LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010. Esame scritto del 25/02/2010

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010. Esame scritto del 25/02/2010"

Transcript

1 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 29/2 Corso di Metodi Matematici per la Finanza Pro Fausto Gozzi, Dr Davide Vergni Esame scritto del 25/2/2 Sia dato lo spazio vettoriale V R 2 e l'operatore ˆL : V V tale che ˆL a = a 3 3 punti a Determinare i valori di a per cui l'operatore ˆL ammetta sottospazi invarianti reali 3 punti b Fissato un valore di a tra quelli precedentemente trovati determinare ˆL n come inversa di ˆL n ossia in modo che ˆL n ˆLn = Î Vericare il risultato a Condizione perché l'operatore ˆL ammetta sottospazi invarianti reali è che abbia almeno un autovalore reale Calcoliamo quindi gli autovalori di ˆL λ detˆl λî = det a a = λ 3 λ + a 2 = λ 2 + 2λ 3 + a 2 = 3 λ Perché questo polinomio abbia radici reali è necessario che il suo discriminante sia maggiore o uguale a : = 6 4a 2 2 a 2 b Il procedimento per calcolare ˆL n consiste nel calcolare prima ˆL n e successivamente invertire questa matrice Poiché siamo liberi di scegliere a nel range 2 a 2 scegliamo a = che è la scelta che maggiormente semplica l'operatore ˆL che diventa diagonale: ˆL = det 3 ˆLn = det 3 n La verica del risultato è in questo caso banale 2 Sia dato il sistema di equazioni dierenziali in R 3 x t = Âxt, con  = 3 punti a Determinarne la soluzione generale 3 punti b Determinarne i punti di equilibrio e la loro stabilità ˆL n = det 3 n a Eettuiamo la decomposizione spettrale dell'operatore Iniziamo con il calcolarne gli autovalori: λ detâ λî = det λ = λ λ 2 = λλ 2 2λ = λ 2 2 λ = λ Pertanto gli autovalori sono λ = con molteplicità algebrica pari a 2 e λ = 2 con molteplicità algebrica pari a Calcoliamo gli autovettori:

2 a Autovettori associati a λ =,  λîv = Âv = In questo caso, il rango della matrice  λî =  è pari ad uno, e quindi l'equazione Âv = ammette innito alla due soluzioni a cui sono associati due autovettori indipendenti x y = { x + y = v = v 2 = z b Autovettore associato a λ = 2,  λîv =  2Îv = In questo caso il rando di  λî è pari a due, e quindi abbiamo un solo autovettore x - y = -2 z { x y = x + y 2z = v 2 = Avendo determinato tre autovettori indipendenti deniamo una nuova base F = v v 2 v 2 con associata la matrice del cambiamento di base Û = v v 2 v 2 = otteniamo la soluzione generale come: c xt = eât x = ÛeÂFt Û x = v v 2 v 2 c 2, e 2t c 3 ma, in questo caso, visto che abbiamo una base completa di autovettori, possiamo scrivere: xt = c v + c 2 v 2 + c 3 v 2 e 2t b I punti di equilibrio delle equazioni dierenziali si ottengono ponendo x = In questo caso, si dovrà avere Âx = Tale equazione ammette sempre la soluzione banale x = Si hanno più soluzioni se detâ = In questo caso, non solo detâ = ma il rango di  è pari ad uno Per cui si avranno inito alla due soluzioni del sistema Âx = che individuano un piano determinato dai due autovettori associati a λ = Tutti i punti di tale piano sono punti di equilibrio Per quanto riguarda la loro natura, essi saranno instabili, in quanto nello spettro di  è presente un autovalore maggiore di { x 3 Data la unzione x = x t = xt arctgx, si consideri il problema di Cauchy x = x R punto a Dire, motivando la risposta, se esiste un'unica soluzione locale per ogni x R 2 punti b Disegnare il diagramma di ase punto c Trovare i punti di equilibrio e dire se sono stabili o no 2 punti d Dire, motivando la risposta, per quali x R le soluzioni locali sono anche globali a La unzione : R R, x = x arctgx, è, continua e derivabile con derivata continua in quanto è composizione di unzioni C Perciò, grazie al teorema di Cauchy-Lipschitz-Picard, il problema di Cauchy ammette un'unica soluzione locale per ogni dato iniziale x R

3 x x b-c L'equazione x = ha per unica soluzione x = dato che la unzione x è il prodotto di due unzioni che si annullano entrambe solo in x = Quindi l'unico punto di equilibrio è x = Per disegnare il diagramma di ase occorre are un graco approssimativo della unzione x da cui risultino gli intervalli in cui essa è positiva e quelli in cui è negativa Innanzitutto, usando che lim arctgx = π x 2, lim arctgx = π x + 2, e usando il teorema sul limite del prodotto, è immediato vedere che: lim x = +, lim x x = +, x + Calcolando la derivata si ha x = arctgx + x + x 2 Osserviamo ora che ciascuno dei due addendi è strettamente positivo per x > ed è strettamente negativo per x < Ne segue che x > per x > ; x < per x < ; x = per x = Ne segue che x = è l'unico punto di minimo locale e globale con = Quindi > per x ; = per x = Disegnando il graco di si ottiene quindi che le traiettorie del sistema crescono se il dato iniziale è x < e crescono anche se il dato iniziale è x > Ne segue che il punto di equilibrio x = è instabile d Il teorema di prolungamento Teorema 242 non può essere usato in questo caso o meglio può essere usato solo per dedurre che, se x <, l'unica soluzione è globale Tuttavia possiamo usare l'altro teorema di esistenza e unicità globale Teorema 242 Inatti, dallo studio atto al punto b scopriamo che la unzione è denita su R, è ivi derivabile e la sua derivata ivi limitata Il Teorema 242 assicura allora che il nostro problema di Cauchy ha soluzione globale unica per ogni dato iniziale x R e questo è vero anche per tempi negativi 4 Data la unzione t, x = t + x + a con a R, si consideri il problema di Cauchy { xt+ = t, x t x = x > 3 punti a Trovare la soluzione al variare di a R 3 punti b Nel caso in cui a = trovare i punti di equilibrio e discuterne la stabilità Per trovare la soluzione basta applicare la ormula si vedano le dispense al capitolo sulle equazioni alle dierenze t xt = x Π t s= s + + aπ t r=s+ r + s= Usando che si ha quindi: che, volendo, si può riscrivere come Π t s= s + = t!, Πt r=s+ r + = t! s +! t t! xt = x t! + a s +! s= t xt = x t! + at! s +! s=

4 5 Si consideri il seguente sistema di equazioni dierenziali ordinarie preda-predatore con competizione per le risorse: { x t = axtm xt xtyt y t = byt + xtyt 3 punti a Trovare i punti di equilibrio al variare dei parametri a, b, M > 3 punti b Discutere la loro stabilità a Per trovare i punti di equilibrio occorre risolvere il sistema axm x xy =, by + xy = Consideriamo la seconda equazione Esse si riscrive come y b + x = y =, oppure x = b Se y =, sostituendo nella prim equazione otteniamo axm x = x =, oppure x = M Troviamo quindi, in questo primo caso, due punti di equilibrio: P =,, P 2 = M, Passiamo al secondo caso, quello in cui x = b In tal caso, sostituendo nella prima equazione abbiamo Si trova quindi un terzo punto di equilibrio abm b by = y = am b P 3 = b, am b Se b = M cosa possibile con le nostre ipotesi allora P 3 = P 2 Quindi in tal caso i punti di equilibrio sono 2 Negli altri casi i punti di equilibrio sono 3 Notiamo che P e P 2 stanno sempre nell'ortante semipositivo Invece P 3 sta nell'ortante positivo solo se b < M Se b > M sta nel quarto quadrante b Per discutere la stabilità dei punti di equilibrio dobbiamo trovare il Jacobiano Dx, y della unzione x, y = axm x xy, by + xy Si ha am 2ax y x Dx, y = y b + x Calcoliamo ora il Jacobiano nei punti di equilibrio e discutiamo la stabilità usando il Teorema di Hartmann-Grossmann Iniziamo da P =, D, = am b Da qui segue che il punto P =, è un colle instabile Vediamo ora P 2 = M, am M DM, = b + M Dato che la matrice è triangolare superiore gli autovalori sono gli elementi della diagonale principale: am < e b + M Quindi: se b + M <, cioè M < b, allora il punto di equilibrio è asintoticamente stabile ricordiamo che in tal caso il punto di equilibrio P 3 = b, am b sta nel quarto quadrante;

5 se se b + M >, cioè M > b, allora il punto di equilibrio è un colle instabile ricordiamo che in tal caso il punto di equilibrio P 3 = b, am b sta nel primo quadrante; se b + M =, cioè M = b, allora il Teorema di Hartmann-Grossmann non permette di dare risposte ricordiamo che in tal caso il punto di equilibrio P 3 = P 2 e quindi vi sono solo due punti di equilibrio Possiamo dire che nel sistema linearizzato vi sono inniti punti di equilibrio che sono stabili ma non asintoticamente stabili Vediamo inne P 3 = b, am b Db, am b = ab b am b Il determinante vale abm b, mentre la traccia vale ab < Quindi: se M b <, cioè M < b, allora il determinante è negativo e quindi vi sono due autovalori reali discordi Questo signica che il punto di equilibrio è un colle instabile ricordiamo che in tal caso il punto di equilibrio P 2 = M, è asintoticamente stabile; M b >, cioè M > b, allora il determinante è positivo e la traccia è negativa Questo signica che gli autovalori hanno parte reale concorde e negativa Il punto di equilibrio è quindi asintoticamente stabile ricordiamo che in tal caso il punto di equilibrio P 3 = b, am b sta nel primo quadrante; se b + M =, cioè M = b, allora P 3 = P 2 e vale quanto detto per il punto P 2 in questo caso

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 29/2 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni dell'esame scritto del 2//2. Sia dato lo

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 21/211 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni dell'esame scritto del 1/6/211 1. Sia dato

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 00/0 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni all'esame scritto del 3/0/0 0 a 0 a. Dato

Dettagli

1 Prima parte. Esercizio 1.1 [3 punti] Dato un operatore φ : U V discutere una tecnica pratica per determinare la dimensione della sua immagine.

1 Prima parte. Esercizio 1.1 [3 punti] Dato un operatore φ : U V discutere una tecnica pratica per determinare la dimensione della sua immagine. LUISS, Facoltà di Economia Esame di Metodi Matematici per Economia e Finanza del 7 giugno 0 Titolare prof. Fausto Gozzi, Assistente prof. Davide Vergni Nome e cognome Matricola Canale Prima parte Esercizio.

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 1/11 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni esercizi 4,5,6 esame scritto del 13/9/11

Dettagli

Sistemi Dinamici Corso di Laurea in Matematica Prova parziale del ẋ = y y 2 + 2x

Sistemi Dinamici Corso di Laurea in Matematica Prova parziale del ẋ = y y 2 + 2x Sistemi Dinamici Corso di Laurea in Matematica Prova parziale del --08 Esercizio. 0 punti Studiare al variare del parametro µ R con µ, la stabilità dell origine per il sistema ẋ = µy + y x 3 x 5 ẏ = x

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 7 settembre 2015

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 7 settembre 2015 Corso di Laurea in Matematica - Esame di Geometria 1 Prova scritta del 7 settembre 215 Cognome Nome Numero di matricola Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi. corretti, non

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

Fondamenti di Matematica del discreto

Fondamenti di Matematica del discreto Fondamenti di Matematica del discreto M1 - Insiemi numerici 12 gennaio 2013 - Laurea on line Esercizio 1. Dire, motivando la risposta, quali delle seguenti equazione diofantee ammettono soluzioni e risolvere

Dettagli

FM1 - Equazioni differenziali e meccanica

FM1 - Equazioni differenziali e meccanica Corso di laurea in Matematica - Anno Accademico 2006/2007 FM1 - Equazioni differenziali e meccanica Prima prova d esonero (03-04-2006) CORREZIONE Esercizio 1. Lo spettro Σ(A) della matrice A si trova risolvendo

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Compito di Analisi Matematica II del 28 giugno 2006 ore 11

Compito di Analisi Matematica II del 28 giugno 2006 ore 11 Compito di Analisi Matematica II del 28 giugno 26 ore Esercizio. ( punti) Calcolare il flusso del campo vettoriale F (,, z) = (z, z 2, z 2 ) } uscente dalla frontiera di D = (,, z) R 3 : 2 + z 2, z,. Svolgimento

Dettagli

PROVE D'ESAME DI MATEMATICA DISCRETA A.A. 2010/2011

PROVE D'ESAME DI MATEMATICA DISCRETA A.A. 2010/2011 PROVE D'ESAME DI MATEMATICA DISCRETA A.A. 200/20 07/06/20 () In R 3 [t], lo spazio vettoriale dei polinomi nella variabile t di grado al piú 3, sia u = t 2 5t + 6 e w = t 3 + t 2 t. (a) Determinare una

Dettagli

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia Geometria A Università degli Studi di Trento Corso di laurea in Matematica A.A. 7/8 Maggio 8 Prova Intermedia Il tempo per la prova è di ore. Durante la prova non è permesso l uso di appunti e libri. Esercizio

Dettagli

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI Generalità sui sistemi Sia xt, yt la soluzione del problema di Cauchy Posto vt = e xtyt, calcolare v x = 3x x = y = x y = 0 Sia x = 3x y y = x + y Scrivere

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

ESAMI DI MATEMATICA DISCRETA 2009/2010

ESAMI DI MATEMATICA DISCRETA 2009/2010 ESAMI DI MATEMATICA DISCRETA 2009/2010 09/06/2009 (1) In R 4 si considerino il sottospazio vettoriale W k = Span{(2, 1, 0, 1), (1, 1, 1, 1), (k, 1, 0, 1)} e il sottospazio vettoriale U dato da tutti i

Dettagli

Algebra Lineare Corso di Ingegneria Biomedica Compito del

Algebra Lineare Corso di Ingegneria Biomedica Compito del Algebra Lineare Corso di Ingegneria Biomedica Compito del -- - È obbligatorio consegnare tutti i fogli, anche il testo del compito e i fogli di brutta. - Le risposte senza giustificazione sono considerate

Dettagli

ESERCIZI DEL TUTORATO DI FISICA MATEMATICA. 1. Prima parte Esercizio 1.1 (G. Stefani). Sia X il campo vettoriale lineare associato alla matrice A =.

ESERCIZI DEL TUTORATO DI FISICA MATEMATICA. 1. Prima parte Esercizio 1.1 (G. Stefani). Sia X il campo vettoriale lineare associato alla matrice A =. ESERCIZI DEL TUTORATO DI FISICA MATEMATICA GIORGIO STEFANI Sommario. I seguenti esercizi sono stati svolti durante il tutorato per il corso di Fisica Matematica dell a.a. 0-03, tenuto dal Prof. A. Lovison.

Dettagli

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 2018 Parte B Tema B1

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 2018 Parte B Tema B1 Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 08 Parte B Tema B Tempo a disposizione: due ore. Calcolatrici, libri e appunti non sono ammessi.

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Geometria e Algebra Lineare

Geometria e Algebra Lineare Università di Bergamo Primo anno di Ingegneria Geometria e Algebra Lineare Anno accademico 0809 Domande su: Autovalori e autovettori. Forme quadratiche, coniche e quadriche Autovettori e autovalori Esercizio

Dettagli

Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d

Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d Algebra lineare 1. Riconoscere se il seguente insieme costituisce uno spazio vettoriale. In caso affermativo trovarne la dimensione e una base. (R n [x] denota lo spazio dei polinomi nell indeterminata

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2016-2017 Prova scritta del 29-1-2018 TESTO E SOLUZIONI Svolgere tutti gli esercizi. 1. Per k R considerare il sistema

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 24 giugno 2011 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 24 giugno 2011 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 24 giugno 20 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Esercitazioni del Marzo di Geometria A

Esercitazioni del Marzo di Geometria A Esercitazioni del -5 Marzo di Geometria A Università degli Studi di Trento Corso di laurea in Matematica AA 07/08 Matteo Bonini matteobonini@unitnit Esercizio Si consideri la matrice 0 A 0 0 0 0 (i Scrivere

Dettagli

Matematica Discreta I

Matematica Discreta I Matematica Discreta I 5 Febbraio 8 TEMA A Esercizio Sia data la matrice A M (R) A = (i) Calcolare gli autovalori di A (ii) Determinare una base di R composta di autovettori di A (iii) Diagonalizzare la

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE0 - Geometria a.a. 07-08 Prova scritta del 7-7-08 TESTO E SOLUZIONI Svolgere tutti gli esercizi.. Per R considerare il sistema lineare X

Dettagli

ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE. Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R:

ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE. Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R: ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R: x 1 + x = 0 6x 1 + (λ + )x + x 3 + x 4 = 1 x 1 4x + (λ + 1)x 3 + 6x 4 = 3

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

3. Elementi di Algebra Lineare.

3. Elementi di Algebra Lineare. CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari 3. Elementi di Algebra Lineare. 1 Sistemi lineari Sia A IR m n, x IR n di n Ax = b è un vettore di m componenti.

Dettagli

Soluzione: La matrice M cercata è quella formata dagli autovettori di A. Il polinomio caratteristico di A è: p t (A) = (t 1)(t 3) 0 4 V 1 = Ker

Soluzione: La matrice M cercata è quella formata dagli autovettori di A. Il polinomio caratteristico di A è: p t (A) = (t 1)(t 3) 0 4 V 1 = Ker Compito di Algebra Lineare - Ingegneria Biomedica 4 luglio 7 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Fondamenti di Matematica del discreto

Fondamenti di Matematica del discreto Fondamenti di Matematica del discreto M1 - Insiemi numerici 25 gennaio 2013 - Laurea on line Esercizio 1. Dire, motivando la risposta, se è possibile scrivere 3 come combinazione lineare di 507 e 2010,

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 settembre 2013 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 settembre 2013 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) settembre 013 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

Geometria affine e proiettiva

Geometria affine e proiettiva Geometria affine e proiettiva Laura Facchini 7 aprile 20 Esercizio. Sia E 4 il 4-spazio euclideo numerico dotato del riferimento cartesiano standard di coordinate (x, y, z, w. Siano P (0, 0,,, P (, 2,,,

Dettagli

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0 Dipartimento di Matematica e Informatica Anno Accademico 206-207 Corso di Laurea in Informatica (L-3) Prova scritta di Matematica Discreta (2 CFU) 6 Settembre 207 Parte A [0 punti] Sia data la successione

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1 LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica Padova -8-8 TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono vere o false giustificando brevemente

Dettagli

Corso di Matematica Discreta. Anno accademico Appunti sulla diagonalizzazione.

Corso di Matematica Discreta. Anno accademico Appunti sulla diagonalizzazione. Corso di Matematica Discreta. Anno accademico 2008-2009 Appunti sulla diagonalizzazione. Autovalori e autovettori di un endomorfismo lineare. Sia T : V V una applicazione lineare da uno spazio vettoriale

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2015-2016 Prova scritta del 16-9-2016 TESTO E SOLUZIONI Svolgere tutti gli esercizi. 1. Per k R considerare il sistema

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 9 GEOMETRIA E ALGEBRA LINEARE 2012/13 Esercizio 9.1 (8.40). Sia T : R 2 R 3 l applicazione definita da T(x,y) = (2x,x y,2y), e siano B = {(1,0), (1,1)

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 1

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 1 Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 1 A.A. 28-29 - Docente: Prof. E. Sernesi Tutori: Andrea Abbate e Matteo Acclavio Soluzioni del tutorato numero 1 14

Dettagli

Equazioni differenziali Problema di Cauchy

Equazioni differenziali Problema di Cauchy Equazioni differenziali Problema di Cauch Primo esempio - Risolvere l equazione '( ) = g( ) con g( ) :[ a, b] R continua Teor. fondamentale del calcolo integrale ( ) = + g ( t )dt Primo esempio - Osserviamo

Dettagli

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica.

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica. Lezioni del 14.05 e 17.05 In queste lezioni si sono svolti i seguenti argomenti. Ripresa del teorema generale che fornisce condizioni che implicano la diagonalizzabilità, indebolimento delle ipotesi, e

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 10 aprile 01 Esercizio 1 Sia E 3 lo spazio euclideo tridimensionale dotato di un riferimento cartesiano ortonormale di coordinate

Dettagli

1 Addendum su Diagonalizzazione

1 Addendum su Diagonalizzazione Addendum su Diagonalizzazione Vedere le dispense per le definizioni di autovettorre, autovalore e di trasformazione lineare (o matrice) diagonalizzabile. In particolare, si ricorda che una condizione necessaria

Dettagli

Prodotto scalare e matrici < PX,PY >=< X,Y >

Prodotto scalare e matrici < PX,PY >=< X,Y > Prodotto scalare e matrici Matrici ortogonali Consideriamo in R n il prodotto scalare canonico < X,Y >= X T Y = x 1 y 1 + +x n y n. Ci domandiamo se esistono matrici P che conservino il prodotto scalare,

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 AA 2013-2014 - Docente: Prof Angelo Felice Lopez Tutori: Dario Giannini e Giulia Salustri Soluzioni Tutorato 7 24 Aprile

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 20 settembre 2013 Versione 1

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 20 settembre 2013 Versione 1 Corso di Laurea in Matematica - Esame di Geometria 1 Prova scritta del 20 settembre 2013 Versione 1 Cognome Nome Numero di matricola Corso (A o B) Voto ATTENZIONE. Riportare lo svolgimento completo degli

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

Autovettori e autovalori

Autovettori e autovalori Autovettori e autovalori Definizione 1 Sia A Mat(n, n), matrice a coefficienti reali. Si dice autovalore di A un numero λ R tale che v 0 R n Av = λv. Ogni vettore non nullo v che soddisfa questa relazione

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

PROVA SCRITTA DEL 10 LUGLIO 2008 e SOLUZIONI. Per ognuno dei seguenti quiz indicare l unica risposta corretta tra le quattro proposte.

PROVA SCRITTA DEL 10 LUGLIO 2008 e SOLUZIONI. Per ognuno dei seguenti quiz indicare l unica risposta corretta tra le quattro proposte. Geometria B1-02efe Geometria - 13bcg PROVA SCRITTA DEL 10 LUGLIO 2008 e SOLUZIONI Per ognuno dei seguenti quiz indicare l unica risposta corretta tra le quattro proposte. Esercizio 1. Sia u, v, w vettori

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Risoluzione del compito n. 4 (Giugno 2014)

Risoluzione del compito n. 4 (Giugno 2014) Risoluzione del compito n. 4 Giugno 2014) PROBLEMA 1 Determinate le soluzioni z, w), con z, w C,delsistema { z = w 2 w i Dalla prima equazione ricaviamo 2iz +4i z = w 2. che sostituito nella seconda la

Dettagli

Traccia dello svolgimento di alcuni esercizi del compito del 15/04/08

Traccia dello svolgimento di alcuni esercizi del compito del 15/04/08 Traccia dello svolgimento di alcuni esercizi del comito del //8 Esercizio.. L esercizio richiede di risolvere in generale il seguente sistema lineare @ A = b a. Il sistema ^A = b ammette soluzioni se Rg(

Dettagli

=. Il vettore non è della forma λ, dunque non è un. 2. Il vettore 8 2 non è della forma λ 1

=. Il vettore non è della forma λ, dunque non è un. 2. Il vettore 8 2 non è della forma λ 1 a.a. 2005-2006 Esercizi. Autovalori e autovettori. Soluzioni. Sia A = e sia x =. Dire se x è autovettore di A. Se si dire per quale 8 autovalore. Sol. Si ha =. Il vettore non è della forma λ dunque 8 29

Dettagli

Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 2018/2019 Canali A C, L Pa, Pb Z

Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 2018/2019 Canali A C, L Pa, Pb Z Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 8/9 Canali A C, L Pa, Pb Z Durata: ore e 3 minuti Alessandro D Andrea Simone Diverio Paolo Piccinni Riccardo Salvati Manni 5 giugno

Dettagli

Matrici jordanizzabili

Matrici jordanizzabili Capitolo 17 Matrici jordanizzabili 17.1 Introduzione Abbiamo visto che non tutte le matrici sono simili a matrici diagonali. Mostreremo in questo capitolo che alcune matrici sono simili a matrici di Jordan.

Dettagli

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si

Dettagli

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u Esercizio Si consideri il sistema meccanico riportato in Figura, dove m e m sono le masse dei carrelli, z e z sono le rispettive posizioni, k e k sono i coefficienti elastici delle molle, e β è un coefficiente

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria 1 che ho tenuto presso la

Dettagli

Matrici simili. Matrici diagonalizzabili.

Matrici simili. Matrici diagonalizzabili. Matrici simili. Matrici diagonalizzabili. Definizione (Matrici simili) Due matrici quadrate A, B si dicono simili se esiste una matrice invertibile P tale che B = P A P. () interpretazione: cambio di base.

Dettagli

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 4 luglio 2016 Parte B Tema B1

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 4 luglio 2016 Parte B Tema B1 Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello luglio 6 Parte B Tema B Tempo a disposizione: due ore. Calcolatrici, libri e appunti non sono ammessi.

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Analisi II, a.a Soluzioni 3

Analisi II, a.a Soluzioni 3 Analisi II, a.a. 2017-2018 Soluzioni 3 1) Consideriamo la funzione F : R 2 R 2 definita come F (x, y) = (x 2 + y 2, x 2 y 2 ). (i) Calcolare la matrice Jacobiana DF e determinare in quali punti F è localmente

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

Algebra lineare Geometria 1 15 luglio 2009

Algebra lineare Geometria 1 15 luglio 2009 Algebra lineare Geometria 1 15 luglio 2009 Esercizio 1. Nello spazio vettoriale reale R 3 [x] si considerino l insieme A k = {1 + x, k + (1 k)x 2, 1 + (k 1)x 2 + x 3 }, il vettore v k = k + kx x 3 e la

Dettagli

ẋ + a 0 x = 0 (1) Dimostrazione. Risolvendo la (1) per separazione di variabili, troviamo x(t) = c 0 e a0t (2) φ :R S 1 ẍ + a 1 ẋ + a 0 x = 0 (3)

ẋ + a 0 x = 0 (1) Dimostrazione. Risolvendo la (1) per separazione di variabili, troviamo x(t) = c 0 e a0t (2) φ :R S 1 ẍ + a 1 ẋ + a 0 x = 0 (3) Corso di laurea in Matematica - Anno Accademico 006/007 FM1 - Equazioni dierenziali e meccanica Il metodo della variazione delle costanti (Livia Corsi Il metodo della variazione delle costanti è una tecnica

Dettagli

Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura

Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura Tutore: Eleonora Palmieri 14 febbraio 2007 Esercizio 1: Si consideri in R 2 la conica Γ : 2x 2 1 + 4x 2 2 + x 1 + 2x 2 = 0. 1. Ridurre Γ

Dettagli

Geometria e algebra lineare 7/2/2018 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione

Geometria e algebra lineare 7/2/2018 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione Geometria e algebra lineare 7//08 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione A Esercizio A Siano r la retta passante per i punti A = (0,, 0) e B = (,, ) ed s la retta

Dettagli

Esercizio 1 Dato il sistema:

Esercizio 1 Dato il sistema: Leione - Esercitaioni di Algebra e Geometria - Anno accademico 9- Eserciio Dato il sistema: R ) ( a) studiare il rango della matrice incompleta del sistema; b) studiare il rango della matrice completa

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Determinante, autovalori e autovettori

Determinante, autovalori e autovettori Determinante, autovalori e autovettori Lorenzo Pareschi Dipartimento di Matematica, Universitá di Ferrara http://wwwlorenzopareschicom lorenzopareschi@unifeit Lorenzo Pareschi (Univ Ferrara) Determinante,

Dettagli

Polinomio di Taylor del secondo ordine per funzioni di due variabili

Polinomio di Taylor del secondo ordine per funzioni di due variabili Esercitazioni del 15 aprile 2013 Polinomio di Taylor del secondo ordine per funzioni di due variabili Sia f : A R 2 R una funzione di classe C 2. Fissato un p unto (x 0, y 0 A consideriamo il seguente

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA II PROVA DI ACCERTAMENTO, FILA A GEOMETRIA 19/06/008 Esercizio 0.1. Si consideri il seguente endomorfismo di R 4 T (x, y, z, w) = ( x + y + z + w, y + z,

Dettagli

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2 Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. Corso di laurea in Matematica, a.a. 003-004 17 dicembre 003 1. Si consideri la funzione f : R R definita da f(x, y) = x 4 y arctan

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3 Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 7-7-8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

(E) : 2x 43 mod 5. (2 + h)x + y = 0

(E) : 2x 43 mod 5. (2 + h)x + y = 0 Dipartimento di Matematica e Informatica Anno Accademico 2016-2017 Corso di Laurea in Informatica (L-31) Prova scritta di Matematica Discreta (12 CFU) 27 Settembre 2017 Parte A 1 [10 punti] Sia data la

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 =

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 = aa -6 Soluzioni Esercizi Applicazioni lineari Sia data l applicazione lineare F : R R, F X A X, dove A i Sia {e, e, e } la base canonica di R Far vedere che i vettori e e + e, e e + e, e e, formano una

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 2000 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 2000 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 000 Tempo assegnato: ore e 30 minuti PRIMO ESERCIZIO [7 punti] 1 Dimostrare che, per ogni naturale n, ciascuna

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli 5 Febbraio 7 Esercizio. Si considerino i due sottospazi π e π di R dati dalle seguenti equazioni: π : x y + z = ; π : x + y z =.. Trovare una

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Compito di MD 4 Giugno 2014

Compito di MD 4 Giugno 2014 Compito di MD 4 Giugno 2014 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non saranno valutate risposte prive di motivazioni,

Dettagli

5 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

5 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 5 febbraio 015 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 014-15 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli