Ricerca binaria. Operazione dominante: confronto
|
|
|
- Natalia Pasini
- 10 anni fa
- Visualizzazioni
Transcript
1 procedure ordinaperfusioni(var a: nelements; n: integer); var b: nelements; procedure mergesort(var a,b: nelements; primo,ultimo:integer); var q: integer; procedure merge(var a,b: nelements; primo, ultimo, mezzo: integer); var i,j,k,h: integer; {merge} {merge} {mergesort} if primo<ultimo then q := (primo+ultimo) div 2; mergesort(a, b, primo, q); mergesort(a, b, q+1, ultimo); merge(a, b, primo, ultimo) {mergesort} {main} mergesort(a,b,1,n) Ricerca binaria procedure binarysearch(var a: nelements; n,x: integer; var found: boolean); var lower, upper, middle: integer; lower := 1; upper :=n; while lower<upper do middle := (lower+upper) div 2; if x>a[middle] then lower := middle+1; upper := middle ; found := (a[lower]=x) confronto 1
2 Ricerca binaria La complessità di questo algoritmo non dipe dalla distribuzione dei dati. Il ciclo più interno è ripetuto fino a quando la distanza dei limiti inferiore e superiore del segmento in cui ricercare x è maggiore di zero. Osserviamo che la distanza si dimezza ad ogni ciclo. Inizialmente è n, quindi n/2, poi n/4, e così via. In generale alla k-esima iterazione la distanza è pari a n/2 k-1. Il ciclo si arresta al passo k successivo a quello in cui n/2 k-1 =1 Da cui k=log 2 n +1. Poiché ad ogni passo si effettua un solo confronto, il numero massimo di confronti sarà: f(n)=log 2 n +1 Ricerca binaria (vers. ricorsiva) function RICBIN(var a: nelements; x,lower,upper: integer): boolean; var middle: integer; if lower> upper then RICBIN :=false; middle := (lower+upper) div 2; if x=a[middle] then RICBIN := true; if x < a[middle] then RICBIN := RICBIN(a, x, lower, middle-1) RICBIN := RICBIN(a, x, middle+1, upper) confronto 2
3 Ricerca binaria (vers. ricorsiva) Posto per semplicità n=2 k, analizziamo la complessità di questo algoritmo nel caso pessimo (questa volta dipe dai dati) mediante relazioni di ricorrenza. f(n)=1 se n=1 f(n)=f((n-1)/2) + 1 f(n/2)+1 per n>1. Ricordiamo il seguente risultato per relazioni di ricorrenza con lavoro di combinazione indipente da n: c) relazioni con partizione dei dati f(1)=c f(n)= af(n/k) + b per n=k m, m intero e n>1 Se a = 1 allora f(n) è O(log n). Se a > 1 allora f(n) è O(n logk n ). Quindi si giunge immediatamente a una complessità logaritmica. Calcolo dell n-esimo numero di function RFIB(n: integer): integer; if n=0 then RFIB := 0 if n=1 then RFIB := 1 RFIB := RFIB(n-1) + RFIB(n-2) addizione La complessità non dipe dalla distribuzione dei dati in ingresso. Essa è definita mediante la seguente relazione di ricorrenza: f(n) = 0 per n=0,1 f(n)= f(n-1) + f(n-2) + 1 per n > 1 3
4 Calcolo dell n-esimo numero di Ricordiamo il seguente risultato per relazioni di ricorrenza con lavoro di combinazione indipente da n: a) relazioni lineari di ordine h f(1)=c 1 f(2)=c 2... f(h)=c h f(n)= a 1 f(n-1) + a 2 f(n-2) a h f(n-h) + b per n > h Allora f(n) è O(a n ) con a > 1, ovvero f è esponenziale. Quindi la complessità in tempo del precedente algoritmo è esponenziale! Come mai? Per calcolare l n-esimo numero di F n si invoca indipentemente RFIB sia per calcolare F n-1 che per calcolare F n-2 ; benché all interno di RFIB(n-1) venga di fatto calcolato F n-2, tale calcolo non viene utilizzato dalla RFIB(n-2) ; e ciò avviene ad ogni passo della ricorrenza. Calcolo dell n-esimo numero di function RFIBLIN(n: integer; var s:integer): integer; var temp: integer; if n=1 then s := 0 RFIBLIN:= 1 temp := RFIBLIN(n-1,s); RFIBLIN := temp+s; s := temp addizione 4
5 Calcolo dell n-esimo numero di La funzione RFIBLIN contiene ora una sola chiamata ricorsiva, che restituisce però i due valori della successione F i-1 (in RFIBLIN) e F i-2 (in s) necessari al calcolo del nuovo valore F i. F i-1 sarà a sua volta memorizzato in s e restituito come parametro per contribuire al calcolo di F i+1. La complessità è definita mediante la seguente relazione di ricorrenza: f(n) = 0 per n=1 f(n)= f(n-1) + 1 per n > 1 Ricordiamo il seguente risultato per relazioni di ricorrenza con lavoro di combinazione indipente da n: Calcolo dell n-esimo numero di b) relazioni lineari di ordine h, con a h = 1 e a j = 0 per 1 j h-1 f(1)=c 1 f(2)=c 2... f(h)=c h f(n)= f(n-h) + b per n > h Allora f(n) è O(n), cioè è lineare. dove h=1 in questo caso. Quindi RFIBLIN ha complessità lineare. 5
6 Calcolo dell n-esimo numero di Osserviamo che le relazioni di ricorrenza possono essere applicate anche per la valutazione della complessità in spazio. Bisogna tuttavia tenere presente che tempo e spazio differiscono per il seguente aspetto: il tempo, una volta consumato, non può essere riutilizzato; lo spazio di memoria può invece in certi casi essere ricuperato e riutilizzato. Ad esempio, osserviamo che al ritorno della chiamata RFIB(n-1), lo spazio di memoria usato per l esecuzione di RFIB(n-1) può essere ricuperato e riutilizzato per RFIB(n-2). In sostanza tutto procede come se i richiami ricorsivi fossere uno invece di due. La relazione di ricorrenza diventa: f(n) = c per n=0,1 f(n)= f(n-1) + b per n > 1 che ha soluzione di ordine lineare. Riepilogando, RFIB ha complessità in tempo esponenziale, ma complessità in spazio lineare. 6
Esercizi Capitolo 6 - Alberi binari di ricerca
Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile
Algoritmi di Ricerca. Esempi di programmi Java
Fondamenti di Informatica Algoritmi di Ricerca Esempi di programmi Java Fondamenti di Informatica - D. Talia - UNICAL 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare
Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012
Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Concetti importanti da (ri)vedere Programmazione imperativa Strutture di
AA 2006-07 LA RICORSIONE
PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella
Esempi di algoritmi. Lezione III
Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni
Algebra Booleana ed Espressioni Booleane
Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale
Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort
Due algoritmi di ordinamento basati sulla tecnica Divide et Impera: Mergesort e Quicksort (13 ottobre 2009, 2 novembre 2010) Ordinamento INPUT: un insieme di n oggetti a 1, a 2,, a n presi da un dominio
Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione
Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità
1 introdurre le monete per l importo necessario. 2 selezionare la quantità di zucchero. 3 selezionare la bevanda desiderata
Esempi di Problema: Prendere un Caffè al Distributore Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica, e Programmi D. Gubiani
Algoritmo. I dati su cui opera un'istruzione sono forniti all'algoritmo dall'esterno oppure sono il risultato di istruzioni eseguite precedentemente.
Algoritmo Formalmente, per algoritmo si intende una successione finita di passi o istruzioni che definiscono le operazioni da eseguire su dei dati (=istanza del problema): in generale un algoritmo è definito
Elementi di Informatica
Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica Algoritmi, e Programmi D. Gubiani 29 marzo 2010 D. Gubiani Algoritmi, e Programmi
Introduzione ai Metodi Formali
Intruzione ai Meti Formali Sistemi software anche molto complessi regolano la vita quotidiana, anche in situazioni life-critical (e.g. avionica) e business-critical (e.g. operazioni bancarie). Esempi di
Tipi primitivi. Ad esempio, il codice seguente dichiara una variabile di tipo intero, le assegna il valore 5 e stampa a schermo il suo contenuto:
Tipi primitivi Il linguaggio Java offre alcuni tipi di dato primitivi Una variabile di tipo primitivo può essere utilizzata direttamente. Non è un riferimento e non ha senso tentare di istanziarla mediante
Prof. Giuseppe Chiumeo. Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto tre strutture di base:
LA STRUTTURA DI RIPETIZIONE La ripetizione POST-condizionale La ripetizione PRE-condizionale INTRODUZIONE (1/3) Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto
GESTIONE INFORMATICA DEI DATI AZIENDALI
GESTIONE INFORMATICA DEI DATI AZIENDALI Alberto ZANONI Centro Vito Volterra Università Tor Vergata Via Columbia 2, 00133 Roma, Italy [email protected] Rudimenti di programmazione Programming
Programmazione dinamica
Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione)
CALCOLO COMBINATORIO
CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,
Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)
Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni
Arduino: Programmazione
Programmazione formalmente ispirata al linguaggio C da cui deriva. I programmi in ARDUINO sono chiamati Sketch. Un programma è una serie di istruzioni che vengono lette dall alto verso il basso e convertite
Algoritmi e Strutture Dati
Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Il problema La CMC produce automobili in uno stabilimento
Esercizi su. Funzioni
Esercizi su Funzioni ๒ Varie Tracce extra Sul sito del corso ๓ Esercizi funz_max.cc funz_fattoriale.cc ๔ Documentazione Il codice va documentato (commentato) Leggibilità Riduzione degli errori Manutenibilità
Introduzione al MATLAB c Parte 2
Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione
Introduzione alla tecnica di Programmazione Dinamica
Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/37 Sommario della lezione Introduzione alla tecnica di Programmazione Dinamica Esempio di applicazione n. 1:
Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy
Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette
4.1 Modelli di calcolo analisi asintotica e ricorrenze
4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più
( x) ( x) 0. Equazioni irrazionali
Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza
CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.7. Il moltiplicatore binario e il ciclo di base di una CPU
Lezione n.7 Il moltiplicatore binario e il ciclo di base di una CPU 1 SOMMARIO Architettura del moltiplicatore Architettura di base di una CPU Ciclo principale di base di una CPU Riprendiamo l analisi
PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI
PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento
Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente
Funzioni In matematica, una funzione f da X in Y consiste in: 1. un insieme X detto dominio di f 2. un insieme Y detto codominio di f 3. una legge che ad ogni elemento x in X associa uno ed un solo elemento
Ricerche, ordinamenti e fusioni. 5.1 Introduzione. 5.2 Ricerca completa
Ricerche, ordinamenti e fusioni 5.1 Introduzione Questo capitolo ci permette di fare pratica di programmazione utilizzando gli strumenti del linguaggio introdotti finora. A una prima lettura possono essere
Richiesta pagina PHP (es: index.php)
PHP PHP = personal home page SERVER Richiesta pagina PHP (es: index.php) Server Web (Apache) in ascolto sulla porta 80, si accorge che la pagina richiesta è una pagina PHP in base all'estensione o con
Cenni su algoritmi, diagrammi di flusso, strutture di controllo
Cenni su algoritmi, diagrammi di flusso, strutture di controllo Algoritmo Spesso, nel nostro vivere quotidiano, ci troviamo nella necessità di risolvere problemi. La descrizione della successione di operazioni
Fasi di creazione di un programma
Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma
SISTEMI DI NUMERAZIONE E CODICI
SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Soluzione esercizi di approfondimento Stefano Leucci [email protected] Una terza variante dell IS InsertionSort3 (A) 1. for k=1 to n-1 do 2. x = A[k+1] 3. j = ricerca_binaria(a[1,k],x)
Testi di Esercizi e Quesiti 1
Architettura degli Elaboratori, 2009-2010 Testi di Esercizi e Quesiti 1 1. Una rete logica ha quattro variabili booleane di ingresso a 0, a 1, b 0, b 1 e due variabili booleane di uscita z 0, z 1. La specifica
Corso di Tecniche di Programmazione
Corso di Tecniche di Programmazione Corsi di Laurea in Ingegneria Informatica ed Automatica Anno Accedemico 003/004 Proff. Giuseppe De Giacomo, Luca Iocchi, Domenico Lembo Dispensa : Algoritmi di Ordinamento
Appunti sulla Macchina di Turing. Macchina di Turing
Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso
Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio
Appunti di informatica Lezione 2 anno accademico 2015-2016 Mario Verdicchio Sistema binario e logica C è un legame tra i numeri binari (0,1) e la logica, ossia la disciplina che si occupa del ragionamento
Dimensione di uno Spazio vettoriale
Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione
Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza
Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di
3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura
3. La sintassi di Java
pag.9 3. La sintassi di Java 3.1 I tipi di dati statici In Java, come in Pascal, esistono tipi di dati statici predefiniti e sono i seguenti: byte 8 bit da -128 a 127 short 16 bit coincide con l integer
4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0
Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice
Algoritmi e strutture dati. Codici di Huffman
Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per
Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica
Fondamenti di Informatica Algebra di Boole: Concetti di base Fondamenti di Informatica - D. Talia - UNICAL 1 Algebra di Boole E un algebra basata su tre operazioni logiche OR AND NOT Ed operandi che possono
Esercizi Capitolo 2 - Analisi di Algoritmi
Esercizi Capitolo - Analisi di Algoritmi Alberto Montresor 19 Agosto, 014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare
B-Tree. Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in:
B-Tree Prof. Rudolf Bayer Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in: Filesystem: btrfs, NTFS, ReiserFS, NSS, XFS, JFS
12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP)
12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP) Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica,
2. Leggi finanziarie di capitalizzazione
2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M
La programmazione. Sviluppo del software
La programmazione problema Sviluppo del software idea (soluzione informale) algoritmo (soluzione formale) programma (traduzione dell algoritmo in una forma comprensibile da un elaboratore elettronico)
Esercizi per il corso di Algoritmi e Strutture Dati
1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi
Concetto di Funzione e Procedura METODI in Java
Fondamenti di Informatica Concetto di Funzione e Procedura METODI in Java Fondamenti di Informatica - D. Talia - UNICAL 1 Metodi e Sottoprogrammi Mentre in Java tramite le classi e gli oggetti è possibile
10 - Programmare con gli Array
10 - Programmare con gli Array Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ milazzo milazzo di.unipi.it
COGNOME E NOME (IN STAMPATELLO) MATRICOLA
Politecnico di Milano Facoltà di Ingegneria dell Informazione Informatica 3 Proff. Ghezzi, Lanzi, Matera e Morzenti Seconda prova in itinere 4 Luglio 2005 COGNOME E NOME (IN STAMPATELLO) MATRICOLA Risolvere
Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente.
Ricorsione Funzioni ricorsive Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Un esempio di funzione ricorsiva
Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2
Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2 Dispensa E08 Soluzione Esercizi F. Gasparetti, C. Limongelli Marzo 2008 http://www.dia.uniroma3.it/~java/fondinf1/ Soluzione Esercizi
Lezione 8. La macchina universale
Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione
Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice.
Convalida: attività volta ad assicurare che il SW sia conforme ai requisiti dell utente. Verifica: attività volta ad assicurare che il SW sia conforme alle specifiche dell analista. Goal: determinare malfunzionamenti/anomalie/errori
Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica. Programmazione I - corso B a.a. 2009-10. prof.
Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica Programmazione I - corso B a.a. 009-10 prof. Viviana Bono Blocco 9 Metodi statici: passaggio parametri, variabili locali, record
Tipi di Dato Ricorsivi
Tipi di Dato Ricorsivi Luca Abeni September 2, 2015 1 Tipi di Dato Vari linguaggi di programmazione permettono all utente di definire nuovi tipi di dato definendo per ogni nuovo tipo l insieme dei suoi
Traccia di soluzione dell esercizio del 25/1/2005
Traccia di soluzione dell esercizio del 25/1/2005 1 Casi d uso I casi d uso sono in Figura 1. Ci sono solo due attori: il Capo officina e il generico Meccanico. Figura 1: Diagramma dei casi d uso. 2 Modello
Macchine combinatorie
Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine combinatorie Lezione 10 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Analisi e Sintesi di un sistema 1/2 Per analisi di
Documentazione esterna al software matematico sviluppato con MatLab
Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno
Programmazione I - Laboratorio
Programmazione I - Laboratorio Esercitazione 2 - Funzioni Gianluca Mezzetti 1 Paolo Milazzo 2 1. Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ mezzetti mezzetti di.unipi.it 2.
Corso di Laurea in Ingegneria Gestionale Esame di Informatica a.a. 2010-11 13 settembre 2011
Cognome Nome Matricola Postazione PC Corso di Laurea in Ingegneria Gestionale Esame di Informatica a.a. 2010-11 13 settembre 2011 Testo Il database di un videonoleggio è costituito da due vettori paralleli.
Informatica. Rappresentazione dei numeri Numerazione binaria
Informatica Rappresentazione dei numeri Numerazione binaria Sistemi di numerazione Non posizionali: numerazione romana Posizionali: viene associato un peso a ciascuna posizione all interno della rappresentazione
Interpolazione ed approssimazione di funzioni
Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner
La selezione binaria
Andrea Marin Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time a.a. 2011/2012 Introduzione L esecuzione di tutte le istruzioni in sequenza può non è sufficiente per
Analisi sensitività. Strumenti per il supporto alle decisioni nel processo di Valutazione d azienda
Analisi sensitività. Strumenti per il supporto alle decisioni nel processo di Valutazione d azienda Premessa Con l analisi di sensitività il perito valutatore elabora un range di valori invece di un dato
Il concetto di valore medio in generale
Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo
19. Inclusioni tra spazi L p.
19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p
Integrazione numerica
Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura
Elementi di semantica denotazionale ed operazionale
Elementi di semantica denotazionale ed operazionale 1 Contenuti! sintassi astratta e domini sintattici " un frammento di linguaggio imperativo! semantica denotazionale " domini semantici: valori e stato
Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.
Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell
Fondamenti di Informatica Ingegneria Clinica Lezione 19/10/2009. Prof. Raffaele Nicolussi
Fondamenti di Informatica Ingegneria Clinica Lezione 19/10/2009 Prof. Raffaele Nicolussi FUB - Fondazione Ugo Bordoni Via B. Castiglione 59-00142 Roma Docente Raffaele Nicolussi [email protected] Lezioni
Prova di Laboratorio di Programmazione
Prova di Laboratorio di Programmazione 6 febbraio 015 ATTENZIONE: Non è possibile usare le classi del package prog.io del libro di testo. Oltre ai metodi richiesti in ciascuna classe, è opportuno implementare
Corso di Informatica
Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down
INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno
INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno UD 3.1b: Costrutti di un Algoritmo Dispense 1.2 I Costrutti di base 13 apr 2010
Laboratorio di Algoritmi e Strutture Dati II Semestre 2005/2006. Ordinamenti: mergesort e quicksort
Laboratorio di Algoritmi e Strutture Dati II Semestre 2005/2006 Ordinamenti: mergesort e quicksort Marco Antoniotti Mergesort e Quicksort Due importantissimi algoritmi di ordinamento La conoscenza completa
I sistemi di numerazione
I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono
PROVA INTRACORSO TRACCIA A Pagina 1 di 6
PROVA INTRACORSO DI ELEMENTI DI INFORMATICA MATRICOLA COGNOME E NOME TRACCIA A DOMANDA 1 Calcolare il risultato delle seguenti operazioni binarie tra numeri interi con segno rappresentati in complemento
Termodinamica: legge zero e temperatura
Termodinamica: legge zero e temperatura Affrontiamo ora lo studio della termodinamica che prende in esame l analisi dell energia termica dei sistemi e di come tale energia possa essere scambiata, assorbita
Manuale Terminal Manager 2.0
Manuale Terminal Manager 2.0 CREAZIONE / MODIFICA / CANCELLAZIONE TERMINALI Tramite il pulsante NUOVO possiamo aggiungere un terminale alla lista del nostro impianto. Comparirà una finestra che permette
Corso di Matematica per la Chimica
Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano
Alberi binari di ricerca
Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario
Esercizio 1: trading on-line
Esercizio 1: trading on-line Si realizzi un programma Java che gestisca le operazioni base della gestione di un fondo per gli investimenti on-line Creazione del fondo (con indicazione della somma in inizialmente
f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da
Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede
