Integrazione numerica
|
|
|
- Sofia Corso
- 10 anni fa
- Visualizzazioni
Transcript
1 Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, Lezione ottobre 2009
2 Indice 1 Formule di quadratura semplici e composite Formule di quadratura Grado di precisione Formule di base L integrazione numerica con MATLAB 2 Formule adattive 3 Integrazione di funzioni di 2 variabili Integrazione di funzioni di 2 variabili
3 Integrazione di funzioni Problema Data la funzione f : [a, b] R continua, si calcoli il valore dell integrale I (f ) = b a f (x) dx. Una formula di quadratura ci permette di ottenere un valore approssimato dell integrale della funzione a partire dai valori di f come segue: I(f ; a, b) = n ω i f (x i ). i=0 I punti x i si dicono nodi; i coefficienti ω i si dicono pesi.
4 Grado di precisione della formula di quadratura Definizione Si dice che una formula di integrazione numerica ha grado di precisione p se vale che I (f ) = I(f ) per ogni polinomio f di grado p; I (f ) I(f ) per ogni polinomio f di grado > p.
5 Formula del punto medio Nodi: punto medio dell intervallo (a + b)/2 Formula del punto medio I PM (f ) = (b a)f ( a + b 2 ). Grado di precisione: 1 Formula composita del punto medio N IPM c (f ) = H ( ) xk 1 + x k f 2 k=1 Errore: E c PM (f ) = I (f ) Ic PM (f ) = b a 24 H2 f (ξ 0 ) essendo H = b a N.
6 Formula dei trapezi Nodi: gli estremi dell intervallo a, b. Formula dei trapezi I T (f ) = (b a) 2 (f (a) + f (b)). Grado di precisione: 1 Formula composita dei trapezi ( ) N 1 IT c (f ) = H f (a) 2 + f (x k ) + f (b) 2 k=1 Errore: E c T (f ) = I (f ) Ic T (f ) = b a 12 H2 f (ξ 0 ) essendo H = b a N.
7 Formula di Cavalieri-Simpson Nodi: gli estremi ed il punto medio dell intervallo a, b, (a + b)/2. Formula di Cavalieri-Simpson I CS (f ) = (b a) 6 ( f (a) + 4f ( a + b 2 ) ) + f (b). Grado di precisione: 3 Formula composita di Cavalieri-Simpson I c CS (f ) = H 6 ( f (a) + 2 Errore: E c CS (f ) = I (f ) Ic CS N 1 k=1 f (x k ) + 4 N ( xk 1 + x k f 2 k=1 a H 4 (f ) = b f (4) (ξ 0 ) ) ) + f (b)
8 Formula di Gauss Nodi: x 0 = a+b 2 b a 2 3, x 1 = a+b 2 + b a 2 3. Formula di Gauss Grado di precisione: 3 I g (f ) = Formula composita di Gauss I c g (f ) = H 2 (b a) 2 (f (x 0 ) + f (x 1 )). N (f (γ k ) + f (γ +k )) k=1 essendo H = (b a)/n, γ k = x k 1 + ( 1 1/ 3 ) H/2. Errore: E c g (f ) = I (f ) I c g (f ) = b a 4320 H4 f (4) (ξ 0 )
9 Calcolo dell ordine di convergenza Supponiamo che la stima dell errore per un certo metodo sia E(h) Ch p essendo h = (b a)/n. La relazione dipende quindi da due quantità incognite C e p. Per calcolare il valore di p, valutiamo l espressione dell errore per due diversi valori di h, h 1 e h 2 : E(h 1 ) Ch p 1, E(h 2) Ch p 2 Dividiamo la prima relazione per la seconda, per eliminare C: ( ) E(h 1 ) p E(h 2 ) h1 ; p si ottiene prendendo i logaritmi ad entrambi i membri: da cui h 2 log E(h 1) E(h 2 ) p log h 1 h 2 p = log E(h 1) log E(h 2 ) log h 1 log h 2
10 Rappresentazione dell ordine di convergenza Supponiamo che la stima dell errore per un certo metodo sia E(h) Ch p essendo h = (b a)/n. Per rappresentare il valore di p, calcoliamo il logaritmo ad entrambi i membri, ottenendo: log E(h) log C + p log h. Quindi il grafico di log E(h) in funzione di log h è una retta con coefficiente angolare pari a p. Poiché si ha che log h = log(b a) log(n), il grafico dell errore in funzione di N, è una retta con coefficiente angolare uguale a p. loglog loglog(n,e) produce il grafico di log E(h) in funzione di log N. Per verificare il valore di p, confrontare l andamento di log E(h) con quello di p log h con il comando loglog(n,e,n,1./n.ˆp).
11 Function quadratura La function quadratura calcola il valore approssimato dell integrale di una funzione mediante le formule composite. Per usare la function dare il comando: [I] =quadratura(f,a,b,n,metodo) Input f nome della funzione da integrare; a,b estremi dell intervallo; N numero degli intervalli di suddivisione; metodo=1 uso punto medio; metodo=2 uso trapezi; metodo=3 uso Simpson; metodo=4 uso Gauss. Esercizio Testare la function quadratura calcolando gli integrali: 2 1 x 4 dx = 33 π/2 5, cos x dx = 2, π/2 1 0 e x dx = e 1.
12 Esercizio Esercizio Scrivere un programma di tipo script per valutare al variare di N (numero degli intervallini di suddivisione) e del metodo usato, l errore di integrazione E metodo,n E metodo,n = I (f ) I metodo,n (f ). Riportare in un grafico in scala bilogaritmica l errore in funzione di N. Se N e EN sono i vettori che contengono il numero di intervallini di suddivisione e l errore, usare il comando loglog con la seguente sintassi: loglog(n,en) Testare il programma utilizzando gli integrali dati precedentemente. L ordine di convergenza è in accordo con la stima teorica dell errore?
13 Traccia dell esercizio 1 Assegnare la funzione f, gli estremi dell intervallo a e b ed il valore esatto dell integrale If. 2 Assegnare il vettore N=[5,10,50,100,200,500]. 3 Per ciascun metodo (for metodo=1:4): Per ciascun valore di N (for i=1:length(n)): Calcolare il valore dell integrale approssimato Iapprox. Calcolare l errore relativo: E(metodo,i)=abs(If-Iapprox)/abs(If). 4 Plottare gli errori in scala bilogaritmica per ciascun metodo confrontandoli con le stime teoriche: loglog(n,e(1,:),n,e(2,:),n,e(3,:),n,e(4,:),... N,1./N.ˆ2,N,1./N.ˆ4) legend( PM, Tr, CS, Gauss, ordine 2, ordine 4 ) 5 Calcolare l ordine del metodo con il comando: for i=1:4 p(i,1:length(n)-1)=(log(e(i,2:end))-log(e(i,1:end-1)))..../(log(n(1:end-1))-log(n(2:end))); end
14 L integrazione numerica con MATLAB Funzione quad quadl dblquad trapz Significato Quadratura adattiva con formula di Simpson. Quadratura adattiva con formula di Gauss-Lobatto (Matlab 6). Formula di quadratura per integrali doppi su rettangoli. Calcola l approssimazione di un integrale con la formula dei trapezi.
15 quad, quadl Sia f la stringa o la function contenente f. Calcolo di b a >> q=quad(f,a,b) formula di Simpson adattativa; >> q=quadl(f,a,b) formula di Gauss-Lobatto adattativa; q=quadl(f,a,b,tol) modifica il valore della tolleranza usata (default 1.e-6). [q,fcnt]=quadl(f,a,b) restituisce il numero di valutazioni della funzione. [q,fcnt]=quadl(f,a,b,[],trace) se trace assume un valore diverso da zero, vengono mostrati i valori di [fcnt a b-a Q] durante il procedimento. Le parentesi [] servono per tenere il posto della tolleranza ed usare il suo valore di default.
16 Esercizio Si considerino i seguenti integrali: 4 ) (xe x e 1 dx = 5(e 4 + e ); x 2 3 dx; x 2 3 4/3 dx; xe x e 1 2 dx; Analizzare l ordine di convergenza usando lo script già predisposto. Per calcolare il valore dell integrale esatto (se non assegnato) usare la function di Matlab quadl con tolleranza 1.e-10.
17 Funzioni dipendenti da un parametro Supponiamo di dover integrare una funzione dipendente da un parametro a, ad es. f (x) = arctan(ax). La funzione può essere assegnata come funzione di due variabili di cui la prima è x e la seconda è il parametro a in uno dei due modi seguenti: f=inline( atan(a*x), x, a ) Attenzione all ordine di x e a! f=@(x,a) atan(a*x) Per calcolare l integrale su [ 1, 5] con la function quadratura si usa per a = 2 l istruzione seguente: I=quadratura(f,-1,5,N,metodo,2). Per calcolare l integrale su [ 1, 5] con la function quad la sintassi è: Q=quad(@(x) f(x,2),-1,5). NB L uso di funzioni con parametro in matlab avviene sempre in questo modo. Ad esempio per fare il grafico della stessa funzione con fplot il comando è: fplot(@(x) f(x,2),[-1,5]).
18 Formule adattive Il passo di integrazione H può essere scelto in modo da garantire che l errore sia inferiore ad una tolleranza ε prestabilita. Se usiamo la formula di Simpson si dovrebbe trovare H tale che b a 180 H 4 M < ε, essendo M = max 16 f (4) (x) x [a,b]
19 La funzione arctan(ax) Sia f (x) = arctan(ax), allora si ha 5 1 f (x)dx = f (4) (x) = 24a7 x 3 24a 5 x (a 2 x 2 + 1) 4 [ x arctan(ax) 1 2a log(a2 x 2 + 1) ] 5 1
20 Esercizio Esercizio Per a = 1 ed a = 10, fare il grafico della funzione f (x) = arctan(ax) e della sua derivata quarta sull intervallo [ 1, 5] in due figure differenti. Determinare numericamente M = max f (4) (x) 1 x 5 e trovare il valore di H per cui l errore è minore di tol=1.e-6 per a = 1 e a = 10. Calcolare il valore dell integrale usando la formula di Cavalieri-Simpson composita con il valore di H trovato al punto precedente. Confrontare l errore relativo ottenuto ed il numero di valutazioni della funzione effettuate con quelli dati dalla funzione quad di Matlab.
21 Integrazione di funzioni di 2 variabili Sia D = {(x, y) R 2 : a x b, α(x) y β(x)} un dominio normale. Per calcolare l integrale doppio di una funzione f (x, y) uso la formula di riduzione: ( b ) β(x) f (x, y) dx dy = f (x, y) dy dx. D a α(x)
22 dblquad II=dblquad(FUN,XMIN,XMAX,YMIN,YMAX) II è il valore approssimato dell integrale doppio f (x, y) dxdy dove: FUN è il nome della function che contiene l espressione di f ; la regione di integrazione R è data da R R = {(x, y) R 2 : XMIN x XMAX, YMIN y YMAX}
23 Regioni non rettangolari Si possono trattare anche regioni diverse da rettangoli, ponendo uguale a zero la funzione f fuori dalla regione. Esempio Calcolare il volume della semisfera di raggio 1. Consideriamo la funzione f (x, y) = 1 x 2 y 2 sulla regione 1 x 2 y 2 0. Due possibilità: f=inline( sqrt(max(1-(x.ˆ2+y.ˆ2),0)) ) f=(inline( sqrt(1-(x.ˆ2+y.ˆ2)).* (x.ˆ2+y.ˆ2<=1) ) L integrale si calcola con il comando dblquad(f,-1,1,-1,1)
24 Esercizio Esercizio Usare la function dblquad per calcolare il seguente integrale: (x + y) dxdy dove R R = {(x, y) R 2 : y 0, x 2 + y 2 1 e y x 1 0}. Fare il grafico della funzione e della regione di integrazione.
Integrazione numerica
Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Laboratorio - 5 marzo 2007 Outline 1 Formule di quadratura semplici e composite Formule di quadratura Grado
Integrazione numerica
Integrazione numerica Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Formule di quadratura semplici e composite Formule di quadratura Grado di precisione Formule di
Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie
Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema
Interpolazione ed approssimazione di funzioni
Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner
Introduzione al MATLAB c Parte 2
Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione
Approssimazione polinomiale di funzioni e dati
Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell
CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI
CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni
ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE
ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114
INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.
INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati
Equazione di Keplero (eqz. nonlineari).
Equazione di Keplero (eqz. nonlineari). Risolvere col metodo di Newton, col metodo di bisezione e di punto fisso l equazione di Keplero: E = M + e sin(e) dove e è l eccentricità del pianeta, M l anomalia
Salvare e importare dati
Salvare e importare dati Per salvare i nomi e i valori della variabili create durante una sessione di Matlab si può utilizzare il comando save. Save filename variabili In questo caso le variabili vengono
1 Serie di Taylor di una funzione
Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita
Corso di Analisi Matematica. Polinomi e serie di Taylor
a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli
Documentazione esterna al software matematico sviluppato con MatLab
Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno
Funzioni con dominio in R n
0.1 Punti e vettori di R n Politecnico di Torino. Funzioni con dominio in R n Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto Molto spesso risulta che una quantita
Equazioni non lineari
Dipartimento di Matematica tel. 011 0907503 [email protected] http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,
LE FUNZIONI A DUE VARIABILI
Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre
La grafica. La built-in funzione grafica plot. x spezzata poligonale. discretizzato
La grafica. Il Matlab possiede un ambiente grafico abbastanza potente paragonabile a software grafici operanti in altri contesti. In questo corso ci limiteremo ad illustrare solo una funzione grafica,
Docente: Anna Valeria Germinario. Università di Bari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22
Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Calcolo differenziale e approssimazioni, formula di Taylor Docente: Anna Valeria Germinario Università di Bari
Equazioni non lineari
Equazioni non lineari Data una funzione f : [a, b] R si cerca α [a, b] tale che f (α) = 0. I metodi numerici per la risoluzione di questo problema sono metodi iterativi. Teorema Data una funzione continua
Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.
Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,
Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.
Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,
SIMULAZIONE TEST ESAME - 1
SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R
PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA
Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella
Capitolo 16 Esercizi sugli integrali doppi
Capitolo 6 sercizi sugli integrali doppi Brevi richiami di teoria Sia f : [a, b] [c, d] B IR una funzione limitata e non negativa, definita sul rettangolo R = [a, b] [c, d]. Dividiamo l intervallo [a,
EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.
EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema
Matematica 1 - Corso di Laurea in Ingegneria Meccanica
Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva
CONTINUITÀ E DERIVABILITÀ Esercizi risolti
CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004
ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e
Anno 5 4. Funzioni reali: il dominio
Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado
Matematica e Statistica
Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie
Limiti e continuità delle funzioni reali a variabile reale
Limiti e continuità delle funzioni reali a variabile reale Roberto Boggiani Versione 4.0 9 dicembre 2003 1 Esempi che inducono al concetto di ite Per introdurre il concetto di ite consideriamo i seguenti
MATEMATICA GENERALE - (A-D) Prova d esame del 1 giugno 2012 - FILA A
MATEMATICA GENERALE - (A-D) Prova d esame del giugno 202 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: punto ciascuno). Riportare le soluzioni su questo foglio, mostrando
Dimensione di uno Spazio vettoriale
Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione
COGNOME e NOME: FIRMA: MATRICOLA:
Anno Accademico 04/ 05 Corsi di Analisi Matematica I Proff. A. Villani, R. Cirmi e F. Faraci) Prova d Esame del giorno 6 febbraio 05 Prima prova scritta compito A) Non sono consentiti formulari, appunti,
Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica
DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,
Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R
Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.
CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)
CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare
Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli
Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli 09- Integrale doppio: Riferimenti: R.Adams, Calcolo ifferenziale 2. Capitoli 5.1, 5.2, 5.4. Esercizi 5.3, 5.4 Integrale
Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)
Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:
Corso di Matematica per CTF Appello 15/12/2010
Appello 15/12/2010 Svolgere i seguenti esercizi: 1) Calcolare entrambi i limiti: a) lim(1 x) 1 e x 1 ; x 0 x log 2 x b) lim x 1 1 cos(x 1). 2) Data la funzione: f(x) = x log x determinarne dominio, eventuali
Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di
Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva
SVILUPPO IN SERIE DI FOURIER. Prof. Attampato Daniele
SVILUPPO IN SERIE DI FOURIER Prof. Attampato Daniele SVILUPPO IN SERIE DI UNA FUNZIONE Uno dei problemi più frequenti in matematica è legato alla necessità di approssimare una funzione. Uno degli strumenti
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f
Funzioni. Parte prima. Daniele Serra
Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1
Calcolo differenziale Test di autovalutazione
Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia
Basi di matematica per il corso di micro
Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione
Prove d'esame a.a. 20082009
Prove d'esame aa 008009 Andrea Corli settembre 0 Sono qui raccolti i testi delle prove d'esame assegnati nell'aa 00809, relativi al Corso di Analisi Matematica I (trimestrale, 6 crediti), Laurea in Ingegneria
x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.
Le soluzioni del foglio 2. Esercizio Calcolare il lavoro compiuto dal campo vettoriale F = (y + 3x, 2y x) per far compiere ad una particella un giro dell ellisse 4x 2 + y 2 = 4 in senso orario... Soluzione.
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,
LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.
7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,
Funzione reale di variabile reale
Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A
STUDIO DI UNA FUNZIONE
STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)
( x) ( x) 0. Equazioni irrazionali
Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza
l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere)
Che cos è una funzione? Assegnati due insiemi X e Y si ha una funzione elemento di X uno e un solo elemento di Y. f : X Y se esiste una corrispondenza che associa ad ogni Osservazioni: l insieme X è detto
Metodi Stocastici per la Finanza
Metodi Stocastici per la Finanza Tiziano Vargiolu [email protected] 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione
Grafici tridimensionali
MatLab Lezione 3 Grafici tridimensionali Creazione di un Grafico 3D (1/4) Si supponga di voler tracciare il grafico della funzione nell intervallo x = [0,5]; y=[0,5] z = e -(x+y)/2 sin(3x) sin(3y) Si può
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione
Slide Cerbara parte1 5. Le distribuzioni teoriche
Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle
I appello - 24 Marzo 2006
Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,
Regressione Mario Guarracino Data Mining a.a. 2010/2011
Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume
RETTE, PIANI, SFERE, CIRCONFERENZE
RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,
2 Argomenti introduttivi e generali
1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti
2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1
1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1
~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE
STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.
Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012
Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione
Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno
Rappresentazione di numeri Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Un numero e un entità teorica,
Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale
Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta
I sistemi di numerazione
I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono
Capitolo 1 ANALISI COMPLESSA
Capitolo 1 ANALISI COMPLESSA 1 1.4 Serie in campo complesso 1.4.1 Serie di potenze Una serie di potenze è una serie del tipo a k (z z 0 ) k. Per le serie di potenze in campo complesso valgono teoremi analoghi
Vademecum studio funzione
Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla
Consideriamo due polinomi
Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al
Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in
Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Solitamente si fa riferimento ad intorni simmetrici =, + + Definizione: dato
+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice
Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica
UD6 - MATLAB. Gestione della grafica
UD6 - MATLAB Gestione della grafica Grafici MatLab può produrre grafici 2D e 3D Disegnare un Grafico Il comando plot produce grafici in 2 dimensioni; plot(x,y)apre una finestra e disegna il punto (x,y);
Grafico qualitativo di una funzione reale di variabile reale
Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: [email protected] Dicembre 2014 Indice 1 Qualè il grafico
In laboratorio si useranno fogli di carta millimetrata con scale lineari oppure logaritmiche.
GRAFICI Servono per dare immediatamente e completamente le informazioni, che riguardano l andamento di una variabile in funzione dell altra. La Geometria Analitica c insegna che c è una corrispondenza
Studente: SANTORO MC. Matricola : 528
CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice
Fasi di creazione di un programma
Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma
Federico Lastaria. Analisi e Geometria 2. Integrali multipli. Cambi di variabili. 1/21
Contenuto Integrali doppi. Teorema di Fubini Cambio di variabili: coordinate polari. Cambio di variabili: caso generale. Coordinate sferiche. Federico Lastaria. Analisi e Geometria 2. Integrali multipli.
EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6
EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)
4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0
Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice
G3. Asintoti e continuità
G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei
FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:
FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente
FUNZIONE REALE DI UNA VARIABILE
FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A
4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI
119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca
Modelli matematici e realtà:
Piano Lauree Scientifiche Matematica e Statistica 2010-11 Modelli matematici e realtà: sulle equazioni differenziali - prima parte R. Vermiglio 1 1 Dipartimento di Matematica e Informatica - Università
Semantica operazionale dei linguaggi di Programmazione
Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.
