11 aprile Annalisa Tirella.
|
|
|
- Edmondo Festa
- 9 anni fa
- Visualizzazioni
Transcript
1 Scienze dei Materiali A.A. 2010/ aprile 2011 Annalisa Tirella
2 Metalli I metalli sono elementi chimici che possono essere utilizzati sia puri che in forma di leghe (combinazioni di più elementi). Sono noti per le ottime caratteristiche di conduzione elettrica e termica, nonché per la resistenza meccanica. La struttura micro e macroscopica è strettamente legata alle tecniche di lavorazione.
3 Metalli Descritti come una distribuzione di cariche positive (nuclei atomici) circondati da un maredi elettroni delocalizzati. Una così stretta vicinanza degli atomi consente agli elettroni, appartenenti agli orbitali più esterni, detti elettroni di valenza, di essere attratti da nuclei contigui. Il legame che tiene legati nuclei ed elettroni è detto legame metallico.
4 Proprietà CHIMICO-FISICHE Densità Temperature fusione, ebollizione Cristallinità Conduttività elettrica Conduttività termica Permeabilità Indice di rifrazione Colore Ecc.
5 Reticolo cristallino (cristallinità) Il reticolo cristallino è una rappresentazione geometrica che possiede una precisa disposizione di atomi ai vertici di una struttura solida. La disposizione periodica ed ordinata di reticoli cristallini conferisce il grado di cristallinità di un materiale. Definiti gli elementi di simmetria (centri, rette e piani), è possibile identificare i seguenti sistemi cristallini: Cubico Rombiedrico Tetragonale Esagonale Monoclino Rombico Triclino
6 Struttura dei metalli Caratterista di ogni metallo è la sua struttura. Ogni metalli ha un reticolo cristallino che lo contraddistingue; tra le forme più comuni si ricorda: Cubica corpo centrato (CCC) Ferro, tungsteno, molibdeno Cubica facce centrate (CFC) Rame, acciaio, alluminio, piombo, oro, argento Esagonale compatta (EC) Magnesio, cadmio, zinco
7 Difetti della struttura cristallina Vacanze, sono difetti puntuali che creano discontinuità elettriche; Dislocazioni, sono difetti di linea che creano discontinuità nella trasmissione degli sforzi; Bordi di grano, sono difetti di superficie che causano il cambiamento dell orientamento della struttura cristallina; Difetti di volume, irregolarità della distribuzione dei reticoli cristallini. I difettisono molto studiati poichè essi influenzano enormemente le proprietà risultanti dei metalli
8 Conducibilità elettrica La conducibilità (o resistenza) elettrica è la misura della forza esercitata da un materiale per il passaggio di corrente elettrica. La conducibilità elettrica è spesso indicata come il reciproco della resistività. σ = 1 ρ Bassi valori di resistività indicano che il materiale risponde molto velocemente favorendo un movimento di cariche elettriche.
9 Resistività Nei metalli con sezione A costante è possibile indicare la resistività come: ρ = RA l N.B. la resistività si misura in (Ω m), mentre la resistenza elettrica in (Ω) in cui R indica la resistenza elettrica del materiale.
10 Resistività dei metalli Argento ⁸ Ω m Rame ⁸ Ω m Oro ⁸ Ω m Alluminio ⁸ Ω m Tungsteno ⁸ Ω m Ferro ⁸ Ω m Platino ⁸ Ω m Silicio ³ Ω m La conducibilità è l inverso della resistività
11 Legge di Ohm R = V i Generatore di tensione La Legge di Ohmesprime una relazione tra differenza di potenziale ai capi di un conduttore e la corrente elettrica che lo attraversa
12 Conducibilità termica La conducibilità termica misura l attitudine di un materiale a trasmettere il calore, viene definita come il rapporto tra il flusso di calore ed il gradiente di temperatura: flusso calore (W) distanza(m) sezione(m²) temperatura(k) N.B. la conducibilità termica si misura in W m ¹ K ¹ Maggiore è la conducibilità termica meno è isolante il materiale
13 Conducibilità termica dei metalli Argento Rame Oro Alluminio Ottone Platino 430 W m ¹ K ¹ 390 W m ¹ K ¹ 320 W m ¹ K ¹ 236 W m ¹ K ¹ 111 W m ¹ K ¹ 70 W m ¹ K ¹
14 Resistività e temperatura Nei metalli la resistività aumenta proporzionalmente con la temperatura: ρ = ρ α [ + ( T )] 0 1 T 0 In cui αindica il coefficiente termico del metallo.
15 Resistività e temperatura [ + ( T )] ρ = ρ0 1 α T 0 Con l aumento della temperatura, gli ioni positivi vibrano maggiormente provocando: dispersione degli elettroni di conduzione, diminuendo i percorsi liberi ed i tempi che intercorrono fra una collisione e l altra
16 I semiconduttori I semiconduttori sono una classe di materiali che hanno valori di resistività compresa tra quella dei conduttori (metalli) e degli isolanti (plastiche). Gli elettroni di valenza di questi materiali non riescono a passare alla banda di conduzione (e.g. a basse temperature).
17 I semiconduttori intrinseci Il silicio ed il germanio sono due metalli semiconduttori. Una variazione di temperatura (eccitazione termica) può indurre il passaggio degli elettroni dalla banda di valenza a quella di conduzione, aumentando la conducibilità elettrica e facendo passare corrente. Nel caso in cui venga fornita energia, l elettrone viene strappato dal suo legame ed al suo posto si crea una lacuna-vacanza dovuta all eccesso di carica positiva di quel determinato ione
18 I semiconduttori intrinseci Effetto della temperatura sulla semiconducibilità: aumentando l energia di base del sistema, si portano più elettroni in banda di conducibilità, quindi è più semplice ottenere elettroni di valenza disponibili per la conduzione
19 I semiconduttori estrinseci Sono materiali drogati, ovvero materiali a cui sono state aggiunte impurità puntuali (vacanze) nel reticolo cristallino. L elettrone messo a disposizione dall impurezza si trova in una banda intermedia, ad energia più alta dei suoi simili. È quindi necessario un quantitativo energetico inferiore ad eccitarlo e portarlo in banda di conduzione Drogaggio tipo p Drogaggio tipo n
Dispositivi elettronici
Dispositivi elettronici Sommario Richiami sui semiconduttori conduttori, isolanti e semiconduttori bande di energia droganti nei semiconduttori corrente di deriva e diffusione Funzionamento della giunzione
T08: Dispositivi elettronici (3.3.1)
T08: Dispositivi elettronici (3.3.1) Sommario Richiami sui semiconduttori conduttori, isolanti e semiconduttori bande di energia droganti nei semiconduttori corrente di deriva e diffusione Funzionamento
ELETTRICITÀ CORRENTE CONTINUA LEZIONE N. 29
LEZIONE N. 29 (LA CONDUZIONE ELETTRICA NEI METALLI) Nei metalli gli atomi sono talmente vicini che qualche elettrone esterno viene a trovarsi nel campo elettrico dell atomo più vicino. Per questo motivo
(2) cubico a facce centrate (3) esagonale compatto
IL LEGAME METALLICO La maggior parte dei metalli cristallizza in strutture a massimo impacchettamento, ovvero in solidi in cui si può considerare che gli ioni metallici che occupano le posizioni reticolari,
Testo di riferimento: Millman-Grabel MICROELECTRONICS McGraw Hill Cap. 1: 1,2,3,4 Cap. 2: 1,2,3,4,6,7,8,(9,10). Cap. 3: 1,2,4,5,6,8,9,10.
Esperimentazioni di Fisica 3 AA 20122013 Semiconduttori Conduzione nei semiconduttori Semiconduttori intrinseci ed estrinseci (drogati) La giunzione pn Il diodo a semiconduttore Semplici circuiti con diodi
Corso di Elettronica Industriale (CdL in Ingegneria Meccatronica, sede di Mantova) Semiconduttori intrinseci e drogati
Corso di Elettronica Industriale (CdL in Ingegneria Meccatronica, sede di Mantova) Isolanti, conduttori e semiconduttori In un solido si può avere conduzione di carica elettrica (quindi passaggio di corrente)
Legame metallico. Metalli
LEGAME METALLICO Un metallo può essere descritto come un reticolo di ioni positivi (nucleo più elettroni di core) immersi in una nube di elettroni di valenza mobili (delocalizzati) attorno ai cationi.
Materiali metallici comuni sono policristallini!
Materiali metallici Materiali metallici comuni sono policristallini! Sistemi cristallini e Reticoli di Bravais Legame metallico (a) Materiali metallici puri (a) cubica a facce centrate (CFC) Cu, Ni, Ag,
Figura 3.1: Semiconduttori.
Capitolo 3 Semiconduttori Con il termine semiconduttori si indicano alcuni elementi delle colonne III, IV e V della tavola periodica, caratterizzati da una resistività elettrica ρ intermedia tra quella
a) Descrivere brevemente l interdependenza tra Q e T fus. L energia di attivazione Q è direttamente proporzionale alla temperatura di fusione.
Soluzione ESERCIZIO 1 Nel grafico sono riportati i valori dell energia di attivazione Q per l autodiffusione (es. diffusione di atomi di alluminio nell alluminio) verso la temperatura di fusione per ferro,
LEGAME METALLICO PROPRIETA METALLICHE NON METALLI SEMIMETALLI METALLI
LEGAME METALLICO LEGAME METALLICO NON METALLI PROPRIETA METALLICHE Elevata conducibilità elettrica ( 1/ T) Bassa energia di ionizzazione Elevata duttilità e malleabilità Non trasparenza Lucentezza Strutture
Legame metallico. Non metalli. Semimetalli. Metalli
Legame metallico Non metalli Metalli Semimetalli Proprietà metalliche elevata conducibilità elettrica (1/T) e termica bassa energia di ionizzazione elevata duttilità e malleabilità non trasparenza lucentezza
4πε. h m. Eq. di Schrödinger per un atomo di idrogeno:
Eq. di Schrödinger per un atomo di idrogeno: h m e 1 ψ 4πε r 0 ( r) = Eψ ( r) Questa equazione è esattamente risolubile ed il risultato sono degli orbitali di energia definita E n = m e 1 α 1 1 e mc n
L energia di attivazione Q è direttamente proporzionale alla temperatura di fusione T fus.
Università degli Studi di Cagliari - Facoltà di Ingegneria - Corso di Laurea in Ingegneria Civile A.A. 2015/2016 ESERCIZIO 3.1 Nel grafico sono riportati i valori dell energia di attivazione Q per l autodiffusione
il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT)
Contenuti del corso Parte I: Introduzione e concetti fondamentali richiami di teoria dei circuiti la simulazione circuitale con SPICE elementi di Elettronica dello stato solido Parte II: Dispositivi Elettronici
La corrente elettrica
1 La corrente elettrica All interno di ogni conduttore metallico vi sono degli elettroni che sono debolmente legati ai nuclei. Questi elettroni sono liberi di muoversi all interno del metallo e sono detti
I materiali. I materiali. Introduzione al corso. Tecnologia di produzione. I materiali. La misura della durezza
Introduzione al corso Tecnologia di produzione La misura della durezza Le prove meccaniche distruttive Prove non distruttive La meccanica dei materiali 2 2006 Politecnico di Torino 1 Obiettivi della lezione
PROPRIETA FISICHE. Si riferiscono alle caratteristiche generali dei materiali, e il loro comportamento in relazione agli agenti esterni
PROPRIETA FISICHE Si riferiscono alle caratteristiche generali dei materiali, e il loro comportamento in relazione agli agenti esterni ( es. il calore, la gravità, l elettricità ecc.) Le principali proprietà
IL LEGAME METALLICO 1
IL LEGAME METALLICO 1 Non metalli Metalli Metalloidi Proprietà dei metalli Elevata conducibilità elettrica; Elevata conducibilità termica; Effetto fotoelettrico; Elevata duttilità e malleabilità; Lucentezza;
l evoluzione dell elettronica
1904 tubo a vuoto 1968 circuito integrato l evoluzione dell elettronica 1980 integrati VLSI 1947 transistor oggi integrati ULSI 1971 microprocessore diodi transistor tecnologie costruttive grafici, tabelle,
Materiale Energy Gap
Semiconduttori Materiale diamante silicio germanio Energy Gap 5,3 ev 1,1 ev 0,7 ev 21 Semiconduttori Quando un elettrone, portatore di carica negativa, è promosso da banda di valenza a banda di conduzione,
I PORTATORI e la CORRENTE nei DISPOSITIVI SEMICONDUTTORI. Fondamenti di Elettronica
I PORTATORI e la CORRENTE nei DISPOSITIVI SEMICONDUTTORI 1 Come si può variare la concentrazione di n e/o di p? NON aggiungendo elettroni dall esterno perché il cristallo si caricherebbe ed assumerebbe
Struttura e geometria cristallina
Struttura e geometria cristallina Tecnologia Meccanica RETICOLO SPAZIALE E CELLE UNITARIE Gli atomi, disposti in configurazioni ripetitive 3D, con ordine a lungo raggio (LRO), danno luogo alla struttura
Conduttori, Isolanti e Semiconduttori
Conduttori, Isolanti e Semiconduttori I materiali si possono classificare in base al loro comportamento elettrico in: CONDUTTORI: presenza di cariche elettriche mobili che possono spostarsi sotto l azione
ELETTRICITA. numero PROTONI = numero ELETTRONI
STRUTTURA DELL ELETTRICITA MOLECOLA La materia è formata da molecole. Le molecole sono formate da atomi. In natura esistono 92 tipi di atomi. Molecola di acqua Ogni atomo è formato da un nucleo costituito
conduttori isolanti semiconduttori In un metallo la banda più esterna che contiene elettroni è detta banda di valenza
Un solido sarà conduttore solo se la banda è parzialmente occupata. Se invece la banda è completamente occupata si possono avere due casi: se la banda successiva è molto alta in energia il solido è un
I Materiali. Isolanti, Conduttori, Semiconduttori. giovedì 26 febbraio Corso di Elettronica 1
I Materiali Isolanti, Conduttori, Semiconduttori Corso di Elettronica 1 Di cosa si parlerà Classificazione dei materiali Drogaggio Giunzione PN Polarizzazione diretta Polarizzazione inversa Corso di Elettronica
Il Legame Ionico. Quando la differenza di elettronegatività fra atomi A e B è molto grande le coppie AB possono essere considerate A + B -
Il Legame Ionico Quando la differenza di elettronegatività fra atomi A e B è molto grande le coppie AB possono essere considerate A + B - A + B - Le coppie di ioni si attraggono elettrostaticamente Il
Proprieta dei materiali
Istituto Istruzione Superiore G. Boris Giuliano" Via Carducci, 13-94015 Piazza Armerina (En) Corso di Tecnologie Meccaniche e Applicazioni Anno scolastico 2015-2016 Docente: Proprieta dei materiali Corso
Classificazione dei materiali solidi in base ai legami interatomici! Metalli Ceramici Polimeri
Classificazione dei materiali solidi in base ai legami interatomici! Metalli Ceramici Polimeri (a) Legami atomici primari o forti legame ionico legame covalente legame metallico (b) Legami atomici e molecolari
SCIENZA E TECNOLOGIA DEI MATERIALI
Laurea Specialistica in Ingegneria Meccanica anno acc. 2007/08 25/09/2007 Scienza e Tecnologia dei Materiali Lez. 01 1 SCIENZA E TECNOLOGIA DEI MATERIALI Gianfranco Dell Agli Ufficio (piano 1) Laboratorio
Materiali metallici. Materiali ceramici Materiali polimerici
Materiali metallici Materiali ceramici Materiali polimerici Materiali ceramici Materiali inorganici non metallici Ceramici cristallini Distribuzione regolare e ripetitiva di una unità strutturale di base
IL LEGAME METALLICO. Metalli
IL LGAM MTALLICO 1 Non metalli Metalli Metalloidi Proprietà dei metalli levata conducibilità elettrica; levata conducibilità termica; ffetto fotoelettrico; levata duttilità e malleabilità; Lucentezza;
STRUTTURA E GEOMETRIA CRISTALLINA
STRUTTURA E GEOMETRIA CRISTALLINA La struttura fisica dei materiali solidi dipende dalla disposizione degli atomi, ioni o molecole che compongono il solido e dalle forze che li legano fra loro. Quando
Materiali dell elettronica allo stato solido
Materiali dell elettronica allo stato solido I materiali elettronici si suddividono in 3 categorie: Isolanti Resistenza () > 10 5 -cm Semiconduttori 10-3 < < 10 5 -cm Conduttori < 10-3 -cm I semiconduttori
La risposta ad ogni quesito è scritta in carattere normale, ulteriori spiegazioni saranno scritte in corsivo.
La risposta ad ogni quesito è scritta in carattere normale, ulteriori spiegazioni saranno scritte in corsivo. ESERCIZIO 1 a) Dall osservazione del diagramma si evince che ad un elevata temperatura di fusione
I METALLI. SCUOLA SEC DI PRIMO GRADO CORSO DI TECNOLOGIA Prof. Giovanni Lucchin
SCUOLA SEC DI PRIMO GRADO CORSO DI TECNOLOGIA Prof. Giovanni Lucchin METALLI: Sono elementi chimici con ottime proprietà fisiche, meccaniche e tecnologiche. Generalmente molto resistenti, lucenti e buoni
Esercizi sui Solidi. Insegnamento di Chimica Generale CCS CHI e MAT. A.A. 2015/2016 (I Semestre)
Insegnamento di Chimica Generale 083424 - CCS CHI e MAT A.A. 2015/2016 (I Semestre) Esercizi sui Solidi Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio Esercizio 1 Che composto
DIFETTI PUNTUALI INTRINSECI
DIFETTI PUNTUALI INTRINSECI Calcolo della concentrazione di difetti di equilibrio con la termodinamica statistica: La creazione di un difetto richiede energia ( H f ) ma comporta un grande aumento degli
Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener
Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV ESERCIZIO 4.1 E dato il diagramma di stato del sistema Pb-Sn (figura 1). Figura 1 Diagramma di stato Pb-Sn 1. Determinare le fasi
Cenni sulla struttura della materia
Cenni sulla struttura della materia Tutta la materia è costituita da uno o più costituenti fondamentali detti elementi Esistono 102 elementi, di cui 92 si trovano in natura (i rimanenti sono creati in
POLITECNICO DI MILANO
POLITECNICO DI MILANO www.polimi.it ELETTRONICA per ingegneria BIOMEDICA prof. Alberto TOSI Sommario Semiconduttori Conduttori: legge di Ohm Semiconduttori: reticolo, elettroni e lacune, deriva e diffusione
Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2
Elettronica II Grandezze elettriche microscopiche (parte 1) Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected] http://www.dti.unimi.it/
SEMICONDUTTORI BANDE DI ENERGIA
SEMICONDUTTORI BANDE DI ENERGIA Si dice banda di energia un insieme di livelli energetici posseduti dagli elettroni. Si dice banda di valenza l'insieme degli elettroni che hanno un livello energetico basso,
LEZIONI ED ESERCITAZIONI DI FISICA Prof. Francesco Marchi 1 Appunti su: corrente elettrica, leggi di Ohm, circuiti 29 novembre 2010 1 Per altri materiali didattici o per contattarmi: Blog personale: http://francescomarchi.wordpress.com/
Laboratorio di Elettronica Dispositivi elettronici e circuiti Proprieta' e fenomenologia dei semiconduttori. Dispositivi a semiconduttore: * diodo a giunzione * transistor bjt * transistor jfet e mosfet
a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180 e 20 C.
ESERCIZIO 1 E dato il diagramma di stato del sistema Pb-Sn (figura). a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180
Scienza e Tecnologia dei Materiali - Esercizio 4.1
Scienza e Tecnologia dei Materiali - Esercizio 4.1 Indicare o calcolare per le celle elementare cubico semplice (CS), cubico a corpo centrato (CCC), cubico a facce centrate (CFC) e esagonale compatto (EC)
Figura 2.1: Semiconduttori.
Capitolo 2 Semiconduttori 2.1 Semiconduttori Con il termine semiconduttori si indicano alcuni elementi delle colonne III, IV e V della tavola periodica, caratterizzati da una resistività elettrica ρ intermedia
ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 6. a.a
32586 ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica Lezione 6 a.a. 20102011 Diodo + Il diodo è un bipolo, passivo, nonlineare la cui funzione ideale è quella di permettere il flusso di corrente
La deformazione plastica. La deformazione plastica. Lavorazioni per deformazione. Il processo di laminazione Estrusione e trafilatura La forgiatura
La deformazione plastica La deformazione plastica Il processo di laminazione Estrusione e trafilatura La forgiatura La formatura della lamiera 2 2006 Politecnico di Torino 1 Obiettivi dell Unità Riconoscere
Corso di Laurea in Ingegneria Edile. Materiali metallici e leghe metalliche. Leghe del ferro: acciai e ghise.
Dip. di Ingegneria Chimica, dei Materiali e della Produzione Industriale Università Federico II di Napoli Corso di Laurea in Ingegneria Edile Corso di Tecnologia dei Materiali e Chimica Applicata (Prof.
I SEMICONDUTTORI. I loro atomi costituiscono uno schema cristallino, noto come centrate nel quale gli atomi sono tenuti a posto dai legami covalenti.
I SEMICONDUTTORI I semiconduttori hanno un comportamento intermedio fra quello dei conduttori e quello degli isolanti. Presentano una conduttività intermedia fra quella dei conduttori e degli isolanti
Dip. di Ingegneria Chimica, dei Materiali e della Produzione Industriale Università Federico II di Napoli. Corso di Laurea in Ingegneria Edile
Dip. di Ingegneria Chimica, dei Materiali e della Produzione Industriale Università Federico II di Napoli Corso di Laurea in Ingegneria Edile Corso di Tecnologia dei Materiali e Chimica Applicata (Prof.
1. Le forze intermolecolari 2. Molecole polari e apolari 3. Le forze dipolo-dipolo e le forze di London 4. Il legame a idrogeno 5. Legami a confronto
Unità n 12 Le forze intermolecolari e gli stati condensati della materia 1. Le forze intermolecolari 2. Molecole polari e apolari 3. Le forze dipolo-dipolo e le forze di London 4. Il legame a idrogeno
Capitolo 12 Le forze intermolecolari e gli stati condensati della materia
Capitolo 12 Le forze intermolecolari e gli stati condensati della materia 1. Le forze intermolecolari 2. Molecole polari e apolari 3. Le forze dipolo-dipolo e le forze di London 4. Il legame a idrogeno
Corrente elettrica. In questo tratto di conduttore in cui si è stabilita una certa corrente, passa una carica dq nel tempo dt.
Corrente elettrica La corrente elettrica è data da un flusso netto di cariche in moto. Gli elettroni di conduzione, all interno di un filo isolato di rame, si muovono in modo casuale a una velocità di
Il reticolo cristallino e la cella elementare
Il reticolo cristallino e la cella elementare Nei solidi gli atomi o molecole che li compongono solo vibrano, cioè oscillano intorno a un punto di equilibrio. SOLIDI AMORFI : con forme mal definite xchè
l intensità elettrica (I): si misura in Ampere (A) ed è la quantità di elettroni che attraversa un punto del filo conduttore in un certo tempo.
ELETTRICITA La corrente elettrica è un flusso ordinato di cariche, che viaggiano alla velocità della luce, attraverso un percorso definito (esempio: un filo conduttore). Le cariche sono portate da particelle
ELETTROTECNICA. La legge di Ohm. Livello 7. Andrea Ros sdb
ELETTROTECNICA Livello 7 La legge di Ohm Andrea Ros sdb Livello 7 La legge di Ohm Per tutta la tua vita da elettricista ricorderai la legge di Ohm come uno dei pilastri di tutta la tua professione. Impara
