Algoritmi e Strutture Dati. Luciano Gualà

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi e Strutture Dati. Luciano Gualà"

Transcript

1 Algoritmi e Strutture Dati Luciano Gualà guala@mat.uniroma2.it

2 Esercizio Analizzare la complessità nel caso medio del primo algoritmo di pesatura (Alg1) presentato nella prima lezione. Rispetto alla distribuzione di probabilità sulle istanze, si assuma che la moneta falsa possa trovarsi in modo equiprobabile in una qualsiasi delle n posizioni. Alg1 (X={x 1, x 2,, x n }) 1. for i=2 to n do 2. if peso(x 1 ) > peso(x i ) then return x 1 3. if peso(x 1 ) < peso(x i ) then return x i Pr(I) #pesate(i) = I di dim n n Pr( moneta falsa è in posizione j in I ) #pesate(i) j=1 1/n 1 se j=1, n-1 =(1/n)(1+ j) j=1 j-1 altrimenti =(1/n)(1+ (n-1) n/2)= 1/n + (n-1)/2 n =(1/n)(1+ (j-1)) j=2

3 Un problema simile: ricerca di un elemento in un array/lista non ordinata l algoritmo torna la posizione di x in L se x è presente, -1 altrimenti algoritmo RicercaSequenziale(array L, elem x) intero 1. n = lunghezza di L 2. i=1 3. for i=1 to n do 4. if (L[i]=x) then return i \\trovato 5. return -1 \\non trovato T best (n) = 1 T worst (n) = n T avg (n) = (n+1)/2 x è in prima posizione x L oppure è in ultima posizione assumendo che x L e che si trovi con la stessa probabilità in una qualsiasi posizione

4 Una variante: ricerca di un elemento in un array/lista ordinata Algoritmo di ricerca binaria: uno strumento molto potente gli indici i e j indicano la porzione di L in cui cercare l elemento x l algoritmo torna la posizione di x in L, se x c è, -1 altrimenti algoritmo RicercaBinariaRic(array L, elem x, int i, int j) -> intero 1. if (i>j) then return m= (i+j)/2 3. if (L[m]=x) then return m 4. if (L[m]>x) then return RicercaBinariaRic(L, x, i, m-1) 5. else return RicercaBinariaRic(L, x, m+1,j) T(n)=T(n/2)+O(1) T(n)=O(log n)

5 Esempi su un array di 9 elementi Cerca 2 Cerca 1 Cerca 9 Cerca 3 3<4 quindi i e j si invertono

6 ricorsione,tecniche di progettazione e equazioni di ricorrenza

7 Sommario Algoritmi ricorsivi: come analizzarli? Complessità di algoritmi ricorsivi e equazioni di ricorrenza Una tecnica di progettazione algoritmica: divide et impera Metodi per risovere equazioni di ricorrenza: iterazione albero della ricorsione sostituzione teorema Master cambiamento di variabile

8 Algoritmi ricorsivi: come analizzarli? algoritmo fibonacci2(intero n) intero if (n 2) then return 1 else return fibonacci2(n-1) + fibonacci2(n-2) T(n)=T(n-1)+T(n-2)+O(1)

9 Algoritmi ricorsivi: come analizzarli? Algoritmo di ricerca binaria: uno strumento molto potente gli indici i e j indicano la porzione di L in cui cercare l elemento x l algoritmo torna la posizione di x in L, se x c è, -1 altrimenti algoritmo RicercaBinariaRic(array L, elem x, int i, int j) -> intero 1. if (i>j) then return m= (i+j)/2 3. if (L[m]=x) then return m 4. if (L[m]>x) then return RicercaBinariaRic(L, x, i, m-1) 5. else return RicercaBinariaRic(L, x, m+1,j) T(n)=T(n/2)+O(1)

10 Algoritmi ricorsivi: come analizzarli? Alg4 (X) 1. if ( X =1) then return unica moneta in X 2. dividi X in tre gruppi X 1, X 2, X 3 di dimensione bilanciata siano X 1 e X 2 i gruppi che hanno la stessa dimensione (ci sono sempre) 3. if peso(x 1 ) = peso(x 2 ) then return Alg4(X 3 ) 4. if peso(x 1 ) > peso(x 2 ) then return Alg4(X 1 ) else return Alg4(X 2 ) T(n)=T(n/3)+O(1)

11 Equazioni di ricorrenza la complessità computazionale di un algoritmo ricorsivo può essere espressa in modo naturale attraverso una equazione di ricorrenza esempi: T(n) = T(n/3) + 2T(n/4) + O(n log n) T(n) = T(n-1) + O(1) T(n) = T(n/3) + T(2n/3) + n casi base: T(costante)=cost (a voltet(1)=1)

12 Metodo dell iterazione Idea: srotolare la ricorsione, ottenendo una sommatoria dipendente solo dalla dimensione n del problema iniziale Esempio: T(n) = c + T(n/2) T(n/2) = c + T(n/4)... T(n) = c + T(n/2) = 2c + T(n/4) = 2c + c + T(n/8) = 3c + T(n/8) = i c + T(n/2 i ) Per i=log 2 n: T(n) = c log 2 n + T(1) = Θ(log n)

13 Esempio: T(n) = T(n-1) + 1 T(n) = T(n-1) + 1 = T(n-2) = T(n-2) + 2 = T(n-3) = T(n-3) + 3 = T(n-4) + 4 = T(n-i) + i Metodo dell iterazione Per i=n-1: T(n) = T(1) + n-1 = Θ(n)

14 Esempio: T(n) = 2T(n-1)+1 T(n) = 2T(n-1) +1 = 2(2T(n-2)+1) +1 = 4T(n-2)+2+1 = 4(2T(n-3)+1)+2+1 = 8T(n-3) = 16T(n-4) i-1 = 2 i T(n-i) + 2 j j=0 per i=n-1 n-2 T(n) = 2 n-1 T(1) + 2 j = Θ(2 n ) j=0 Metodo dell iterazione

15 Esempio: T(n) = T(n-1)+ T(n-2) +1 Metodo dell iterazione T(n) = T(n-1) + T(n-2) +1 = T(n-2)+T(n-3) +1+T(n-3) +T(n-4)+1 +1 = T(n-2)+2T(n-3) +T(n-4)+3 = T(n-3)+T(n-4)+1+2(T(n-4)+T(n-5)+1) +T(n-5)+T(n-6)+1+3 = T(n-3)+3T(n-4)+3T(n-5) +T(n-6)+7???

16 Esercizi risolvere usando il metodo dell iterazione: Esercizio 1: T(n) = T(n-1) + n, T(1) = 1 Esercizio 2: T(n) = 9 T(n/3) + n, T(1) = 1 (soluzione sul libro di testo: Esempio 2.4)

17 Analisi dell albero della ricorsione (un modo grafico di pensare il metodo dell iterazione) Idea: disegnare l albero delle chiamate ricorsive indicando la dimensione di ogni nodo stimare il tempo speso da ogni nodo dell albero stimare il tempo complessivo sommando il tempo speso da ogni nodo Suggerimento 1: se il tempo speso da ogni nodo è costante, T(n) è proporzionale al numero di nodi Suggerimento 2: a volte conviene analizzare l albero per livelli: -analizzare il tempo speso su ogni livello (fornendo upper bound) -stimare il numero di livelli

18 tecnica albero della ricorsione T(n)= T(n -1) + 1 T(1)= 1 n n - 1 quanto costa ogni nodo? quanti nodi ha l albero? uno! n n-2 n-i 2 T(n)= (n) 1

19 tecnica albero della ricorsione T(n)= T(n -1) + n T(1)= 1 n n - 1 quanto costa ogni nodo? quanti nodi ha l albero? al più n n n-2 n-i 2 T(n)=O(n 2 ) vale T(n)=Θ(n 2 )? 1

20 tecnica albero della ricorsione T(n)= T(n -1) + n T(1)= 1 n n - 1 n-2 n-i n/2 nodi ognuno dei quali costa n/2 quanto costa ogni nodo? al più n quanti nodi ha l albero? n T(n)=O(n 2 ) vale T(n)=Θ(n 2 )? 2 1 T(n) n/2n/2=n 2 /4 T(n)=Ω(n 2 )

21 tecnica albero della ricorsione T(n)= T(n -1) + n T(1)= 1 n quanto costa ogni nodo? al più n n - 1 n-2 n-i n/2 nodi ognuno dei quali costa n/2 quanti nodi ha l albero? T(n)=O(n 2 ) T(n)=Θ(n 2 ) n 2 1 T(n) n/2n/2=n 2 /4 T(n)=Ω(n 2 )

22 tecnica albero della ricorsione T(n)= 2T(n -1) + 1 T(1)= 1 n n-1 n-2 n-2 n-1 n-2 n-2 n-3 n-3 n-3 n-3 n-3 n-3 n-3 n albero binario completo! quanto costa ogni nodo? uno! quanto è alto l albero? n-1! quanti nodi ha un albero h binario completo di altezza h? 2 i = 2 h+1-1 i=0 T(n)= 2 n -1= (2 n )

23 tecnica albero della ricorsione T(n)= 2T(n -1) + n T(1)= 1 n n-1 n-2 n-2 n-1 n-2 n-2 n-3 n-3 n-3 n-3 n-3 n-3 n-3 n albero binario completo! quanto costa ogni nodo? al più n quanto è alto l albero? n-1 quanti nodi ha un albero h binario completo di altezza h? 2 i = 2 h+1-1 i=0 T(n) n2 n = (n2 n ) T(n) = O(n2 n )

24 T(n)= T(n -1) +T (n -2) +1 T(1)= 1 tecnica albero della ricorsione Un idea: usare maggiorazioni per fornire upper bound T(n) R(n) R(n)= 2 R(n -1) +1 T(n)=O(2 n ) R(n) = (2 n ) vale T(n)=Θ(2 n )?

25 tecnica albero della ricorsione T(n)= T(n -1) +T (n -2) +1 T(1)= 1 n n-1 n-2 n-3 n-2 n-3 n-4 n-3 n-4 n-4 n-5 n-4 n-5 n-5 n-6 albero chiamate ricorsive dell algorito Fibonacci2! quanto costa ogni nodo? uno ( n ) quanti nodi ha l albero? T(n) = ( n ) [T(n) = o(2 n )]

26 Analisi dell albero della ricorsione due esempi: Esempio 1: T(n) = T(n/3) + T(2n/3) + n, T(1) = 1 Esempio 2: T(n) = 2 T(n-2) + 1, T(1) = 1

27 Sommario Algoritmi ricorsivi: come analizzarli? Complessità di algoritmi ricorsivi e equazioni di ricorrenza Una tecnica di progettazione algoritmica: divide et impera Metodi per risovere equazioni di ricorrenza: iterazione albero della ricorsione sostituzione teorema Master cambiamento di variabile

28 Idea: Metodo della sostituzione 1. indovinare la (forma della) soluzione 2. usare induzione matematica per provare che la soluzione è quella intuita 3. risolvi rispetto alle costanti

29 Metodo della sostituzione Esempio: T(n) = n + T(n/2), T(1)=1 Assumiamo che la soluzione sia T(n) c n per una costante c opportuna Passo base: T(1)=1 c 1 per ogni c 1 Passo induttivo: T(n)= n + T(n/2) n+c (n/2) = (c/2+1) n Quindi: quando T(n) c n? devo avere: c/2+1 c da cui segue: c 2 T(n) 2n T(n)=O(n)

30 Esercizi risolvere usando il metodo della sostituzione: Esercizio: T(n) = 4T(n/2) + n, T(1) = 1 ( e fare esperienza della tecnicità del metodo.)

31 Tecnica del divide et impera Algoritmi basati sulla tecnica del divide et impera: - dividi il problema (di dimensione n) in a sottoproblemi di dimensione n/b - risolvi i sottoproblemi ricorsivamente - ricombina le soluzioni Sia f(n) il tempo per dividere e ricombinare istanze di dimensione n. La relazione di ricorrenza è data da: T(n) = a T(n/b) + f(n) se n>1 (1) se n=1

32 Algoritmo Fibonacci6 a=1, b=2, f(n)=o(1)

33 Algoritmo ottimo di pesatura Alg4 (X) 1. if ( X =1) then return unica moneta in X 2. dividi X in tre gruppi X 1, X 2, X 3 di dimensione bilanciata siano X 1 e X 2 i gruppi che hanno la stessa dimensione (ci sono sempre) 3. if peso(x 1 ) = peso(x 2 ) then return Alg4(X 3 ) 4. if peso(x 1 ) > peso(x 2 ) then return Alg4(X 1 ) else return Alg4(X 2 ) a=1, b=3, f(n)=o(1)

34 Teorema Master: enunciato informale n log b a vs f(n) quale va più velocemente a infinito? Stesso ordine asintotico T(n) = (f(n) log n) Se una delle due è polinomialmente più veloce T(n) ha l ordine asintotico della più veloce

35 La relazione di ricorrenza: Teorema Master T(n) = a T(n/b) + f(n) se n>1 (1) se n=1 ha soluzione: log 1. T(n) = (n b a log ) se f(n)=o(n b a - ) per >0 log 2. T(n) = (n b a log log n) se f(n) = (n b a ) log 3. T(n) = (f(n)) se f(n)= (n b a + ) per >0 e a f(n/b) c f(n) per c<1 e n sufficientemente grande

36 1) T(n) = n + 2T(n/2) Esempi a=2, b=2, f(n)=n= (n log 2 2 ) T(n)= (n log n) (caso 2 del teorema master) 2) T(n) = c + 3T(n/9) log a=3, b=9, f(n)=c=o(n ) T(n)= ( n) (caso 1 del teorema master) 3) T(n) = n + 3T(n/9) log a=3, b=9, f(n)=n= (n ) 3(n/9) c n per c=1/3 (caso 3 del teorema master) T(n)= (n)

37 Esempi 4) T(n) = n log n + 2T(n/2) log 2 2 a=2, b=2, f(n) = (n ) ma f(n) (n log 2 2+ ), > 0 non si può applicare il teorema Master!

38 Esempio: T(n) = T( n) + O(1), T(1) = 1 Cambiamento di variabile T(n) = T(n 1/2 ) + O(1) n=2 x x =log 2 n T(2 x ) = T(2 x/2 ) + O(1) R(x):=T(2 x ) R(x) = R(x/2) + O(1) R(x) = O(log x) T(n) = O(log log n)

39 due problemi (per cui la ricorsione può aiutare) Esercizio: progettare due algoritmi ricorsivi per i seguenti due problemi. Se ne studi la complessità temporale (nel caso peggiore).

40 problema della celebrità ad una festa ci sono n persone una di queste è una celebrità la celebrità non conosce nessuno ma è obiettivo: conosciuta da tutti individuare la celebrità facendo (poche) domande a persone del tipo: conosci questa persona?

41 problema della celebrità: un algoritmo ricorsivo Celebrità (X) 1. if X =1 then return l unica persona in X % che è la celebrità X: insieme di persone fra le quali sto cercando la celebrità 2. siano A e B due persone qualsiasi in X: chiedi ad A se conose B 3. if (A conosce B) then %A non può essere la celebrità return Celebrità(X-{A}) else %B non può essere la celebrità return Celebrità(X-{B}) quante domande fa l algoritmo? T(n): # domande che l algoritmo fa nel caso peggiore prima di individuare la celebrità fra n persone T(n)=T(n-1)+1 T(1)=0 T(n)= n-1 (srotolando) T(n)=T(n-1)+1=T(n-2)+2=T(n-3)+3= T(n-i)+i =T(1)+n-1=n-1

42 La torre di Hanoi A B C n dischi di diametro diverso, tre pali regole: si può spostare un disco alla volta e non si può mettere un disco di diametro più grande sopra uno di diametro più piccolo obiettivo: spostare i dischi dal palo A al palo C (facendo meno spostamenti possibile)

43 Un elegante soluzione ricorsiva 1 3 A B 2 C Hanoi(dischi, destinazione, palo ausiliario) Hanoi ([1,2..,n], C, B) 1. if n=1 then sposta il disco su C 2. Hanoi([1,2,,n-1], B, C) 3. sposta il disco n su C 4. Hanoi([1,2,,n-1], C, A)

44 esecuzione dell algoritmo n = 3 A B C

45 esecuzione dell algoritmo n = 3 A B C

46 esecuzione dell algoritmo n = 3 A B C

47 esecuzione dell algoritmo n = 3 A B C

48 esecuzione dell algoritmo n = 3 A B C

49 esecuzione dell algoritmo n = 3 A B C

50 esecuzione dell algoritmo n = 3 A B C

51 esecuzione dell algoritmo n = 3 A B C

52 esecuzione dell algoritmo n = 4 A B C

53 esecuzione dell algoritmo n = 4 A B C

54 esecuzione dell algoritmo n = 4 A B C

55 esecuzione dell algoritmo n = 4 A B C

56 esecuzione dell algoritmo n = 4 A B C

57 esecuzione dell algoritmo n = 4 A B C

58 esecuzione dell algoritmo n = 4 A B C

59 esecuzione dell algoritmo n = 4 A B C

60 esecuzione dell algoritmo n = 4 A B C

61 esecuzione dell algoritmo n = 4 A B C

62 esecuzione dell algoritmo n = 4 A B C

63 esecuzione dell algoritmo n = 4 A B C

64 esecuzione dell algoritmo n = 4 A B C

65 esecuzione dell algoritmo n = 4 A B C

66 esecuzione dell algoritmo n = 4 A B C

67 esecuzione dell algoritmo n = 4 A B C

68 quanti spostamenti fa l algoritmo? 1 3 A B C 2 T(n): #spostamenti che l alg fa nel caso peggiore (?) per spostare n dischi Hanoi(dischi, destinazione, palo ausiliario) Hanoi ([1,2..,n], C, B) 1. if n=1 then sposta il disco su C 2. Hanoi([1,2,,n-1], B, C) 3. sposta il disco n su C 4. Hanoi([1,2,,n-1], C, A) T(n)= 2T(n -1) + 1 T(1)= 1

69 T(n)= 2T(n -1) + 1 analisi (tecnica albero della ricorsione) T(1)= 1 n n-1 n-2 n-2 n-1 n-2 n-2 n-3 n-3 n-3 n-3 n-3 n-3 n-3 n albero binario completo! quanti spostamenti fa ogni nodo? uno! quanto è alto l albero? n-1! quanti nodi ha un albero h binario completo di altezza h? 2 i = 2 h+1-1 i=0 T(n)= 2 n -1= (2 n )

Algoritmi e Strutture Dati. Luciano Gualà

Algoritmi e Strutture Dati. Luciano Gualà Algoritmi e Strutture Dati Luciano Gualà guala@mat.uniroma2.it www.mat.uniroma2.it/~guala Esercizio Analizzare la complessità nel caso medio del primo algoritmo di pesatura (Alg1) presentato nella prima

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Modelli di calcolo e metodologie di analisi Domenico Fabio Savo 1 Notazione asintotica f(n) = tempo di esecuzione / occupazione di memoria di un algoritmo su input di dimensione

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 I conigli di Fibonacci Ricerca Binaria L isola dei conigli

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Ricorrenze Maria Rita Di Berardini 2, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino 2 Polo di Scienze Università di Camerino ad Ascoli Piceno

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino I conigli di Fibonacci Ricerca Binaria L isola dei conigli Leonardo da

Dettagli

Macchina RAM. Modelli di calcolo e metodologie di analisi. Linguaggio di una macchina RAM. Algoritmi e Strutture Dati. Istruzioni.

Macchina RAM. Modelli di calcolo e metodologie di analisi. Linguaggio di una macchina RAM. Algoritmi e Strutture Dati. Istruzioni. Algoritmi e Strutture Dati Macchina RAM Nastro di ingresso Modelli di calcolo e metodologie di analisi Contatore istruzioni Programm a Accumulatore Unità centrale M[0] M[1] Nastro di uscita Basato su materiale

Dettagli

Algoritmi e Strutture Dati. Capitolo 1 Un introduzione informale agli algoritmi

Algoritmi e Strutture Dati. Capitolo 1 Un introduzione informale agli algoritmi Algoritmi e Strutture Dati Capitolo Un introduzione informale agli algoritmi Ancora un esempio di problema e soluzioni algoritmiche: i numeri di Fibonacci verso un modello di calcolo più simile a un computer

Dettagli

Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano. Usa la tecnica del divide et impera:

Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano. Usa la tecnica del divide et impera: MergeSort Usa la tecnica del divide et impera: 1 Divide: dividi l array a metà 2 Risolvi i due sottoproblemi ricorsivamente 3 Impera: fondi le due sottosequenze ordinate 1 Esempio di esecuzione 7 2 4 5

Dettagli

In questa lezione: correttezza del mergesort Analisi del mergesort: relazioni di ricorrenza e alberi della ricorsione

In questa lezione: correttezza del mergesort Analisi del mergesort: relazioni di ricorrenza e alberi della ricorsione In questa lezione: correttezza del mergesort Analisi del mergesort: relazioni di ricorrenza e alberi della ricorsione Prof E Fachini - Intr Alg 1 MergeSort: correttezza MergeSort (A,p,r) if p < r then

Dettagli

Tecniche Algoritmiche: divide et impera

Tecniche Algoritmiche: divide et impera Tecniche Algoritmiche: divide et impera Una breve presentazione F. Damiani - Alg. & Lab. 04/05 Divide et impera (o Divide and conquer) Per regnare occorre tenere divisi i nemici e trarne vantaggio F. Damiani

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 4 Ordinamento Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Esempi: ordinare una lista di nomi alfabeticamente, o un

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 1 Un introduzione informale agli algoritmi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione informale di algoritmo Insieme di istruzioni, definite

Dettagli

Algoritmi e strutture di dati 2

Algoritmi e strutture di dati 2 Algoritmi e strutture di dati 2 Paola Vocca Lezione 1: Divide et Impera 1 Paradigma del divide et impera Strutturato in tre fasi. Sia Π() istanza di dimensione di un problema computazionale Π (dove è immediato

Dettagli

Esercizi per il corso di Algoritmi, anno accademico 2011/12

Esercizi per il corso di Algoritmi, anno accademico 2011/12 Esercizi per il corso di Algoritmi, anno accademico 2011/12 Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, nè in C++, etc. ). Di tutti gli

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Informazioni sul corso + Un introduzione informale agli algoritmi Domenico Fabio Savo 1 Domenico Fabio Savo Email: savo@dis.uniroma1.it Web: http://www.dis.uniroma1.it/~savo

Dettagli

Per regnare occorre tenere divisi i nemici e trarne vantaggio. fai ad ogni passo la scelta più conveniente

Per regnare occorre tenere divisi i nemici e trarne vantaggio. fai ad ogni passo la scelta più conveniente Progetto di algoritmi sequenziali (un solo esecutore ) Divide et Impera Per regnare occorre tenere divisi i nemici e trarne vantaggio Greedy fai ad ogni passo la scelta più conveniente Buoni risultati

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

Ricerca. Per ricerca si intende il procedimento di localizzazione di una particolare informazione in un elenco di dati.

Ricerca. Per ricerca si intende il procedimento di localizzazione di una particolare informazione in un elenco di dati. Ricerca Per ricerca si intende il procedimento di localizzazione di una particolare informazione in un elenco di dati. Il problema della ricerca in termini generali : dato un insieme D = {a 1,a 2,...,a

Dettagli

Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente

Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente Divide et impera - Schema generale Divide-et-impera (P, n) if n k then risolvi direttamente

Dettagli

Analisi asintotica. Astrazione: come il tempo di esecuzione cresce in funzione della taglia dell input asintoticamente.

Analisi asintotica. Astrazione: come il tempo di esecuzione cresce in funzione della taglia dell input asintoticamente. Analisi asintotica Vittorio Maniezzo University of Bologna Analisi asintotica Obiettivo: semplificare l analisi del consumo di risorse di un algoritmo prescindendo dai dettagli implementativi o di altro

Dettagli

Algoritmi e Strutture Dati. Luciano Gualà

Algoritmi e Strutture Dati. Luciano Gualà Algoritmi e Strutture Dati Luciano Gualà guala@mat.uniroma2.it www.mat.uniroma2.it/~guala Programmazione dinamica una tecnica di progettazione algoritmica molto potente Sommario La tecnica della programmazione

Dettagli

In questa lezione. Il Mergesort: primo esempio di applicazione della tecnica divide et impera analisi tempo di esecuzione del Mergesort

In questa lezione. Il Mergesort: primo esempio di applicazione della tecnica divide et impera analisi tempo di esecuzione del Mergesort In questa lezione Il Mergesort: primo esempio di applicazione della tecnica divide et impera analisi tempo di esecuzione del Mergesort [CLRS] par. 2.3. Prof. E. Fachini - Intr. Alg.!1 Progettazione di

Dettagli

Algoritmi e Strutture Dati. Luciano Gualà

Algoritmi e Strutture Dati. Luciano Gualà Algoritmi e Strutture Dati Luciano Gualà guala@mat.uniroma2.it www.mat.uniroma2.it/~guala È sensato misurare la complessità di un algoritmo contando il numero di linee di codice eseguite? riassunto puntate

Dettagli

Sommario della lezione:

Sommario della lezione: Sommario della lezione: Metodologie per il progetto di algoritmi: La Tecnica Divide et Impera Esempi di applicazione a: Ricerca del massimo e minimo di una sequenza di numeri Calcolo di potenze di numeri

Dettagli

Problem Set 2 docente: Luciano Gualà

Problem Set 2 docente: Luciano Gualà Problem Set 2 docente: Luciano Gualà Esercizio 1 (equazioni di ricorrenza) Si risolvano le seguenti equazioni di ricorrenza. Si assuma sempre T (costante) = O(1). (a) T (n) = T (n 10) + 10. (b) T (n) =

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 4 Ordinamento: Quicksort (*) e metodi di ordinamento lineari Punto della situazione Problema dell ordinamento: Lower bound (n log n) Upper bound O(n log n) Algoritmi

Dettagli

Dipartimento di Elettronica, Informazione e Bioingegneria API 2013/4

Dipartimento di Elettronica, Informazione e Bioingegneria API 2013/4 Dipartimento di Elettronica, Informazione e Bioingegneria API 2013/4 Equazioni alle ricorrenze @ G. Gini 2013 divide et impera - ricorsione Esempio: ordinamento di array Dimensione dei sottoinsiemi n/2,n/2

Dettagli

Pensiero Algoritmico. Lezione 3 23 Novembre Ripasso. Anatomia di un programma. Anatomia di un programma. Ozalp Babaoglu Università di Bologna

Pensiero Algoritmico. Lezione 3 23 Novembre Ripasso. Anatomia di un programma. Anatomia di un programma. Ozalp Babaoglu Università di Bologna Pensiero Algoritmico Lezione 3 23 Novembre 2016 Ozalp Babaoglu Università di Bologna Ripasso Definizione del problema Astrarre i dettagli, costruire un modello Costruire l algoritmo che risolve il problema

Dettagli

Nozioni di base (II Parte)

Nozioni di base (II Parte) Nozioni di base (II Parte) 1 Ricorsione [GTG14, Par. 5.1-5.4 and 13.1] Algoritmo Ricorsivo: algoritmo che invoca se stesso (su istanze sempre più piccole) sfruttando la nozione di induzione. La soluzione

Dettagli

Algoritmo di ordinamento sul posto che ha tempo di esecuzione :

Algoritmo di ordinamento sul posto che ha tempo di esecuzione : QuickSort Algoritmo di ordinamento sul posto che ha tempo di esecuzione : - O(n 2 ) nel caso peggiore - O(n log n) nel caso medio Nonostante le cattive prestazioni nel caso peggiore, rimane il miglior

Dettagli

Analisi algoritmi ricorsivi e relazioni di ricorrenza

Analisi algoritmi ricorsivi e relazioni di ricorrenza Analisi algoritmi ricorsivi e relazioni di ricorrenza Punto della situazione Finora abbiamo affrontato: il tempo di esecuzione di un algoritmo, l analisi asintotica con le notazioni asintotiche e la tecnica

Dettagli

Esercitazione 7 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016

Esercitazione 7 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016 Esercitazione 7 Algorithmi e Strutture Dati (Informatica) A.A 015/016 Tong Liu April 1, 016 Elementi fondamentali Notazioni Asintotiche Definition 1.1. (Notazione O) Sia g (n) una funzione di costo; indichiamo

Dettagli

Esercizi per il corso di Algoritmi

Esercizi per il corso di Algoritmi 1 Esercizi per il corso di Algoritmi Esercizi sulle Notazioni Asintotiche 1. Esercizio: In ciascuno dei seguenti casi, indicare se f(n) = O(g(n)), o se f(n) = Ω(g(n)), oppure entrambi (nel cui caso occorre

Dettagli

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09)

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09) ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09) DISPENSA N. 4 1. Ricerca Binaria Ricorsiva L algoritmo Ricerca Binaria risolve il problema della ricerca di una chiave in un vettore. È un esempio

Dettagli

Algoritmi (9 CFU) (A.A )

Algoritmi (9 CFU) (A.A ) Algoritmi (9 CFU) (A.A. 2009-10) Equazioni di ricorrenza Prof. V. Cutello Algoritmi 1 Overview Definiamo cos è una ricorrenza Introduciamo 3 metodi per risolvere equazioni di ricorrenza Sostituzione e

Dettagli

Programmazione dinamica Primi esempi

Programmazione dinamica Primi esempi Programmazione dinamica Primi esempi (20 ottobre 2009 e 9 novembre 2010) Programmazione dinamica e Divide et Impera Entrambe le tecniche dividono il problema in sottoproblemi: dalle soluzioni dei sottoproblemi

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 4 Ordinamento: Quicksort (*) e metodi di ordinamento lineari Punto della situazione Problema dell ordinamento: Lower bound (n log n) Upper bound O(n log n) Algoritmi

Dettagli

CAPITOLO 2. Divide et Impera

CAPITOLO 2. Divide et Impera CAPITOLO 2 Divide et Impera In questo capitolo discuteremo alcuni algoritmi progettati mediante la tecnica di progettazione del Divide et Impera. Algoritmi progettati usando questa tecnica consistono di

Dettagli

Il paradigma divide et impera. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Il paradigma divide et impera. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Il paradigma divide et impera Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Paradigmi per il Problem Solving: Divide et Impera Divide da problema di dimensione n in a problemi indipendenti

Dettagli

Quicksort Moltiplicazione di interi Master Theorem Valutazione del tempo di esecuzione di algoritmi iterativi e ricorsivi

Quicksort Moltiplicazione di interi Master Theorem Valutazione del tempo di esecuzione di algoritmi iterativi e ricorsivi Quicksort Moltiplicazione di interi Master Theorem Valutazione del tempo di esecuzione di algoritmi iterativi e ricorsivi Algoritmi basati sulla tecnica Divide et Impera In questo corso: Ricerca binaria

Dettagli

Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base

Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1. Sia T una stringa arbitraria di lunghezza n 1 su un alfabeto Σ. È sempre possibile

Dettagli

Albero di Riscorsione

Albero di Riscorsione Albero di Riscorsione Albero di ricorsione Un albero di ricorsione è un modo di visualizzare cosa accade in un algoritmo divide et impera L etichetta della radice rappresenta il costo non ricorsivo della

Dettagli

Tecniche di analisi degli algoritmi

Tecniche di analisi degli algoritmi Tecniche di analisi degli algoritmi Moreno Marzolla, Lorenzo Donatiello Dipartimento di Infromatica, Università di Bologna 11 novembre 2014 Copyright c 2009, 2010 Moreno Marzolla, Università di Bologna

Dettagli

Tecniche di analisi degli algoritmi

Tecniche di analisi degli algoritmi Tecniche di analisi degli algoritmi Moreno Marzolla marzolla@cs.unibo.it Dipartimento di Scienze dell Informazione, Università di Bologna 19 ottobre 2010 Copyright c 2009, 2010 Moreno Marzolla, Università

Dettagli

Notazione asintotica. notazione Ω. notazione O. notazione o notazione ω. Marina Zanella Algoritmi e strutture dati Richiami matematici 1

Notazione asintotica. notazione Ω. notazione O. notazione o notazione ω. Marina Zanella Algoritmi e strutture dati Richiami matematici 1 Notazione asintotica Sebbene si possa talvolta determinare il tempo esatto di esecuzione di un algoritmo, l estrema precisione non giustifica lo sforzo del calcolo; infatti, per input sufficientemente

Dettagli

Algoritmi e Strutture Dati. Luciano Gualà

Algoritmi e Strutture Dati. Luciano Gualà Algoritmi e Strutture Dati Luciano Gualà guala@mat.uniroma2.it www.mat.uniroma2.it/~guala Informazioni utili Orario lezioni Lunedì: 11,00 13,00 mercoledì: 9,00 11,00 Orario ricevimento lunedì: 14,45 16,15

Dettagli

Algoritmi e Strutture Dati. Luciano Gualà

Algoritmi e Strutture Dati. Luciano Gualà Algoritmi e Strutture Dati Luciano Gualà guala@mat.uniroma2.it www.mat.uniroma2.it/~guala Informazioni utili Orario lezioni Lunedì: 11,00 13,00 mercoledì: 9,00 11,00 Orario ricevimento lunedì: 14,45 16,15

Dettagli

Tecniche di analisi degli algoritmi

Tecniche di analisi degli algoritmi Tecniche di analisi degli algoritmi Damiano Macedonio mace@unive.it Algoritmi e Strutture Dati, A.A. 2012/13 27 ottobre 2012 Original work Copyright c 2009 Moreno Marzolla, Università di Bologna Modifications

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 1 Un introduzione informale agli algoritmi Definizione informale di algoritmo Insieme di istruzioni, definite passo per passo, in modo da poter essere eseguite meccanicamente

Dettagli

5) Equazioni di ricorrenza

5) Equazioni di ricorrenza Pag 37 5) Equazioni di ricorrenza Valutare la complessità di un algoritmo ricorsivo è, in genere, più laborioso che nel caso degli algoritmi iterativi. Infatti, la natura ricorsiva della soluzione algoritmica

Dettagli

Algoritmi e Strutture Dati. Capitolo 4 Ordinamento: Selection e Insertion Sort

Algoritmi e Strutture Dati. Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati Capitolo 4 Ordinamento: Selection e Insertion Sort Ordinamento Dato un insieme S di n elementi presi da un dominio totalmente ordinato, ordinare S in ordine non crescente o non

Dettagli

Algoritmi di ordinamento

Algoritmi di ordinamento Algoritmi e Strutture Dati Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Algoritmi di ordinamento Esempi: ordinare una lista di nomi alfabeticamente, o

Dettagli

Quick Sort. PARTITION(A,p,r) risistema il sottoarray A[p...r] e riporta l indice q:

Quick Sort. PARTITION(A,p,r) risistema il sottoarray A[p...r] e riporta l indice q: Quick Sort - Ordinamento in loco - Tempo di esecuzione nel caso peggiore: Θ(n 2 ) - Tempo di esecuzione nel caso medio: Θ(n lg n) - I fattori costanti nascosti nella notazione Θ sono abbastanza piccoli

Dettagli

Algoritmica. Note su Complessità. G. Prencipe

Algoritmica. Note su Complessità. G. Prencipe Algoritmica Note su Complessità G. Prencipe giuseppe.prencipe@unipi.it Tempo di esecuzione Il tempo di esecuzione di un programma dipende da: - Hardware - Compilatore - Input - Soluzione -. Computer potente

Dettagli

Algoritmi e strutture dati. Analisi di algoritmi Funzioni di costo, notazione asintotica

Algoritmi e strutture dati. Analisi di algoritmi Funzioni di costo, notazione asintotica Algoritmi e strutture dati Analisi di algoritmi Funzioni di costo, notazione asintotica Alberto Montresor Università di Trento 2016/09/11 This work is licensed under a Creative Commons Attribution-ShareAlike

Dettagli

Algoritmi e Strutture Dati. Divide-et-impera

Algoritmi e Strutture Dati. Divide-et-impera Algoritmi e Strutture Dati Divide-et-impera Alberto Montresor Università di Trento 2018/12/05 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Sommario 1

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 4 Ordinamento Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Esempi: ordinare alfabeticamente lista di nomi, o insieme

Dettagli

La ricorsione. Sommario. Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino

La ricorsione. Sommario. Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino La ricorsione Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino Sommario! Definizione di ricorsione e strategie divide et impera! Semplici algoritmi ricorsivi! Merge

Dettagli

Gli algoritmi ricorsivi di ordinamento. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Gli algoritmi ricorsivi di ordinamento. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino ordinamento Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Merge Sort Ricorsivo, divide et impera Stabile Divisione: due sottovettori SX e DX rispetto al centro del vettore. p r A.A.

Dettagli

Si imposti la relazione di ricorrenza che ne descrive la complessità e la si risolva utilizzando il metodo della sostituzione.

Si imposti la relazione di ricorrenza che ne descrive la complessità e la si risolva utilizzando il metodo della sostituzione. parte II - A 2 Si consideri la seguente funzione: analizzami(int n) c = 1 k = n*n while k > 1 do k = k/2 for i = 0 to 3 do if n >1 then analizzami(n/4) Si imposti la relazione di ricorrenza che ne descrive

Dettagli

Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti

Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente,

Dettagli

Esercizi su alberi binari

Esercizi su alberi binari Esercizi su alberi binari Esercizi svolti: Determinazione nodi contenti verifica completezza verifica quasi completezza lunghezza del cammino interno determinazione ultima foglia in un quasi completo verifica

Dettagli

Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti

Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Alberto Montresor 27 marzo 2012 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente,

Dettagli

Algoritmi e Strutture Dati. Analisi di algoritmi Funzioni di costo, notazione asintotica

Algoritmi e Strutture Dati. Analisi di algoritmi Funzioni di costo, notazione asintotica Algoritmi e Strutture Dati Analisi di algoritmi Funzioni di costo, notazione asintotica Alberto Montresor Università di Trento 2018/12/27 This work is licensed under a Creative Commons Attribution-ShareAlike

Dettagli

Ricerca di Massimo e Minimo di un Array

Ricerca di Massimo e Minimo di un Array Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/18 Ricerca di Massimo e Minimo di un Array Problema. Trova l elemento di

Dettagli

Algoritmi di Ordinamento

Algoritmi di Ordinamento Algoritmi di Ordinamento 1 Algoritmi di ordinamento Selection Sort Quick Sort Lower bound alla complessità degli algoritmi di ordinamento Statistiche di ordine 2 Selection Sort SelectionSort(dati[]) {

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi di Ordinamento Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Il problema dell ordinamento Il problema dell ordinamento di un insieme

Dettagli

Introduzione agli algoritmi Prova di esame del 19/9/2016 Prof.sse E. Fachini - R. Petreschi. Parte prima

Introduzione agli algoritmi Prova di esame del 19/9/2016 Prof.sse E. Fachini - R. Petreschi. Parte prima Introduzione agli algoritmi Prova di esame del 19/9/2016 Prof.sse E. Fachini - R. Petreschi Parte prima 1) Si dimostri il teorema sulla limitazione inferiore per il tempo asintotico di esecuzione nel caso

Dettagli

Ricorsione. DD cap. 5 pp KP cap. 5 pp

Ricorsione. DD cap. 5 pp KP cap. 5 pp Ricorsione DD cap. 5 pp.160-184 KP cap. 5 pp.199-208 Un esempio Problema: prendere in input un intero e calcolarne il fattoriale se n>1 n!=n(n-1)(n-2)(n-3) 1; se n=0 o 1 n!=1. ma (n-1)! la definizione

Dettagli

5. DIVIDE AND CONQUER I

5. DIVIDE AND CONQUER I Divide-et-Impera (Divide and conquer) 5. DIVIDE AND CONQUER I Mergesort e Relazioni di ricorrenza Esempi di progettazione D&I Moltiplicazione di interi Contare inversioni Divide-et-Impera. Definizione

Dettagli

Moltiplicazione veloce di interi

Moltiplicazione veloce di interi Moltiplicazione veloce di interi Ogni numero intero w di n cifre può essere scritto come 10 n/2 w s + w d w s indica il numero formato dalle n/2 cifre più significative di w w d denota il numero formato

Dettagli

COGNOME E NOME (IN STAMPATELLO) MATRICOLA

COGNOME E NOME (IN STAMPATELLO) MATRICOLA Politecnico di Milano Facoltà di Ingegneria dell Informazione Informatica 3 Proff. Campi, Ghezzi, Matera e Morzenti Appello del 14 Settembre 2006 Recupero II Parte COGNOME E NOME (IN STAMPATELLO) MATRICOLA

Dettagli

COGNOME E NOME (IN STAMPATELLO) MATRICOLA

COGNOME E NOME (IN STAMPATELLO) MATRICOLA Politecnico di Milano Facoltà di Ingegneria dell Informazione Informatica 3 Proff. Campi, Ghezzi, Matera e Morzenti Seconda prova in itinere 4 Luglio 2006 COGNOME E NOME (IN STAMPATELLO) MATRICOLA Risolvere

Dettagli

complessità degli algoritmi

complessità degli algoritmi complessità degli algoritmi progetto CORDA informatica algoritmo matematico persiano Muhammad al-khwarizmi (IX secolo) un algoritmo è una sequenza finita di passi interpretabili da un esecutore l esecuzione

Dettagli

ALGORITMI Docente: Prof. Domenico Cantone

ALGORITMI Docente: Prof. Domenico Cantone CORSO SPECILE DI DURT NNULE PER IL CONSEGUIMENTO DELL BILITZIONE LL INSEGNMENTO NELL SCUOL SECONDRI DI I e II GRDO Indirizzo Fisico - Informatico - Matematico a.a. 00/07 - Classe - Informatica LGORITMI

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it 12 ottobre 2010 1 Vero o falso? Per ciascuna delle seguenti affermazioni, dire se è vera o falsa, fornendo una dimostrazione:

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Heap Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino 6 novembre 2008 Heap binari: definizione Un heap binario è una albero binario quasi completo

Dettagli

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09)

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09) ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 0/0) DISPENSA N. 6 Esercizi su alberi di ricerca e AVL Notazione: Per un albero T scriviamo T per indicare il numero dei nodi di T e h(t ) per indicare

Dettagli

Programmazione ricorsiva.

Programmazione ricorsiva. In quasi tutti i linguaggi di programmazione evoluti è ammessa la possibilità di definire funzioni/procedure ricorsive: durante l esecuzione di una funzione F è possibile chiamare la funzione F stessa.

Dettagli

Algoritmi e Strutture Dati. Capitolo 4 Ordinamento

Algoritmi e Strutture Dati. Capitolo 4 Ordinamento Algoritmi e Strutture Dati Capitolo 4 Ordinamento Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Esempi: ordinare una lista di nomi alfabeticamente, o un

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Heap Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Heap Heap binari: definizione Un heap binario è una struttura dati composta

Dettagli

Testo di riferimento. Problema delle 12 monete. Algoritmi. Complessità degli algoritmi (cenni) Dispense del Corso di Algoritmi e Strutture Dati

Testo di riferimento. Problema delle 12 monete. Algoritmi. Complessità degli algoritmi (cenni) Dispense del Corso di Algoritmi e Strutture Dati Testo di riferimento Complessità degli algoritmi (cenni) CORDA Informatica A. Ferrari Dispense del Corso di Algoritmi e Strutture Dati Marco Bernardo - Edoardo Bontà Università degli Studi di Urbino Carlo

Dettagli

Complessità degli algoritmi (cenni)

Complessità degli algoritmi (cenni) Complessità degli algoritmi (cenni) CORDA Informatica A. Ferrari Testo di riferimento Dispense del Corso di Algoritmi e Strutture Dati Marco Bernardo - Edoardo Bontà Università degli Studi di Urbino Carlo

Dettagli

Crescita funzioni. 20 novembre Come possiamo confrontare le funzioni di costo che abbiamo ottenuto finora?

Crescita funzioni. 20 novembre Come possiamo confrontare le funzioni di costo che abbiamo ottenuto finora? Crescita funzioni 20 novembre 2006 1 Funzioni di costo Definizione 1 (Funzione di costo). Utilizziamo il termine funzione di costo per indicare una funzione f : N R dall insieme dei numeri naturali ai

Dettagli

Esercizio. 2 i=i*2) j=j*2)

Esercizio. 2 i=i*2) j=j*2) Esercizio 1 Esercizio 2 i=i*2) j=j*2) Soluzione Il frammento è composto da due parti quasi identiche. L unica differenza è il modo in cui crescono i contatori. Nella prima parte la crescita è lineare mentre

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi di Ordinamento Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino 13 novembre 2008 Il problema dell ordinamento Il problema dell ordinamento

Dettagli

Tecniche Algoritmiche/1 Divide et Impera

Tecniche Algoritmiche/1 Divide et Impera Tecniche Algoritmiche/1 Divide et Impera Ivan Lanese Dipartimento di Informatica Scienza e Ingegneria Università di Bologna Ivan.lanese@gmail.com http://www.cs.unibo.it/~lanese/ Divide-et-impera 2 Tecniche

Dettagli

Corso di Fondamenti di Programmazione canale E-O. Un esempio. Funzioni ricorsive. La ricorsione

Corso di Fondamenti di Programmazione canale E-O. Un esempio. Funzioni ricorsive. La ricorsione Corso di Fondamenti di Programmazione canale E-O Tiziana Calamoneri Ricorsione DD Cap. 5, pp. 160-184 KP Cap. 5, pp. 199-208 Un esempio Problema: prendere in input un intero e calcolarne il fattoriale

Dettagli

Lab 6 Info B. Luca M. Cassano Sadegh M. Astaneh Matteo Papini

Lab 6 Info B. Luca M. Cassano Sadegh M. Astaneh Matteo Papini Lab 6 Info B Luca M. Cassano luca.cassano@polimi.it Sadegh M. Astaneh sadegh.astaneh@unimi.it Matteo Papini matteo.papini@polimi.it Lab 6: Obiettivi Introduzione a Matlab/Octave Grafici Funzioni Ricorsive

Dettagli

Università degli Studi di Camerino Laurea in Informatica Prima Prova Parziale del corso di Algoritmi e Strutture Dati

Università degli Studi di Camerino Laurea in Informatica Prima Prova Parziale del corso di Algoritmi e Strutture Dati Università degli Studi di Camerino Laurea in Informatica Prima Prova Parziale del corso di Algoritmi e Strutture Dati Docente: Maria Rita Di Berardini 19 dicembre 2007 Nome: Cognome: N.Matricola: Note:

Dettagli

Tecniche di analisi degli algoritmi

Tecniche di analisi degli algoritmi Tecniche di analisi degli algoritmi Moreno Marzolla, Lorenzo Donatiello Dipartimento di Infromatica, Università di Bologna 29 ottobre 2017 Copyright c 2009, 2010 Moreno Marzolla, Università di Bologna

Dettagli

Introduzione al Corso di Algoritmi

Introduzione al Corso di Algoritmi Introduzione al Corso di Algoritmi Di cosa parliamo oggi: Una discussione generale su cosa studieremo, perchè lo studeriemo, come lo studieremo,... Un esempio illustrativo di cosa studeriemo Informazione

Dettagli

2. Analisi degli Algoritmi

2. Analisi degli Algoritmi 2. Analisi degli Algoritmi Introduzione 2.1 Un modello di macchina elementare: la Macchina a Registri 2.2 Costo di esecuzione di un programma 2.3 Analisi del costo di esecuzione: il modello a costi uniformi

Dettagli

come segue: data una collezione C di elementi e una un elemento che verifica la proprietà P

come segue: data una collezione C di elementi e una un elemento che verifica la proprietà P Problemi di Ricerca Carla Binucci e Walter Didimo Il problema della Ricerca In generale, il Problema della Ricerca è definito come segue: data una collezione C di elementi e una proprietà P, determinare

Dettagli

QUICKSORT. Basato sul paradigma divide-et-impera (come MERGE-SORT)

QUICKSORT. Basato sul paradigma divide-et-impera (come MERGE-SORT) QUICKSORT Basato sul paradigma divide-et-impera (come MERGE-SORT) Divide: stabilisce un valore di q tale da dividere l array A[p.. r] in due sottoarray non vuoti A[p.. q] e A[q+1.. r], dove ogni elemento

Dettagli