Branch-and-bound per KNAPSACK
|
|
|
- Ottaviana Ricci
- 9 anni fa
- Visualizzazioni
Transcript
1 p. 1/1 Branch-and-bound per KNAPSACK Rispetto allo schema generale visto in precedenza dobbiamo specificare: come si calcola un upper bound su un sottinsieme; come si effettua il branching; come si individuano soluzioni ammissibili con cui, eventualmente, aggiornare il valore del lower bound LB.
2 p. 2/1 Upper bound U(S) Cominciamo con il calcolare l upper bound U(S) su tutta la regione ammissibile S. L upper bound si calcola utilizzando il rilassamento lineare del problema originale: max n i=1 v ix i n i=1 p ix i b 0 x i 1 i {1,...,n} Questo è un problema di PL, ma è di forma molto semplice e non abbiamo bisogno di scomodare l algoritmo del simplesso per risolverlo.
3 p. 3/1 Risoluzione del rilassamento lineare Riordinare, eventualmente, gli oggetti in modo non crescente rispetto ai rapporti valore/peso v i p i, cioè si abbia che: v 1 v 2 v n. p 1 p 2 p n
4 p. 4/1 Si calcolino i valori b p 1 b p 1 p 2 fino ad arrivare al primo valore negativo. b r+1 se vi si arriva (se non vi si arriva vuol dire semplicemente che tutti gli oggetti possono essere messi nello zaino e la soluzione ottima del problema è proprio quella di mettere tutti gli oggetti nello zaino). j=1 p j
5 p. 5/1 Soluzione rilassamento lineare La soluzione ottima del rilassamento lineare è la seguente ed ha il valore ottimo x 1 = x 2 = = x r = 1 x r+1 = b r j=1 p j p r+1 x r+2 = x r+3 = = x n = 0 r j=1 v j + v r+1 b r j=1 p j p r+1.
6 p. 6/1 Soluzione ammissibile Notiamo anche che la soluzione x 1 = x 2 = = x r = 1 x r+1 = x r+2 = x r+3 = = x n = 0 ottenuta approssimando per difetto il valore dell unica variabile (la x r+1 ) che può avere coordinate non intere nella soluzione del rilassamento lineare, è appartenente a S (il peso dei primi r oggetti non supera la capacità dello zaino). Quindi tale soluzione può essere utilizzata per il calcolo del lower bound LB.
7 p. 7/1 Sottinsiemi di S di forma particolare Consideriamo sottinsiemi di S con questa forma: S(I 0,I 1 ) = {N S : l oggetto i N i I 0, l oggetto i N i I 1 } dove I 0,I 1 {1,...,n} e I 0 I 1 =. In altre parole S(I 0,I 1 ) contiene tutti gli elementi di S che non contengono gli oggetti in I 0 e contengono gli oggetti in I 1. Possono invece indifferentemente contenere o non contenere gli oggetti nell insieme con i 1 < < i k. I f = {i 1,...,i k } = {1,...,n} \ (I 0 I 1 ),
8 p. 8/1 Nota bene Si ha che S = S(, ), cioè la regione ammissibile del problema può essere vista come caso particolare di sottinsieme di forma S(I 0,I 1 ) con I 0 = I 1 =.
9 p. 9/1 Upper bound per tali sottinsiemi Il nostro originario problema KN AP SACK ristretto al sottinsieme S(I 0,I 1 ) si presenta nella seguente forma: max i I 0 v i x i + i I 1 v i x i + i I f v i x i i I 0 p i x i + i I 1 p i x i + i I f p i x i b x i {0, 1} i I f da cui: max i I 1 v i + i I f v i x i i I f p i x i b i I 1 p i x i {0, 1} i I f
10 p. 10/1 Continua Possiamo notare che si tratta ancora di un problema di tipo KNAPSACK dove è presente una quantità costante nell obiettivo ( i I 1 v i ), dove lo zaino ha ora capacità b i I 1 p i e dove l insieme di oggetti in esame è ora ristretto ai soli oggetti in I f. Trattandosi ancora di un problema dello zaino, possiamo applicare ad esso la stessa procedura che abbiamo adottato per trovare l upper bound U(S), ovvero si risolve il rilassamento lineare. Tale procedura darà in output oltre all upper bound U(S(I 0,I 1 )), anche una soluzione appartenente a S(I 0,I 1 ) (e quindi a S) utilizzabile per il calcolo del lower bound LB.
11 p. 11/1 Procedura di calcolo Passo 1 Se b i I 1 p i < 0, il nodo non contiene soluzioni ammissibili (gli oggetti in I 1 hanno già un peso superiore alla capacità b dello zaino). In tal caso ci si arresta e si pone U(S(I 0,I 1 )) =
12 p. 12/1 Continua Passo 2 Altrimenti, si sottraggano successivamente a b i I 1 p i i pesi degli oggetti in I f nell ordine dato arrestandoci se Caso A si arriva ad un valore negativo, ovvero esiste r {1,...,k 1} tale che b i I 1 p i p i1 p ir 0 ma b i I 1 p i p i1 p ir p ir+1 < 0. Caso B Si sono sottratti i pesi di tutti gli oggetti in I f senza mai arrivare ad un valore negativo.
13 p. 13/1 Soluzioni ottime Caso A: x i1 = x i2 = = x ir = 1 x ir+1 = b i I 1 p i r j=1 p i j p ir+1 x ir+2 = x ir+3 = = x ik = 0 Caso B: x i1 = x i2 = = x ik = 1
14 p. 14/1 Passo 3 Output caso A: U(S(I 0, I 1 )) = i I 1 v i + r h=1 v ih + v ir+1 b i I 1 p i r h=1 p i h p ir+1. Output caso B: N = I 1 {i 1,..., i r } con f(n) = r v i + i I 1 U(S(I 0, I 1 )) = k v i + v ih. i I 1 h=1 h=1 v ih N = I 1 I f, con f(n) = U(S(I 0, I 1 )) = k v i + i I 1 h=1 v ih
15 p. 15/1 Nota bene Nel caso B il sottinsieme S(I 0,I 1 ) verrà sicuramente cancellato. Infatti in tal caso si ha: U(S(I 0,I 1 )) = f(n) LB, da cui segue la cancellazione del sottinsieme.
16 p. 16/1 Branching Vediamo ora di descrivere l operazione di branching. Dapprima la descriviamo per l insieme S e poi l estendiamo agli altri sottinsiemi generati dall algoritmo. Supponiamo di trovarci, al termine dell esecuzione della procedura per il calcolo di U(S), nel caso A (il caso B è un caso banale in cui tutti gli oggetti possono essere inseriti nello zaino). Avremo quindi un indice r + 1 che è il primo oggetto per cui la sottrazione successiva dei pesi assume valore negativo.
17 p. 17/1 Continua La regola di branching prescrive di suddividere S nei due sottinsiemi S({r + 1}, ) e S(, {r + 1}), ovvero in un sottinsieme della partizione si aggiunge l oggetto r + 1 all insieme I 0, nell altro lo si aggiunge all insieme I 1.
18 p. 18/1 Estensione Quanto visto per l insieme S può essere esteso a tutti i sottinsiemi di forma S(I 0,I 1 ): dato un tale sottinsieme, l oggetto i r+1 che appare nel calcolo dell upper bound nel caso A viene aggiunto in I 0 in un sottinsieme della partizione di S(I 0,I 1 ) e in I 1 nell altro sottinsieme, ovvero la partizione di S(I 0,I 1 ) sarà data dai seguenti sottinsiemi S(I 0 {i r+1 },I 1 ) e S(I 0,I 1 {i r+1 }). Si noti che con questa regola di branching tutti i sottinsiemi che appariranno nell insieme C saranno del tipo S(I 0,I 1 ) e quindi un upper bound per essi potrà sempre essere calcolato tramite la procedura vista.
Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4
Programmazione Lineare Intera Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Problema di PLI in forma standard: max cx Ax = b x 0, x I n I insieme degli interi. Regione ammissibile:
Parte III: Algoritmo di Branch-and-Bound
Parte III: Algoritmo di Branch-and-Bound Divide et Impera Sia z * max {c T x : x S} (1) un problema di ottimizzazione combinatoria difficile da risolvere. Domanda: E possibile decomporre il problema (1)
Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015
1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)
Branch-and-bound per TSP
p. 1/6 Branch-and-bound per TSP Anche qui, rispetto allo schema generale visto in precedenza dobbiamo specificare: p. 1/6 Branch-and-bound per TSP Anche qui, rispetto allo schema generale visto in precedenza
3.4 Metodo di Branch and Bound
3.4 Metodo di Branch and Bound Consideriamo un generico problema di Ottimizzazione Discreta dove X è la regione ammissibile. (P ) z = max{c(x) : x X} Metodologia generale di enumerazione implicita (Land
Soluzione di problemi di Programmazione Lineare Intera
10 Soluzione di problemi di Programmazione Lineare Intera 10.1 ESERCIZI SULLA SOLUZIONE DI PROBLEMI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 10.1.1 Risolvere con il metodo del Branch and Bound il seguente
Esercizi sulla Programmazione Lineare Intera
Soluzioni 4.7-4.0 Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare Intera 4.7 Algoritmo del Simplesso Duale. Risolvere con l algoritmo del simplesso duale il seguente
Possibile applicazione
p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile
Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities
Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di
5.5 Metodi generali per la soluzione di problemi
5.5 Metodi generali per la soluzione di problemi di PLI I problemi di PLI hanno caratteristiche molto diverse dai problemi di PL. In alcuni casi, la soluzione del problema lineare rilassato, ottenuto cioè
COMPITO DI RICERCA OPERATIVA. (5 punti) Sia dato il seguente problema di PL: min x 1 + x 2 x 1 + x 2 3 x 1 + x 2 2 2x 1 + x 2 3.
COMPITO DI RICERCA OPERATIVA ESERCIZIO 1. (5 punti) Sia dato il seguente problema di PL: min x 1 + x 2 x 1 + x 2 x 1 + x 2 2 2x 1 + x 2 x 1 0 x 2 0 Si trasformi questo problema in forma standard e lo si
Algoritmo di Branch & Bound
Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Algoritmo di Branch & Bound Docente: Renato Bruni [email protected] Corso di: Ottimizzazione Combinatoria
Esame di Ricerca Operativa del 11/07/2016
Esame di Ricerca Operativa del /0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un erboristeria vuole produrre una nuova tisana utilizzando tipi di tisane già in commercio. Tali tisane sono per lo più composte
Parte V: Rilassamento Lagrangiano
Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice
Esame di Ricerca Operativa del 15/01/2015
Esame di Ricerca Operativa del 1/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da calcio e da basket che vende a 1 e 20 euro rispettivamente. L azienda compra ogni settimana
Esame di Ricerca Operativa del 15/01/2015
Esame di Ricerca Operativa del 1/01/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da basket e da calcio che vende rispettivamente a 1 e euro. L azienda compra ogni settimana 00
Esame di Ricerca Operativa del 07/09/2016
Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e
Appunti sui Codici di Reed Muller. Giovanni Barbarino
Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità
Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:
Esame di Ricerca Operativa del 08/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x x 0 x + x x x 8 x x 8
COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04
COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 Esercizio 1 Si risolva con il metodo branch-and-bound il seguente problema di PLI max x 1 + x 4x 1 + x + x = 0 x 1 + x + x 4 = x 1, x, x, x 4 0 x 1, x,
Il metodo dei Piani di Taglio (Cutting Planes Method)
Il metodo dei Piani di Taglio (Cutting Planes Method) E un metodo di soluzione dei problemi (IP) di tipo generale. L idea di base: Se la soluzione di (RL) non è intera allora la soluzione ottima intera
Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR
1 Giovedí 14 Maggio 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Geometria di R n 1 Dare la definizione di Poliedro e Vertice di un Poliedro 2 Dare la definizione di Poliedro e di Politopo
Esame di Ricerca Operativa del 03/09/2015
Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una raffineria di petrolio miscela tipi di greggio per ottenere tipi di carburante: senza piombo, diesel e blu diesel.
5.3 Metodo dei piani di taglio
5.3 Metodo dei piani di taglio (PLI) min s.v. c T x Ax b x interi X Ipotesi: a ij, c j e b i interi Osservazione: La regione ammissibile di un PLI può essere descritta mediante dei vincoli più o meno stringenti
2.6 Calcolo degli equilibri di Nash
92 2 Giochi non Cooperativi Per queste estensioni di giochi non finiti si possono provare risultati analoghi a quelli visti per i giochi finiti. Rimandiamo alla bibliografia per uno studio più approfondito
Si consideri il seguente tableau ottimo di un problema di programmazione lineare
ESERCIZIO 1 Si consideri il seguente tableau ottimo di un problema di programmazione lineare -25/3 0 4/3 19/6 9/2 0 0 0 7/6 1 0 1-1/2-3/2 1 0 0 3/2 11/3 1-2/3-1/3 0 0 0 0 2/3 2/3 0 1/3 1/6-1/2 0 1 0 7/6
METODI DELLA RICERCA OPERATIVA
Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco ([email protected]) i i Dott.ing. Maria Ilaria Lunesu ([email protected])
Esame di Ricerca Operativa del 09/02/2016
Esame di Ricerca Operativa del 0/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una sartoria produce tipi di vestiti: pantaloni, gonne e giacche, utilizzando stoffa e filo. Settimanalmente, la disponibilità
RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione)
RICERCA OPERATIVA Tema d esame del 04/03/2008 (Simulazione) COGNOME: NOME: MATRICOLA:. Una nota azienda automobilistica produce due modelli di auto (un utilitaria e una berlina), che rivende con un guadagno
Macchine parallele M 1 M 2 M 3 J 1 J 2 LAVORI J 3 J 4
Macchine parallele M 1 J 1 J 2 LAVORI M 2 J 3 J 4 M 3 Macchine parallele Scheduling su macchine parallele scorrelate R C max Descrizione del problema n lavori devono essere processati da m macchine diverse
Esame di Ricerca Operativa del 16/06/2015
Esame di Ricerca Operativa del 1/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una ditta produce vernici in tre diversi stabilimenti (Pisa, Cascina, Empoli) e le vende a tre imprese edili (A, B, C). Il
Complementi ed Esercizi di Informatica Teorica II
Complementi ed Esercizi di Informatica Teorica II Vincenzo Bonifaci 21 maggio 2008 4 Problemi di ottimizzazione: il Bin Packing Il problema bin packing è il seguente: dato un insieme di n oggetti di dimensioni
COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2
COMPITO DI RICERCA OPERATIVA ESERCIZIO. ( punti) La riformulazione di un problema di PL rispetto alla base B = {x, x, x } è la seguente: max 2x + x 2 x = 2 + x x 2 x = + x 2 x = 2 + x + x 2 x, x 2, x,
1 Il metodo dei tagli di Gomory
Il metodo dei tagli di Gomory Esercizio Sia dato il problema min(x x ) x + x (P 0 ) x + x x, x 0, interi. Calcolare la soluzione ottima applicando il metodo dei tagli di Gomory. Risoluzione Per applicare
RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine
RISOLUZIONE IN LOGICA PROPOSIZIONALE Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine 1. Risoluzione Definitione 1.1. Un letterale l è una variabile proposizionale (letterale
Problemi di localizzazione di servizi (Facility Location Problems)
9. Problemi di Localizzazione di Servizi 1 Problemi di localizzazione di servizi (Facility Location Problems) Dato un insieme di clienti richiedenti una data domanda di merce e dato un insieme di possibili
Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard
Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione
L ALGORITMO DEL SIMPLESSO REVISIONATO
L ALGORITMO DEL SIMPLESSO REVISIONATO L'algoritmo del simplesso revisionato costituisce una diversa implementazione dell algoritmo standard tesa a ridurre, sotto certe condizioni, il tempo di calcolo e
ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I
ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I Esercizio 1 Dati n oggetti ed un contenitore, ad ogni oggetto j (j = 1,, n) sono associati un peso p j ed un costo c j (con p j e c j interi positivi). Si
Il metodo del simplesso
Capitolo 5 Il metodo del simplesso 5. La forma standard Esercizio 5.. Porre il problema di Programmazione Lineare: in forma standard. min x +x + x + x x +x 5 x 4 x, x Si trasformano i vincoli di disuguaglianza
Excel: una piattaforma facile per l ottimizzazione. Excel ha un toolbox di ottimizzazione: Risolutore
Excel: una piattaforma facile per l ottimizzazione Excel ha un toolbox di ottimizzazione: Risolutore Il problema di produzione con Excel Consideriamo il foglio Excel Variabili di decisione reali c8,d8
Cammini minimi fra tutte le coppie
Capitolo 12 Cammini minimi fra tutte le coppie Consideriamo il problema dei cammini minimi fra tutte le coppie in un grafo G = (V, E, w) orientato, pesato, dove possono essere presenti archi (ma non cicli)
Esercizi di Programmazione Lineare - Dualità
Esercizi di Programmazione Lineare - Dualità Esercizio n1 Dato il seguente problema 3 + 3 2 2 + a scriverne il duale; b risolvere il duale (anche geometricamente indicando cosa da esso si può dedurre sul
Esercizi sulla Programmazione Lineare. min. cx Ax b x 0
Soluzioni 4.-4. Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare 4. Risoluzione grafica e forma standard. Si consideri il problema min x cx Ax b x dove x = (x, x )
Soluzione dei problemi di Programmazione Lineare Intera
Fondamenti di Ricerca Operativa T-A a.a. 2015-2016 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Paolo Tubertini, Daniele Vigo rev. 2. ottobre 2016 Fondamenti di
Algoritmi di Ricerca
Algoritmi e Strutture Dati Autunno 01 Algoritmi di Ricerca Dip. Informatica ed Appl. Prof. G. Persiano Università di Salerno 1 Ricerca esaustiva 1 2 Backtrack 3 2.1 Backtrack per enumerazione......................................
Ottimizzazione Multi Obiettivo
Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo La Programmazione Matematica classica, lineare (PL) o intera (PLI), tratta problemi caratterizzati da una unica e ben definita funzione obiettivo.
Metodi generali per la soluzione di problemi di PLI
11 Metodi generali per la soluzione di problemi di PLI Per la soluzione di problemi di PLI non esistono metodi universalmente efficienti. Molto spesso è necessario utilizzare algoritmi ad hoc che siano
Algoritmi generali per PLI
Programmazione Lineare Intera: II Algoritmo Cutting Planes Daniele Vigo D.E.I.S. Università di Bologna [email protected] rev.. ottobre Algoritmi generali per PLI Metodi esatti tradizionali (anni 6 oggi):
LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice
LE RADICI QUADRATE L ESTRAZIONE DI RADICE È L OPERAZIONE INVERSA DELL OPERAZIONE DI ELEVAMENTO A POTENZA INDICE 9=3 RADICE QUADRATA SEGNO DI RADICE RADICANDO 9 è il numero di cui vogliamo calcolare la
4. METODI DUALI DEL SIMPLESSO
4. MEODI DUALI DEL SIMPLESSO R. adei 1 Una piccola introduzione R. adei 2 MEODI DUALI DEL SIMPLESSO L obiettivo del capitolo è illustrare e giustificare i metodi duali del simplesso. Entrambi i metodi
2. ALGORITMO DEL SIMPLESSO
. ALGORITMO DEL SIMPLESSO R. Tadei Una piccola introduzione R. Tadei SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione
Università Ca Foscari Venezia
Università Ca Foscari Venezia Dipartimento di Scienze Ambientali, Informatica e Statistica Giovanni Fasano Brevi FAQ sul Metodo del SIMPLESSO Università Ca Foscari Venezia, Dipartimento di Management,
Gestione della produzione e della supply chain Logistica distributiva
Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non
Rilassamento Lagrangiano
RILASSAMENTO LAGRANGIANO 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il seguente problema
Corso di Analisi Numerica
Corso di Laurea in Ingegneria Informatica Corso di 3 - PROBLEMI DI INTERPOLAZIONE Lucio Demeio Dipartimento di Scienze Matematiche 1 Interpolazione: Polinomio di Lagrange 2 3 Introduzione Problemi di interpolazione
Esercizi soluzione grafica e Branch and Bound. Daniele Vigo
Esercizi soluzione grafica e Branch and Bound Daniele Vigo [email protected] Mix Mangimi Il gestore di un allevamento desidera determinare il mix ottimale di mangimi da aggiungere al riso per la dieta
Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni
Anno 3 Funzioni esponenziali e logaritmi: le 4 operazioni 1 Introduzione In questa lezione impareremo a conoscere le funzioni esponenziali e i logaritmi; ne descriveremo le principali caratteristiche e
UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014
A Ricerca Operativa 1 Seconda prova intermedia Un tifoso di calcio in partenza da Roma vuole raggiungere Rio De Janeiro per la finale del mondiale spendendo il meno possibile. Sono date le seguenti disponibilità
Il problema dello zaino
Il problema dello zaino (knapsack problem) Damiano Macedonio [email protected] Copyright 2010 2012 Moreno Marzolla, Università di Bologna (http://www.moreno.marzolla.name/teaching/asd2011b/) This work is licensed
UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013
A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia 7 giugno 0 Nome: Cognome: Matricola: Orale /06/0 ore aula N Orale 0/07/0 ore aula N
LEZIONE 12. v = α 1 v α n v n =
LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono
ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).
ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica
Problemi, istanze, soluzioni
lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un
Laboratorio di Informatica. Esercitazione su algoritmi e diagrammi di flusso
Laboratorio di Informatica Esercitazione su algoritmi e diagrammi di flusso Algoritmi, programmi e dati Algoritmo = insieme di istruzioni che indicano come svolgere operazioni complesse su dei dati attraverso
NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n
NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare
Programmazione dinamica
Programmazione dinamica Violetta Lonati Università degli studi di Milano Dipartimento di Informatica Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica Violetta Lonati Programmazione
Integrale indefinito
Integrale indefinito 1 Primitive di funzioni Definizione 1.1 Se f: [a, b] R è una funzione, una sua primitiva è una funzione derivabile g: [a, b] R tale che g () = f(). Ovviamente la primitiva di una funzione,
STRUTTURA E LOGICA DI FUNZIONAMENTO DEL COMPUTER
1 STRUTTURA E LOGICA DI FUNZIONAMENTO DEL COMPUTER Un computer e una macchina che riceve in ingresso delle informazioni, le elabora secondo un determinato procedimento e produce dei risultati che vengono
Ottimizzazione e Controllo 2015/2016 ESERCITAZIONE
Ottimizzazione e Controllo 2015/2016 ESERCITAZIONE Esercizio 1. Sono dati 6 job da processare su un centro di lavorazione automatizzato che può eseguire una sola lavorazione alla volta. Di ciascun job
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
2. Algoritmi e Programmi
12 2. Algoritmi e Programmi Dato un problema, per arrivare ad un programma che lo risolva dobbiamo: individuare di cosa dispongo: gli input; definire cosa voglio ottenere: gli output; trovare un metodo
ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME
ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di
