Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie"

Transcript

1 Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, Lezione 5-31 ottobre 2005

2 Outline 1 Il problema di Cauchy Il problema di Cauchy Stabilità del problema 2 Il metodo di Eulero Il metodo di Crank-Nicolson 3 Convergenza e stima dell errore Stabilità assoluta 4 Solutori Sistema di equazioni differenziali

3 Il problema di Cauchy Il problema di Cauchy Stabilità del problema Problema Sia I un intervallo di R, data f : I R R, trovare y : I R derivabile tale che { y (C) (t) = f (t, y(t)) t I y(t 0 ) = y 0. Teorema Se la funzione f è continua in I R e lipschitziana rispetto a y, cioè esiste L > 0 tale che f (t, y 1 ) f (t, y 2 ) L y 1 y 2 t I, y 1, y 2 R, allora esiste una ed una sola y : I R soluzione del problema di Cauchy.

4 Esempio Il problema di Cauchy Stabilità del problema Un problema di Cauchy senza soluzione Si consideri la funzione f : R 2 R data da { 1 se y 0, t R, f (t, y) = 1 se y < 0, t R, allora il problema di Cauchy { y (t) = f (t, y) per t R y(0) = 0 non ha soluzione.

5 Esempio Il problema di Cauchy Stabilità del problema Un problema di Cauchy con infinite soluzioni { y (t) = 2 y per t R y(0) = 0 Si verifica facilmente che le funzioni: y(t) = 0 t R; y(t) = t t t R sono due possibili soluzioni del problema di Cauchy considerato. Inoltre, per ogni a R si può trovare una soluzione di questo problema di Cauchy con la seguente espressione: { 0 se t < a y(t) = (t a) 2 se t a.

6 Esempio Il problema di Cauchy Stabilità del problema Un problema di Cauchy la cui soluzione non è definita su tutto R. { y (t) = 1 + y 2 per t R y(0) = 0 La funzione f : R 2 R è definita e continua per ogni (t, y) R 2, ma la soluzione y(t) = tan t è definita solo per t ] π/2, π/2[.

7 Dipendenza continua dai dati Il problema di Cauchy Stabilità del problema Consideriamo il seguente problema: { z (t) = f (t, z(t)) + δ(t) per t I z(t 0 ) = y 0 + δ 0. Definizione Sia I un insieme limitato. Il problema di Cauchy si dice stabile se per ogni perturbazione (δ 0, δ(t)) che soddisfa δ 0 < ε, max δ(t) < ε, t I con ε > 0, la soluzione z del problema perturbato verifica: C > 0 : max y(t) z(t) < Cε. t I

8 Dipendenza continua dai dati Il problema di Cauchy Stabilità del problema Proposizione Sia I = [0, T ], f : I R R continua su I R e sia L la costante di Lipschitz di f rispetto a y, cioè vale f (t, y 1 ) f (t, y 2 ) L y 1 y 2 (t, y 1 ), (t, y 2 ) I R. Allora il problema di Cauchy (C) è stabile e vale la seguente maggiorazione max y(t) z(t) elt 1 t I L max δ(t) + e LT δ 0. t I

9 Il metodo di Eulero esplicito Il metodo di Eulero Il metodo di Crank-Nicolson Consideriamo: una partizione dell intervallo I = [t 0, T ] in un numero finito di intervalli [t n, t n+1 ] per n = 0,..., N h 1; h n = t n+1 t n per n = 0,..., N h 1; h = max n h n passo di discretizzazione. In ogni punto t n si cerca un valore u n che approssimi il valore di y n = y(t n ). Metodo di Eulero in avanti u n+1 = u n + h n f (t n, u n ) n = 0, 1,..., N h 1.

10 Il metodo di Eulero Il metodo di Crank-Nicolson Derivazione del metodo di Eulero in avanti Il metodo di Eulero in avanti può essere ottenuto in modi diversi: sostituendo la derivata prima con il rapporto incrementale in avanti: y (t n ) = y(t n+1) y(t n ) h n ; mediante una formula di quadratura, in tutto l intervallo [t n, t n+1 ] si approssima la funzione con il valore che assume nel primo estremo: tn+1 y(t n+1 ) = y(t n ) + y (τ)dτ = y(t n ) + t n tn+1 t n f (τ, y(τ))dτ = y(t n ) + h n f (t n, y(t n )).

11 Il metodo di Eulero all indietro Il metodo di Eulero Il metodo di Crank-Nicolson Metodo di Eulero all indietro u n+1 = u n + h n f (t n+1, u n+1 ) n = 0, 1,..., N h 1. Il metodo di Eulero all indietro si ricava sostituendo alla derivata prima il rapporto incrementale all indietro: y (t n+1 ) = y(t n+1) y(t n ) h n.

12 I metodi di Eulero Il metodo di Eulero Il metodo di Crank-Nicolson Metodi espliciti Il metodo di Eulero in avanti si dice esplicito perché la soluzione u n+1 dipende solo dal valore precedentemente calcolato. Metodi impliciti Il metodo di Eulero all indietro viene detto implicito perché la soluzione u n+1 compare sia a sinistra che a destra tramite la funzione f. Quindi ad ogni passo temporale si deve risolvere un equazione non lineare.

13 Esercizio Il metodo di Eulero Il metodo di Crank-Nicolson Esercizio Dato N R. Si consideri passo costante h = (T t 0 )/N. Scrivere una function che realizzi il metodo di Eulero esplicito a passo costante function [t,u]=eulero avanti(f,t0,t,y0,n) dove t, u sono i vettori che contengono i valori di t n e u n rispettivamente per n = 0,..., N. f è il nome di una function che contiene l espressione di f (t, y) in funzione di t, y. t0, T sono gli estremi dell intervallo I. y0 è il valore iniziale. N il numero dei passi da effettuare a passo costante.

14 Traccia dell esercizio Il metodo di Eulero Il metodo di Crank-Nicolson Calcolare h. Calcolare i punti del vettore t con il comando linspace. Ciclo for n=1:n. Valuta la funzione f in (t n, u n ). Calcola valore della componente n+1 di u.

15 Esercizio Il metodo di Eulero Il metodo di Crank-Nicolson Esercizio Sia N=[ ]. Scrivere un programma di tipo script che per ogni valore di N: calcola, usando la function dell esercizio precedente, la soluzione del seguente problema di Cauchy { y (t) = t 2y 0 < t < 20 y(0) = 0.75; riporta il grafico della soluzione esatta e della soluzione approssimata in una stessa figura calcola l errore: err(n) = max 1 n N u n y(t n ), essendo la soluzione esatta y(t) = e 2t t 1 4. Riportare in un grafico in scala bilogaritmica l errore al variare di N.

16 Traccia dell esercizio Il metodo di Eulero Il metodo di Crank-Nicolson Assegnare N=[ ]. Per ciascun valore di N (for i=1:length(n)): Calcolare la soluzione dell equazione differenziale con il comando [t,u]=eulero avanti(f,t0,t,y0,n). Valutare la soluzione esatta sol nel vettore t. Plottare la soluzione esatta e la soluzione discreta in un unico grafico. Calcolare l errore relativo: E(i)=norm(sol-u,inf)/norm(sol,inf). Plottare l errore in scala bilogaritmica con il comando: loglog(n,e).

17 Il metodo di Eulero Il metodo di Crank-Nicolson Il metodo di Crank-Nicolson (o dei trapezi) Il metodo di Crank-Nicolson o dei trapezi u n+1 = u n + h n 2 (f (t n, u n ) + f (t n+1, u n+1 )). Il metodo di Crank-Nicolson si ottiene usando la formula di quadratura dei trapezi: tn+1 y(t n+1 ) = y(t n ) + f (τ, y(τ))dτ t n = y(t n ) + h n 2 (f (t n, y(t n )) + f (t n+1, y(t n+1 ))). Il metodo di Crank-Nicolson è implicito

18 Convergenza e stima dell errore Stabilità assoluta Analisi della convergenza per il metodo di Eulero esplicito Consideriamo h n = h per n = 0,..., N h 1. Poniamo e n+1 = y(t n+1 ) u n+1 = y(t n+1 ) u n+1 + u n+1 u n+1 dove u n+1 = y(t n ) + hf (t n, y(t n )) y(t n+1 ) un+1 errore di discretizzazione; un+1 u n+1 termine di propagazione dell errore.

19 Errore di discretizzazione Convergenza e stima dell errore Stabilità assoluta Errore di troncamento locale τ n (h) = y(t n+1) u n+1 h = y(t n+1) y(t n ) h y (t n ). Se y è derivabile due volte, per il metodo di Eulero esplicito si ottiene, per un opportuno ξ n (t n, t n+1 ): y(t n+1 ) u n+1 = y(t n+1 ) y(t n ) hf (t n, y(t n )) Quindi τ n (h) = h 2 y (ξ n ). Definizione = y(t n+1 ) y(t n ) hy (t n ) = h2 2 y (ξ n ). Un metodo si dice consistente se lim h 0 τ n (h) = 0.

20 Propagazione dell errore Convergenza e stima dell errore Stabilità assoluta Per definizione vale: u n+1 u n+1 = y(t n ) + hf (t n, y(t n )) u n hf (t n, u n ) = y(t n ) u n + h(f (t n, y(t n )) f (t n, u n )) e usando la proprietà di Lipschitzianità della funzione f rispetto alla variabile y si ricava: u n+1 u n+1 y(t n ) u n + hl y(t n ) u n = (1 + hl) y(t n ) u n = (1 + hl) e n.

21 Convergenza e stima dell errore Stabilità assoluta Convergenza del metodo di Eulero esplicito Teorema Il metodo di Eulero esplicito è convergente del primo ordine in quanto: max y(t n ) u n el(t t0) 1 1 n N h L Mh 2. Dim Mettendo insieme le stime per l errore di discretizzazione e il termine di propagazione dell errore, si ottiene: e n+1 Mh2 2 + (1 + hl) e n essendo M = max t 0 t T f (t, y(t)). Con un po di calcoli si arriva alla maggiorazione finale: e n+1 el(t n+1 t 0 ) 1 L Mh 2.

22 Convergenza e stima dell errore Stabilità assoluta Convergenza del metodo di Eulero implicito Esercizio Sia N=[ ]. Scrivere un programma di tipo script che per ogni valore di N: calcola, mediante il metodo di Eulero implicito (usare la function euleroimp.m), la soluzione del seguente problema di Cauchy { y (t) = t 2y 0 < t < 20 y(0) = 0.75; riporta il grafico della soluzione esatta e della soluzione approssimata in una stessa figura calcola l errore: err(n) = max 1 n N u n y(t n ), essendo la soluzione esatta y(t) = e 2t t 1 4. Riportare in un grafico in scala bilogaritmica l errore al variare di N.

23 Convergenza e stima dell errore Stabilità assoluta Convergenza del metodo di Crank-Nicolson Esercizio Sia N=[ ]. Scrivere un programma di tipo script che per ogni valore di N: calcola, mediante il metodo di Crank-Nicolson, (usare la function cranknic.m) la soluzione del seguente problema di Cauchy { y (t) = t 2y 0 < t < 20 y(0) = 0.75; riporta il grafico della soluzione esatta e della soluzione approssimata in una stessa figura calcola l errore: err(n) = max 1 n N u n y(t n ), essendo la soluzione esatta y(t) = e 2t t 1 4. Riportare in un grafico in scala bilogaritmica l errore al variare di N.

24 Regione di assoluta stabilità Convergenza e stima dell errore Stabilità assoluta Problema modello { y (M) (t) = λy(t) t > 0 essendo λ y(0) = 1, un numero reale negativo. La soluzione è y(t) = e λt, quindi lim t y(t) = 0. Definizione Sia u n la soluzione ottenuta discretizzando il problema (M) con un metodo numerico. L insieme dei valori di hλ per cui lim n u n = 0 si chiama regione di assoluta stabilità del metodo numerico. Se la regione di assoluta stabilità contiene tutta la semiretta dei numeri reali negativi allora il metodo si dice incondizionatamente stabile.

25 Convergenza e stima dell errore Stabilità assoluta Regione di assoluta stabilità del metodo di Eulero esplicito Applichiamo il metodo di Eulero esplicito al problema (M): u n+1 = u n + hλu n u n+1 = (1 + hλ)u n = (1 + hλ) n+1. Per avere che lim n u n = 0 deve essere 1 + hλ < 1 ossia 0 < h < 2 λ. Il metodo di Eulero esplicito si dice condizionatamente assolutamente stabile.

26 Convergenza e stima dell errore Stabilità assoluta Regione di assoluta stabilità del metodo di Eulero implicito Applichiamo il metodo di Eulero implicito al problema (M): u n+1 = u n + hλu n+1 u n+1 = ( ) 1 1 n+1 1 hλ u n =. 1 hλ Poiché λ < 0 si ha 0 < 1/(1 hλ) < 1 per ogni h. Quindi il metodo di Eulero implicito si dice incondizionatamente assolutamente stabile.

27 Regione di assoluta stabilità Convergenza e stima dell errore Stabilità assoluta Esercizio Risolvere il problema modello y = λy, t [0, 20], y(0) = 1 per λ = 1, 5, 10, usando le function eulero avanti, euleroimp e cranknic, con N = 10, 20, 40, 50, 60, 90, 100, 110, 200, 400.

28 Solutori Sistema di equazioni differenziali Risolutori di equazioni differenziali ordinarie Problemi non stiff ode45 Metodo di Runge-Kutta (4,5). ode23 Metodo di Runge-Kutta (2,3). ode113 Metodo di Adams-Bashforth-Moulton PECE. Problemi stiff ode15s ode23s Altre opzioni Metodo multistep basato su una formula di tipo BDF. Metodo ad un passo. odeset Crea o modifica le OPTIONS. odeplot Grafico della soluzione. odephas2 Grafico del piano delle fasi in 2D. odephas3 Grafico del piano delle fasi in 3D.

29 Solutori Sistema di equazioni differenziali Come si risolve una equazione differenziale usando i solutori di Matlab Scrivere una function che accetta due argomenti t e y e restituisce il valore della funzione function dy=f(t,y) dy=(1-t*y-t^2*y^2)/t^2; F=inline( 1-t*y-t^2*y^2)/t^2, t, y ); Applicare un solutore mediante il comando [t,u] = ode23 ( F, [t0 T], y0) Usare il comando plot per vedere i risultati: plot(t,u)

30 Solutori Sistema di equazioni differenziali Come usare i solutori di ODE in Matlab6 Il comando più semplice per risolvere un equazione differenziale è: [t,u] = solver (odefun,tspan, y0) Input odefun function in cui si valuta f (t, y) tspan vettore contenente gli estremi di integrazione y0 dato iniziale (vettore colonna) bla Output t vettore colonna degli istanti t in cui viene calcolata la soluzione approssimata y array contenente la soluzione, le righe sono le componenti di y ad un certo istante t.

31 Argomenti addizionali Solutori Sistema di equazioni differenziali [t,u] = solver (odefun,tspan, y0,options,p1,p2,...) options struttura che contiene i parametri per cambiare le proprietà di default del solutore p1,p2,... parametri che si possono passare alla odefun. Per definire le options si usa il comando odeset. >> odeset fornisce i valori di default e il nome delle varibili che si possono definire:

32 odeset Solutori Sistema di equazioni differenziali Variabile default descrizione RelTol 1.e-3 tolleranza per l errore relativo AbsTol 1.e-6 tolleranza per l errore assoluto MaxStep tspan /10 valore massimo per il passo InitialStep calcolato passo iniziale scelto OutputFcn Function controlla l output OutputFcn odeplot grafico in funzione di t OutputFcn odephas2 plot del piano delle fasi OutputFcn odephas3 plot del piano delle fasi in 3D OutputSel vettore di interi specifica le componenti del vettore soluzione che si vogliono come output

33 Sistema di equazioni differenziali Solutori Sistema di equazioni differenziali Problema Siano a, b, c e d numeri reali positivi. Cercare y 1 (t) e y 2 (t) tali che risolvano nell intervallo [0, 7] il seguente sistema di equazioni differenziali ordinarie: Porre: a = 1, b = 1, c = 2, d = 3 α = 0.5, 0.7, 1.4, 2.6 β = 1 y 1 = (a by 2)y 1 y 2 = ( c + dy 1)y 2 y 1 = α y 2 = β.

34 Come si risolve il sistema Solutori Sistema di equazioni differenziali Scrivere una function che accetta due argomenti t e y e restituisce il valore della funzione a valori vettoriali function dy=lotkavolterra(t,y) a=1; b=1; c=2; d=3; dy=[(a-b*y(2))*y(1); (-c+d*y(1))*y(2)]; Applicare un solutore mediante il comando [t,u] = ode45 ( lotkavolterra, [0 7], [α;β]) Usare il comando plot per vedere i risultati: plot(t,u) oppure plot(u(:,1),u(:,2)) Per ottenere il piano delle fasi si può procedere come segue: options=odeset( OutputFcn, odephas2 ) [t,u]=ode45( lotkavolterra,[0 7],[α;β],options)

35 Equazione differenziale di ordine n Solutori Sistema di equazioni differenziali Problema Sia f : I R n R. Consideriamo l equazione differenziale: y (n) (t) = f (t, y(t), y (t),..., y (n 1) (t)) y(t 0 ) = α 1 y (t 0 ) = α 2... y (n 1) (t 0 ) = α n t I

36 Equazione differenziale di ordine n Solutori Sistema di equazioni differenziali Il problema di Cauchy per l equazione differenziale di ordine n è equivalente ad un sistema differenziale del primo ordine. Si pone y 1 (t) = y(t), y 2 (t) = y (t),..., y n (t) = y (n 1) (t). Osserviamo che y 2 (t) = y (t) = y 1(t),... y n (t) = y (n 1) (t) = y n 1(t).

37 Solutori Sistema di equazioni differenziali Quindi si ottiene il seguente sistema di equazioni differenziali y 1 (t) = y 2(t) y 2 (t) = y 3(t)... y n(t) = f (t, y 1 (t), y 2 (t),..., y n (t)) y 1 (t 0 ) = α 1 y 2 (t 0 ) = α 2... y n (t 0 ) = α n

38 Esempio: equazione di van der Pol Solutori Sistema di equazioni differenziali y µ(1 y 2 )y + y = 0 dove µ > 0. L equazione si riduce al seguente sistema: { y 1 (t) = y 2 (t) y 2 (t) = µ(1 y 2 1 )y 2 y 1 Posto µ = 1, si costruisce la function che definisce il sistema: function dy = vdp(t,y) dy = [y(2); (1-y(1)^2)*y(2)-y(1)]; Porre µ = 500 e risolvere con ode45. [t,u]=ode45( vdp,[0 20],[2;0]) Usare ode15s per risolvere l equazione nell intervallo [0, 3000]. [t,u]=ode15s( vdp,[0 3000],[2;0]);

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

Metodi numerici per la risoluzione di equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 15 ottobre 2007 Outline 1 Il problema di Cauchy Il problema

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 16 novembre 2007 Outline 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 marzo 2008 Outline 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Modelli matematici e realtà:

Modelli matematici e realtà: Piano Lauree Scientifiche Matematica e Statistica 2010-11 Modelli matematici e realtà: sulle equazioni differenziali - prima parte R. Vermiglio 1 1 Dipartimento di Matematica e Informatica - Università

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati 2 Metodi numerici

Dettagli

Daniela Lera A.A. 2008-2009

Daniela Lera A.A. 2008-2009 Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Metodi Runge-Kutta In alcuni esempi precedenti sono stati presentati vari metodi monostep. Esiste

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati 2 Metodi numerici

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati 2 Metodi numerici

Dettagli

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità...

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità... Indice 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo............................. 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità.............. 5 i Capitolo 1 Introduzione

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu mattia.zanella@unife.it www.mattiazanella.eu Department of Mathematics and Computer Science, University of Ferrara, Italy Ferrara, 1 Maggio 216 Programma della lezione Seminario II Equazioni differenziali

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati 2 Metodi numerici

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Docente: Anna Valeria Germinario. Università di Bari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22

Docente: Anna Valeria Germinario. Università di Bari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22 Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Calcolo differenziale e approssimazioni, formula di Taylor Docente: Anna Valeria Germinario Università di Bari

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Ammortamento di un debito

Ammortamento di un debito Algoritmi e dintorni: Ammortamento di un debito: Ricerca del tasso Prof. Ettore Limoli Ammortamento di un debito In questa nostra trattazione non ci addentreremo in problemi di matematica finanziaria o

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

Sulle funzioni di W 1,p (Ω) a traccia nulla

Sulle funzioni di W 1,p (Ω) a traccia nulla Sulle funzioni di W 1,p () a traccia nulla Sia u W 1,p (R n ) e supponiamo che il supp u, essendo un aperto di R n. Possiamo approssimare u con una successione di funzioni C il cui supporto è contenuto

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 9 Contenuti della lezione Operazioni finanziarie, criterio

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Matematica generale CTF

Matematica generale CTF Equazioni differenziali 9 dicembre 2015 Si chiamano equazioni differenziali quelle equazioni le cui incognite non sono variabili reali ma funzioni di una o più variabili. Le equazioni differenziali possono

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.4 Serie in campo complesso 1.4.1 Serie di potenze Una serie di potenze è una serie del tipo a k (z z 0 ) k. Per le serie di potenze in campo complesso valgono teoremi analoghi

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

LABORATORIO DI ANALISI DEI SISTEMI

LABORATORIO DI ANALISI DEI SISTEMI LABORATORIO DI ANALISI DEI SISTEMI Si utilizzerà, come strumento di lavoro, un foglio elettronico, il più diffuso Excel o anche quello gratuito di OpenOffice (www.openoffice.org). Tale scelta, pur non

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Denis Nardin January 2, 2010 1 Equazioni differenziali In questa sezione considereremo le proprietà delle soluzioni del problema di Cauchy. Da adesso in poi (PC) indicherà

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO)

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO) IL CALCOLO VETTORIALE SUPPLEMENTO AL LIBRO CLAUDIO BONANNO Contents. Campi di vettori e operatori 2. Il lavoro di un campo di vettori 5 2.. Lavoro e campi conservativi 6 2.2. Lavoro e campi irrotazionali:

Dettagli

Documentazione esterna al software matematico sviluppato con MatLab

Documentazione esterna al software matematico sviluppato con MatLab Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno

Dettagli

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

Luigi Piroddi piroddi@elet.polimi.it

Luigi Piroddi piroddi@elet.polimi.it Automazione industriale dispense del corso 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul grafo di raggiungibilità,

Dettagli

21. Studio del grafico di una funzione: esercizi

21. Studio del grafico di una funzione: esercizi 1. Studio del grafico di una funzione: esercizi Esercizio 1.6. Studiare ciascuna delle seguenti funzioni in base allo schema di pagina 194, eseguendo anche il computo della derivata seconda e lo studio

Dettagli

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007 Spazi lineari - PARTE II - Felice Iavernaro Dipartimento di Matematica Università di Bari 9 e 16 Marzo 2007 Felice Iavernaro (Univ. Bari) Spazi lineari 9-16/03/2007 1 / 17 Condizionamento dei sistemi lineari

Dettagli

I appello - 24 Marzo 2006

I appello - 24 Marzo 2006 Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,

Dettagli

Esercitazione del 16-11-11 Analisi I

Esercitazione del 16-11-11 Analisi I Esercitazione del 6-- Analisi I Dott.ssa Silvia Saoncella silvia.saoncella 3[at]studenti.univr.it a.a. 00-0 Esercizio. Determinare se la funzione f() è continua nel suo dominio sin se 0 f() = 0 se = 0

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Funzioni di più variabili

Funzioni di più variabili Funzioni di più variabili Introduzione Funzioni reali di più variabili reali Una unzione reale di due variabili è una unzione : D R dove il dominio D è un sottoinsieme di R. ESEMPI: - / ln. Considerazioni

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1

Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 1 Esercitazione 1: 4/09/010 1. Determinare il dominio delle seguenti funzioni: log a) f() = 5 ( 1). b) g() = log 3 (3 6) log 13.

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Corso di Analisi Matematica Serie numeriche

Corso di Analisi Matematica Serie numeriche Corso di Analisi Matematica Serie numeriche Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 25 1 Definizione e primi esempi 2 Serie a

Dettagli

Rendering air show e verifica della sincronizzazione

Rendering air show e verifica della sincronizzazione Capitolo 5 Rendering air show e verifica della sincronizzazione 5.1 Introduzione Il Rendering 3D dell evoluzioni acrobatiche costituisce uno degli aspetti cruciali dell applicazione realizzata. L ambiente

Dettagli

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W LEZIONE 16 16.1. Applicazioni lineari iniettive e suriettive. Ricordo le seguenti due definizioni valide per applicazioni di qualsiasi tipo ϕ: X Y fra due insiemi. L applicazione ϕ si dice iniettiva se

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015 SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Matematica 1 - Corso di Laurea in Ingegneria Meccanica Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Funzioni con dominio in R 2

Funzioni con dominio in R 2 0.1 Grafici e curve di livello Politecnico di Torino. Funzioni con dominio in R 2 Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto Il dominio U di una funzione f e

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013 SERIE NUMERICHE prof. Antonio Greco 6--203 Indice Motivazioni........... 3 Definizione........... 3 Errore tipico........... 3 Un osservazione utile...... 3 Condizione necessaria...... 4 Serie armonica.........

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x) 1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli