagli

Gli algoritmi ricorsivi di ordinamento. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Gli algoritmi ricorsivi di ordinamento. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino ordinamento Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Merge Sort Ricorsivo, divide et impera Stabile Divisione: due sottovettori SX e DX rispetto al centro del vettore. p r A.A.

Dettagli

Algoritmi e Strutture Dati. Divide-et-impera

Algoritmi e Strutture Dati. Divide-et-impera Algoritmi e Strutture Dati Divide-et-impera Alberto Montresor Università di Trento 2018/12/05 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Sommario 1

Dettagli

Albero di Riscorsione

Albero di Riscorsione Albero di Riscorsione Albero di ricorsione Un albero di ricorsione è un modo di visualizzare cosa accade in un algoritmo divide et impera L etichetta della radice rappresenta il costo non ricorsivo della

Dettagli

Dipartimento di Elettronica, Informazione e Bioingegneria API 2013/4

Dipartimento di Elettronica, Informazione e Bioingegneria API 2013/4 Dipartimento di Elettronica, Informazione e Bioingegneria API 2013/4 Equazioni alle ricorrenze @ G. Gini 2013 divide et impera - ricorsione Esempio: ordinamento di array Dimensione dei sottoinsiemi n/2,n/2

Dettagli

Si imposti la relazione di ricorrenza che ne descrive la complessità e la si risolva utilizzando il metodo della sostituzione.

Si imposti la relazione di ricorrenza che ne descrive la complessità e la si risolva utilizzando il metodo della sostituzione. parte II - A 2 Si consideri la seguente funzione: analizzami(int n) c = 1 k = n*n while k > 1 do k = k/2 for i = 0 to 3 do if n >1 then analizzami(n/4) Si imposti la relazione di ricorrenza che ne descrive

Dettagli

Ricerca. Per ricerca si intende il procedimento di localizzazione di una particolare informazione in un elenco di dati.

Ricerca. Per ricerca si intende il procedimento di localizzazione di una particolare informazione in un elenco di dati. Ricerca Per ricerca si intende il procedimento di localizzazione di una particolare informazione in un elenco di dati. Il problema della ricerca in termini generali : dato un insieme D = {a 1,a 2,...,a

Dettagli

Algoritmo di ordinamento sul posto che ha tempo di esecuzione :

Algoritmo di ordinamento sul posto che ha tempo di esecuzione : QuickSort Algoritmo di ordinamento sul posto che ha tempo di esecuzione : - O(n 2 ) nel caso peggiore - O(n log n) nel caso medio Nonostante le cattive prestazioni nel caso peggiore, rimane il miglior

Dettagli

Quick Sort. PARTITION(A,p,r) risistema il sottoarray A[p...r] e riporta l indice q:

Quick Sort. PARTITION(A,p,r) risistema il sottoarray A[p...r] e riporta l indice q: Quick Sort - Ordinamento in loco - Tempo di esecuzione nel caso peggiore: Θ(n 2 ) - Tempo di esecuzione nel caso medio: Θ(n lg n) - I fattori costanti nascosti nella notazione Θ sono abbastanza piccoli

Dettagli

Algoritmi e Strutture Dati. Luciano Gualà

Algoritmi e Strutture Dati. Luciano Gualà Algoritmi e Strutture Dati Luciano Gualà guala@mat.uniroma2.it www.mat.uniroma2.it/~guala Esercizio Analizzare la complessità nel caso medio del primo algoritmo di pesatura (Alg1) presentato nella prima

Dettagli

Crescita funzioni. 20 novembre Come possiamo confrontare le funzioni di costo che abbiamo ottenuto finora?

Crescita funzioni. 20 novembre Come possiamo confrontare le funzioni di costo che abbiamo ottenuto finora? Crescita funzioni 20 novembre 2006 1 Funzioni di costo Definizione 1 (Funzione di costo). Utilizziamo il termine funzione di costo per indicare una funzione f : N R dall insieme dei numeri naturali ai

Dettagli

Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano. Usa la tecnica del divide et impera:

Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano. Usa la tecnica del divide et impera: MergeSort Usa la tecnica del divide et impera: 1 Divide: dividi l array a metà 2 Risolvi i due sottoproblemi ricorsivamente 3 Impera: fondi le due sottosequenze ordinate 1 Esempio di esecuzione 7 2 4 5

Dettagli

Algoritmi e strutture dati. Analisi di algoritmi Funzioni di costo, notazione asintotica

Algoritmi e strutture dati. Analisi di algoritmi Funzioni di costo, notazione asintotica Algoritmi e strutture dati Analisi di algoritmi Funzioni di costo, notazione asintotica Alberto Montresor Università di Trento 2016/09/11 This work is licensed under a Creative Commons Attribution-ShareAlike

Dettagli

Algoritmi greedy. Gli algoritmi che risolvono problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione

Algoritmi greedy. Gli algoritmi che risolvono problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione Algoritmi greedy Gli algoritmi che risolvono problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione Gli algoritmi greedy sono algoritmi basati sull idea

Dettagli

Programmazione dinamica Primi esempi

Programmazione dinamica Primi esempi Programmazione dinamica Primi esempi (20 ottobre 2009 e 9 novembre 2010) Programmazione dinamica e Divide et Impera Entrambe le tecniche dividono il problema in sottoproblemi: dalle soluzioni dei sottoproblemi

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 4 Ordinamento: Quicksort (*) e metodi di ordinamento lineari Punto della situazione Problema dell ordinamento: Lower bound (n log n) Upper bound O(n log n) Algoritmi

Dettagli

Algoritmi e Strutture Dati. Luciano Gualà

Algoritmi e Strutture Dati. Luciano Gualà Algoritmi e Strutture Dati Luciano Gualà guala@mat.uniroma2.it www.mat.uniroma2.it/~guala Esercizio Analizzare la complessità nel caso medio del primo algoritmo di pesatura (Alg1) presentato nella prima

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 4 Ordinamento Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Esempi: ordinare una lista di nomi alfabeticamente, o un

Dettagli

Nozioni di base (II Parte)

Nozioni di base (II Parte) Nozioni di base (II Parte) 1 Ricorsione [GTG14, Par. 5.1-5.4 and 13.1] Algoritmo Ricorsivo: algoritmo che invoca se stesso (su istanze sempre più piccole) sfruttando la nozione di induzione. La soluzione

Dettagli

Tempo e spazio di calcolo

Tempo e spazio di calcolo Tempo e spazio di calcolo Modelli di calcolo e metodologie di analisi In quale modo stimiamo il tempo di calcolo? Possiamo considerare due approcci: Approccio empirico (a posteriori) Approccio teorico

Dettagli

5. DIVIDE AND CONQUER I

5. DIVIDE AND CONQUER I Divide-et-Impera (Divide and conquer) 5. DIVIDE AND CONQUER I Mergesort e Relazioni di ricorrenza Esempi di progettazione D&I Moltiplicazione di interi Contare inversioni Divide-et-Impera. Definizione

Dettagli

Algoritmi di ordinamento

Algoritmi di ordinamento Capitolo 7 Algoritmi di ordinamento 7.1 Selection sort L algoritmo di ordinamento per selezione opera nel modo seguente: supponiamo che i primi k elementi siano ordinati; l algoritmo sceglie il minimo

Dettagli

Algoritmi greedy. Gli algoritmi che risolvono problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione

Algoritmi greedy. Gli algoritmi che risolvono problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione Algoritmi greedy Gli algoritmi che risolvono problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione Gli algoritmi greedy sono algoritmi basati sull idea

Dettagli

Esercizi per il corso di Algoritmi, anno accademico 2011/12

Esercizi per il corso di Algoritmi, anno accademico 2011/12 Esercizi per il corso di Algoritmi, anno accademico 2011/12 Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, nè in C++, etc. ). Di tutti gli

Dettagli

Tempo e spazio di calcolo

Tempo e spazio di calcolo Tempo e spazio di calcolo Modelli di calcolo e metodologie di analisi F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04) In quale modo stimiamo il tempo di calcolo? Possiamo considerare

Dettagli

CAPITOLO 2. Divide et Impera

CAPITOLO 2. Divide et Impera CAPITOLO 2 Divide et Impera In questo capitolo discuteremo alcuni algoritmi progettati mediante la tecnica di progettazione del Divide et Impera. Algoritmi progettati usando questa tecnica consistono di

Dettagli

QUICKSORT. Basato sul paradigma divide-et-impera (come MERGE-SORT)

QUICKSORT. Basato sul paradigma divide-et-impera (come MERGE-SORT) QUICKSORT Basato sul paradigma divide-et-impera (come MERGE-SORT) Divide: stabilisce un valore di q tale da dividere l array A[p.. r] in due sottoarray non vuoti A[p.. q] e A[q+1.. r], dove ogni elemento

Dettagli

Algoritmi di Ordinamento

Algoritmi di Ordinamento Algoritmi di Ordinamento 1 Algoritmi di ordinamento Selection Sort Quick Sort Lower bound alla complessità degli algoritmi di ordinamento Statistiche di ordine 2 Selection Sort SelectionSort(dati[]) {

Dettagli

Algoritmi e Strutture Dati. Capitolo 4 Ordinamento: Selection e Insertion Sort

Algoritmi e Strutture Dati. Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati Capitolo 4 Ordinamento: Selection e Insertion Sort Ordinamento Dato un insieme S di n elementi presi da un dominio totalmente ordinato, ordinare S in ordine non crescente o non

Dettagli

Analisi asintotica. Astrazione: come il tempo di esecuzione cresce in funzione della taglia dell input asintoticamente.

Analisi asintotica. Astrazione: come il tempo di esecuzione cresce in funzione della taglia dell input asintoticamente. Analisi asintotica Vittorio Maniezzo University of Bologna Analisi asintotica Obiettivo: semplificare l analisi del consumo di risorse di un algoritmo prescindendo dai dettagli implementativi o di altro

Dettagli

2. Analisi degli Algoritmi

2. Analisi degli Algoritmi 2. Analisi degli Algoritmi Introduzione 2.1 Un modello di macchina elementare: la Macchina a Registri 2.2 Costo di esecuzione di un programma 2.3 Analisi del costo di esecuzione: il modello a costi uniformi

Dettagli

Informatica Generale Andrea Corradini Gli algoritmi e la risoluzione di problemi

Informatica Generale Andrea Corradini Gli algoritmi e la risoluzione di problemi Informatica Generale Andrea Corradini 13 - Gli algoritmi e la risoluzione di problemi Sommario Passi per la risoluzione di problemi Problemi di ricerca e ordinamento Algoritmi iterativi: la ricerca lineare

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Tecniche di Programmazione Tecniche di progettazione e

Dettagli

Quicksort Moltiplicazione di interi Master Theorem Valutazione del tempo di esecuzione di algoritmi iterativi e ricorsivi

Quicksort Moltiplicazione di interi Master Theorem Valutazione del tempo di esecuzione di algoritmi iterativi e ricorsivi Quicksort Moltiplicazione di interi Master Theorem Valutazione del tempo di esecuzione di algoritmi iterativi e ricorsivi Algoritmi basati sulla tecnica Divide et Impera In questo corso: Ricerca binaria

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla http://www.moreno.marzolla.name/ Ultima Modifica: 7 ottobre 202 Copyright Portions of this work are Copyright 202, Moreno Marzolla. This work is licensed

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it 12 ottobre 2010 1 Vero o falso? Per ciascuna delle seguenti affermazioni, dire se è vera o falsa, fornendo una dimostrazione:

Dettagli

Università degli Studi di Camerino Laurea in Informatica Prima Prova Parziale del corso di Algoritmi e Strutture Dati

Università degli Studi di Camerino Laurea in Informatica Prima Prova Parziale del corso di Algoritmi e Strutture Dati Università degli Studi di Camerino Laurea in Informatica Prima Prova Parziale del corso di Algoritmi e Strutture Dati Docente: Maria Rita Di Berardini 19 dicembre 2007 Nome: Cognome: N.Matricola: Note:

Dettagli

Un algoritmo realizza una relazione funzionale tra i valori di input e quelli di output

Un algoritmo realizza una relazione funzionale tra i valori di input e quelli di output Un algoritmo realizza una relazione funzionale tra i valori di input e quelli di output F = { (s, s ) } per ogni s esiste una e una sola coppia (s, s ). Esempio: un algoritmo che calcola il quadrato di

Dettagli

ALGORITMI Docente: Prof. Domenico Cantone

ALGORITMI Docente: Prof. Domenico Cantone CORSO SPECILE DI DURT NNULE PER IL CONSEGUIMENTO DELL BILITZIONE LL INSEGNMENTO NELL SCUOL SECONDRI DI I e II GRDO Indirizzo Fisico - Informatico - Matematico a.a. 00/07 - Classe - Informatica LGORITMI

Dettagli

Si può fare di meglio?

Si può fare di meglio? Si può fare di meglio? Gli algoritmi visti fino ad ora hanno costo O(n 2 ) È possibile fare di meglio? Quanto meglio? Algoritmi e Strutture Dati 1 Algoritmi divide et impera Idea generale Divide: Scomporre

Dettagli

Corso di Perfezionamento

Corso di Perfezionamento Programmazione Dinamica 1 1 Dipartimento di Matematica e Informatica Università di Camerino 15 febbraio 2009 Tecniche di Programmazione Tecniche di progettazione di algoritmi: 1 Divide et Impera 2 Programmazione

Dettagli

Algoritmi e Strutture Dati (Mod. B) Algoritmi Greedy (parte I)

Algoritmi e Strutture Dati (Mod. B) Algoritmi Greedy (parte I) Algoritmi e Strutture Dati (Mod. B) Algoritmi Greedy (parte I) Algoritmi greedy Gli algoritmi per problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 4 Ordinamento: Quicksort (*) e metodi di ordinamento lineari Punto della situazione Problema dell ordinamento: Lower bound (n log n) Upper bound O(n log n) Algoritmi

Dettagli

Macchina RAM. Modelli di calcolo e metodologie di analisi. Linguaggio di una macchina RAM. Algoritmi e Strutture Dati. Istruzioni.

Macchina RAM. Modelli di calcolo e metodologie di analisi. Linguaggio di una macchina RAM. Algoritmi e Strutture Dati. Istruzioni. Algoritmi e Strutture Dati Macchina RAM Nastro di ingresso Modelli di calcolo e metodologie di analisi Contatore istruzioni Programm a Accumulatore Unità centrale M[0] M[1] Nastro di uscita Basato su materiale

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi di Algoritmi Modelli di calcolo e analisi di algoritmi Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Analisi di Algoritmi Analisi

Dettagli

Tecniche di analisi degli algoritmi

Tecniche di analisi degli algoritmi Tecniche di analisi degli algoritmi Damiano Macedonio mace@unive.it Algoritmi e Strutture Dati, A.A. 2012/13 27 ottobre 2012 Original work Copyright c 2009 Moreno Marzolla, Università di Bologna Modifications

Dettagli

Schema generale di un algoritmo divide-et-impera. Algoritmi e Laboratorio a.a Lezioni. Esempio: mergesort su array. Esempio: quicksort

Schema generale di un algoritmo divide-et-impera. Algoritmi e Laboratorio a.a Lezioni. Esempio: mergesort su array. Esempio: quicksort Schema generale di un algoritmo divide-et-impera Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica Curriculum SR (Sistemi e Reti) Algoritmi e Laboratorio a.a. 2006-07 Lezioni prof.

Dettagli

Appunti lezione Capitolo 2 Analisi delle funzioni di costo

Appunti lezione Capitolo 2 Analisi delle funzioni di costo Appunti lezione Capitolo Analisi delle funzioni di costo Alberto Montresor 0 Settembre, 016 1 Funzioni di costo Definizione 1 (Funzione di costo). Utilizziamo il termine funzione di costo per indicare

Dettagli

Sommario della lezione:

Sommario della lezione: Sommario della lezione: Metodologie per il progetto di algoritmi: La Tecnica Divide et Impera Esempi di applicazione a: Ricerca del massimo e minimo di una sequenza di numeri Calcolo di potenze di numeri

Dettagli

La ricorsione. Sommario. Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino

La ricorsione. Sommario. Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino La ricorsione Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino Sommario! Definizione di ricorsione e strategie divide et impera! Semplici algoritmi ricorsivi! Merge

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi di algoritmi Maria Rita Di Berardini 2, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino 2 Polo di Scienze Università di Camerino ad Ascoli Piceno Parte I Analisi

Dettagli

Programmazione Dinamica (PD)

Programmazione Dinamica (PD) Programmazione Dinamica (PD) Altra tecnica per risolvere problemi di ottimizzazione, piu generale degli algoritmi greedy La programmazione dinamica risolve un problema di ottimizzazione componendo le soluzioni

Dettagli

Esercizi per il corso di Algoritmi

Esercizi per il corso di Algoritmi 1 Esercizi per il corso di Algoritmi Esercizi sulle Notazioni Asintotiche 1. Esercizio: In ciascuno dei seguenti casi, indicare se f(n) = O(g(n)), o se f(n) = Ω(g(n)), oppure entrambi (nel cui caso occorre

Dettagli

Di cosa parliamo oggi?

Di cosa parliamo oggi? Di cosa parliamo oggi? Oggi parliamo di Analisi di Algoritmi Analisi di Algoritmi = valutazione delle risorse usate da algoritmi per risolvere un dato problema Risorse = Tempo impiegato dall algoritmo

Dettagli

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09)

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09) ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09) DISPENSA N. 4 1. Ricerca Binaria Ricorsiva L algoritmo Ricerca Binaria risolve il problema della ricerca di una chiave in un vettore. È un esempio

Dettagli

Algoritmi e Strutture Dati. Analisi di algoritmi Funzioni di costo, notazione asintotica

Algoritmi e Strutture Dati. Analisi di algoritmi Funzioni di costo, notazione asintotica Algoritmi e Strutture Dati Analisi di algoritmi Funzioni di costo, notazione asintotica Alberto Montresor Università di Trento 2018/12/27 This work is licensed under a Creative Commons Attribution-ShareAlike

Dettagli

Sommario della Lezione

Sommario della Lezione Sommario della Lezione Analisi di Algoritmi Ricorsivi: Come esprimere la complessitá di algoritmi ricorsivi mediante relazioni di ricorrenza Come derivare le relazioni di ricorrenza Come risolvere le relazioni

Dettagli

Algoritmi e Strutture di Dati I 1. Algoritmi e Strutture di Dati I Massimo Franceschet francesc

Algoritmi e Strutture di Dati I 1. Algoritmi e Strutture di Dati I Massimo Franceschet   francesc Algoritmi e Strutture di Dati I 1 Algoritmi e Strutture di Dati I Massimo Franceschet http://www.sci.unich.it/ francesc m.franceschet@unich.it Algoritmi e Strutture di Dati I 2 Problema dell ordinamento

Dettagli

Algoritmi e Strutture di Dati I 1. Algoritmi e Strutture di Dati I Massimo Franceschet

Algoritmi e Strutture di Dati I 1. Algoritmi e Strutture di Dati I Massimo Franceschet Algoritmi e Strutture di Dati I 1 Algoritmi e Strutture di Dati I Massimo Franceschet Algoritmi e Strutture di Dati I 2 Problemi Un problema specifica in termini generali una relazione che intercorrere

Dettagli

Introduzione agli algoritmi Prova di esame del 19/9/2016 Prof.sse E. Fachini - R. Petreschi. Parte prima

Introduzione agli algoritmi Prova di esame del 19/9/2016 Prof.sse E. Fachini - R. Petreschi. Parte prima Introduzione agli algoritmi Prova di esame del 19/9/2016 Prof.sse E. Fachini - R. Petreschi Parte prima 1) Si dimostri il teorema sulla limitazione inferiore per il tempo asintotico di esecuzione nel caso

Dettagli

INFORMATICA GENERALE

INFORMATICA GENERALE CAROSELLI STEFANO INFORMATICA GENERALE TESINA «LA TECNICA DEL DIVIDE-ET-IMPERA E DUE SUE IMPORTANTI APPLICAZIONI: IL QUICK SORT E IL MERGE SORT» La tecnica del DIVIDE-ET-IMPERA è un metodo di risoluzione

Dettagli

Corso di Tecniche di Programmazione

Corso di Tecniche di Programmazione Problema: Data una sequenza di elementi in ordine qualsiasi, ordinarla. Corso di Tecniche di Programmazione Corsi di Laurea in Ingegneria Informatica ed Automatica Anno Accedemico 003/004 Proff. Giuseppe

Dettagli

complessità degli algoritmi

complessità degli algoritmi complessità degli algoritmi progetto CORDA informatica algoritmo matematico persiano Muhammad al-khwarizmi (IX secolo) un algoritmo è una sequenza finita di passi interpretabili da un esecutore l esecuzione

Dettagli

Appunti lezione Capitolo 14 Greedy

Appunti lezione Capitolo 14 Greedy Appunti lezione Capitolo 14 Greedy Alberto Montresor 21 Novembre, 2016 1 Domanda: dimostrare che S[i, j] = con i j Nel problema della selezione delle attività, il sottoinsieme S[i, j] è definito nel modo

Dettagli

Mergesort (cont.) 2018/ Lezione 16. Venerdì, 16 Novembre 2018

Mergesort (cont.) 2018/ Lezione 16. Venerdì, 16 Novembre 2018 Mergesort (cont.) Informatica@SEFA 08/09 - Lezione 6 Massimo Lauria Venerdì, 6 Novembre 08 Mergesort La comprensione della struttura dati pila ci permette di capire più agevolmente

Dettagli

Tecniche Algoritmiche

Tecniche Algoritmiche Tecniche Algoritmiche Damiano Macedonio Università Ca' Foscari di Venezia mace@unive.it Original work Copyright Alberto Montresor, Università di Trento, Italy Modifications Copyright 2009 2012 Moreno Marzolla,

Dettagli

Tecniche di analisi degli algoritmi

Tecniche di analisi degli algoritmi Tecniche di analisi degli algoritmi Moreno Marzolla marzolla@cs.unibo.it Dipartimento di Scienze dell Informazione, Università di Bologna 19 ottobre 2010 Copyright c 2009, 2010 Moreno Marzolla, Università

Dettagli

1 Introduzione. 2 Merge Sort

1 Introduzione. 2 Merge Sort Corso: Gestione ed elaborazione grandi moli di dati Lezione del: 8 maggio 2006 Argomento: Algoritmi di ordinamento nel Disk odel: ergesort e ulti-way ergesort con analisi della complessitá di I/O e work.

Dettagli

Algoritmi (9 CFU) (A.A )

Algoritmi (9 CFU) (A.A ) Algoritmi (9 CFU) (A.A. 2009-10) Equazioni di ricorrenza Prof. V. Cutello Algoritmi 1 Overview Definiamo cos è una ricorrenza Introduciamo 3 metodi per risolvere equazioni di ricorrenza Sostituzione e

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi Asintotica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Un graduale processo di astrazione Passo 1: abbiamo ignorato il costo effettivo

Dettagli

Il paradigma divide et impera. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Il paradigma divide et impera. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Il paradigma divide et impera Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Paradigmi per il Problem Solving: Divide et Impera Divide da problema di dimensione n in a problemi indipendenti

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Golosi (Greedy) Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino un algoritmo goloso correttezza Problema della selezione di attività

Dettagli

Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base

Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1. Sia T una stringa arbitraria di lunghezza n 1 su un alfabeto Σ. È sempre possibile

Dettagli

Note per la Lezione 18 Ugo Vaccaro

Note per la Lezione 18 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 2018 2019 Note per la Lezione 18 Ugo Vaccaro Continuiamo con l applicazione della tecnica Greedy, ricordando che un algoritmo Greedy costruisce una soluzione

Dettagli

05EIP. Fulvio Corno, Matteo Sonza Reorda Dip. Automatica e Informatica Politecnico di Torino. Definizione di ricorsione e strategie divide et impera

05EIP. Fulvio Corno, Matteo Sonza Reorda Dip. Automatica e Informatica Politecnico di Torino. Definizione di ricorsione e strategie divide et impera La ricorsione Fulvio Corno, Matteo Sonza Reorda Dip. Automatica e Informatica Politecnico di Torino Sommario Definizione di ricorsione e strategie divide et impera Semplici algoritmi ricorsivi Merge Sort

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi asintotica e Ricorrenze Esercizi Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Notazioni O, Ω e Θ Parte I Notazioni

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi di Ordinamento Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Il problema dell ordinamento Il problema dell ordinamento di un insieme

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Golosi (Greedy) Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Problema della selezione di attività Problema: Sia S = {a 1, a 2,,

Dettagli

Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base

Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1. Sia T una stringa arbitraria di lunghezza n 1 su un alfabeto Σ. È sempre possibile

Dettagli

Problemi di ordinamento

Problemi di ordinamento Problemi di ordinamento Input: una sequenza di n numeri a 1, a 2,..., a n ; Output: una permutazione a 1, a 2,..., a n di a 1, a 2,..., a n tale che a 1 a 2... a n. Generalmente, la sequenza è rappresentata

Dettagli

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09)

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09) ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 0/0) DISPENSA N. 6 Esercizi su alberi di ricerca e AVL Notazione: Per un albero T scriviamo T per indicare il numero dei nodi di T e h(t ) per indicare

Dettagli

Algoritmi e Strutture Dati. Capitolo 1 Un introduzione informale agli algoritmi

Algoritmi e Strutture Dati. Capitolo 1 Un introduzione informale agli algoritmi Algoritmi e Strutture Dati Capitolo Un introduzione informale agli algoritmi Ancora un esempio di problema e soluzioni algoritmiche: i numeri di Fibonacci verso un modello di calcolo più simile a un computer

Dettagli

Algoritmi e Strutture di Dati

Algoritmi e Strutture di Dati Algoritmi e Strutture di Dati Complessità dei problemi m.patrignani Nota di copyright queste slides so protette dalle leggi sul copyright il titolo ed il copyright relativi alle slides (inclusi, ma n limitatamente,

Dettagli

Note per la Lezione 17 Ugo Vaccaro

Note per la Lezione 17 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 2018 2019 Note per la Lezione 17 Ugo Vaccaro Per la risoluzione di Problemi di Ottimizzazione (ovvero problemi per cui desideriamo trovare la migliore soluzione

Dettagli

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso Algoritmi Greedy VS Programmazione dinamica Si applicano a problemi di ottimizzazione,

Dettagli

Informatica Generale Andrea Corradini Algoritmi: ordinamento per inserimento e ricorsione

Informatica Generale Andrea Corradini Algoritmi: ordinamento per inserimento e ricorsione Informatica Generale Andrea Corradini 14 - Algoritmi: ordinamento per inserimento e ricorsione Sommario Un algoritmo iterativo: l'ordinamento per inserimento (insertion sort) La ricorsione: i numeri triangolari

Dettagli