Problemi di localizzazione di servizi (Facility Location Problems)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Problemi di localizzazione di servizi (Facility Location Problems)"

Transcript

1

2 9. Problemi di Localizzazione di Servizi 1 Problemi di localizzazione di servizi (Facility Location Problems) Dato un insieme di clienti richiedenti una data domanda di merce e dato un insieme di possibili siti per la costruzione di servizi (depositi), determinare l insieme di siti che soddisfi le domande con costo minimo. Classe di problemi molto generale, che raggruppa diversi possibili sottoproblemi. Problema strategico, che, a differenza del routing, non deve essere risolto quotidianamente ma solo in determinate occasioni. Si accettano quindi tempi di esecuzione più elevati. Normalmente si considerano due tipologie di costi: -) Costi di costruzione del deposito; -) Costi di servizio dai clienti al deposito. Nei problemi reali è necessario tenere in considerazione tutta una serie di vincoli aggiuntivi: -) Problematiche territoriali; -) Esigenze aziendali (ad esempio disponibilità di manodopera); -)...

3 9. Problemi di Localizzazione di Servizi 2 Esempi di possibili applicazioni: -) Costruzione di depositi intermedi nei processi di trasporto: Magazzini intermedi per grande distribuzione; Prodotti petroliferi;... -) Costruzione di depositi rivolti a una clientela (nota che in questo caso i costi di servizio cliente-deposito non sono, solitamente, costi interni all azienda): Supermercati; Banche; Stazioni di servizio;... -) Hub per flotte aeree nazionali/internazionali; -) Punti di snodo in reti di telecomunicazioni; -) Discariche o inceneritori;... I problemi di localizzazione possono comparire in due fasi: -) Quando un azienda si posiziona in una nuova area geografica. -) Quando un azienda vuole valutare il rendimento di una struttura esistente o ipotizzata: Ad esempio, per sapere l evetuale risparmio sui costi dato da un deposito esistente, si considera la differenza tra le soluzioni ottime del problema, con e senza il deposito; lo stesso avviene per la costruzione di un nuovo deposito.

4 9. Problemi di Localizzazione di Servizi 3 Esistono varie tipologie di problemi, derivanti da diverse assunzioni sui costi e sugli assegnamenti dei clienti ai depositi: Uncapacitated Facility Location Problem: I depositi hanno una capacità produttiva supposta infinita; (Anche un solo deposito può soddisfare le richieste di tutti i clienti) Presenti costi di costruzione e di servizio. Capacitated Facility Location Problem: Ogni deposito j ha una capacità produttiva massima Q j ; La domanda di un singolo cliente deve essere soddisfatta interamente da un singolo deposito. Capacitated Facility Location Problem con integrazione tra depositi: Ogni deposito j ha una capacità produttiva massima Q j ; La domanda di un singolo cliente può essere soddisfatta da più depositi. P-Median Problem: Tutti i depositi hanno stesso costo di costruzione; Devo scegliere esattamente P siti. Nel seguito affronteremo il Capacitated Facility Location Problem senza integrazione tra depositi.

5 9. Problemi di Localizzazione di Servizi 4 Notazione Definizioni: N = {1,..., n} = insieme dei clienti, M = {1,..., m} = insieme dei possibili siti di costruzione di un deposito, V = N M = insieme dei vertici del grafo, q i = domanda associata al cliente i, i N, Q j = capacità associata al deposito j, j M, d j = costo attivazione del deposito j, j M, c ij = costo di servizio dal cliente i al deposito j, i N, j M. Assunzioni: Domande positive: q i > 0, i N, Capacità positive: Q j > 0, j M, Le domande possono essere soddisfatte almeno da un deposito: j M : Q j q i, i N, La domanda totale può essere soddisfatta: i N q i j M Q j, Tutti i costi sono positivi: d j 0, j M, c ij 0, i N, j M.

6 9. Problemi di Localizzazione di Servizi 5 Formulazione a due indici Per ogni sito di possibile costruzione di un deposito, si definisce la variabile decsionale: { 1 se il deposito j è costruito, y j = 0 altrimenti j M. Per ogni lato {i, j}, si definisce la variabile decisionale: { 1 se il cliente i è servito dal deposito j, x ij = 0 altrimenti j M, i N. La formulazione a due indici risulta essere la seguente: z(ti) = Min d j y j + c ij x ij (1) j M j M i N s.t. x ij = 1, i N (2) j M q i x ij Q j y j, j M (3) i N y j {0, 1}, j M (4) x ij {0, 1}, i N, j M (5)

7 9. Problemi di Localizzazione di Servizi 6 La funzione obiettivo (1) tiene conto sia dei costi di attivazione dei depositi che dei costi di servizio cliente-deposito. I vincoli (2) impongono che ogni cliente sia assegnato esattamente ad un deposito. I vincoli (3) impongono che la somma delle domande associate ad un deposito non ecceda la data capacità. La formulazione deriva strettamente da quella sviluppata per il Bin Packing Problem (BPP). Si può notare infatti che il Facility Location può essere trasformato in un BPP semplicemente imponendo: d j = 1, j M, c ij = 0, i N, j M. La formulazione (TI) può essere resa più forte inserendo i seguenti vincoli: x ij y j, i N, j M. (6)

8 9. Problemi di Localizzazione di Servizi 7 Supponiamo ad esempio che per un dato deposito j si abbia Q j = 2 e y j = 1, e che per una coppia di clienti i 1, i 2 si abbia q i1 = q i2 = 1. I vincoli (2) e (6) risultano: xi2,j* xi1,j*<=1 xi2,j*<=1 xi1,j*+xi2,j*<=2 xi1,j* I vincoli (2) sono sufficienti ad esprimere la soluzione ottimale nella programmazione lineare intera. I vincoli (6) aiutano però nella programmazione lineare (avvicinando il politopo alla sua chiusura convessa). Nel caso y j = 1/2, si ha: xi2,j* xi1,j*<=1/2 xi2,j*<=1/2 xi1,j*+xi2,j*<=1 xi1,j* Il miglioramento del rilassamento lineare è controbilanciato dal numero elevato (ma pur sempre polinomiale) di vincoli da inserire (nm).

9 9. Problemi di Localizzazione di Servizi 8 Formulazione Set Partitioning Definizioni: P j = insieme dei cluster possibili associati al deposito j (insieme di clienti la cui capacità non eccede Q j ), j M, R = P 1 P 2 P m = insieme di tutti i possibili cluster. Sia [a lj ] una matrice tale che: l R, i N. a li = { 1 se il cluster l contiene i; 0 altrimenti Sia c l il costo di un cluster calcolato come: c l = d j + i N a ij c ij l R (supponendo che j sia il deposito associato al cluster l). Definiamo la variabile decisionale y l come: l R. y l = { 1 se il cluster l è scelto; 0 altrimenti

10 9. Problemi di Localizzazione di Servizi 9 La formulazione di Set Partitioning risulta essere la seguente: z(sp) = Min l R c l y l (7) s.t. a li y l = 1, i N (8) l R y l 1, j M (9) l P j y l {0, 1}, l R (10) La formulazione di Set Covering risulta coincidente con la precedente, ad eccezione dei vincoli (8), sostituiti da: a li y l 1, i N (11) l R La due formulazioni sono equivalenti nel caso in cui: c ij > 0, i N, j M.

11 9. Problemi di Localizzazione di Servizi 10 Algoritmo euristico basato sull Assegnamento Generalizzato 0. Inizializzazione: z = 1. for t = 1 to t max do: 1.1 Seleziona, secondo un dato criterio, un sottinsieme J M di siti e costruisci i rispettivi depositi 1.2 Assegna i clienti ai depositi risolvendo il seguente problema di assegnamento generalizzato (GAP): Assegna i clienti in N ai depositi in J risolvendo il GAP ottenuto dalla formulazione TI: sostituendo l insieme M con J, rimovendo i vincoli (6) (se inseriti), ponendo y j = 1 j J, ponendo y j = 0 j / J. La formulazione del GAP risulta essere: z(ti) = Min c ij x ij (+ d j ) j J i N j J s.t. x ij = 1, i N j J q i x ij Q j, j J i N x ij {0, 1}, 1.3 Applica metodi di ricerca locale 1.4 Sia z(t) la soluzione ottenuta Se z(t) < z allora z := z(t) 1.5 Se z = LB resituisci z 2. Resituisci z i N, j M

12 9. Problemi di Localizzazione di Servizi 11 Il GAP può essere risolto in modo euristico o in modo esatto. I criteri per scegliere l insieme dei nodi iniziale J si possono basare su varie intuizioni: -) Random; -) Ordina i siti di costruzione j M per costi d j crescenti; Seleziona i primi J siti. -) Per ogni sito j: Ordina i clienti i per valori crescenti di c ij ; Sia M l insieme massimale dei primi clienti per cui i M q i Q j ; Sia C j = i M c ij ; Ordina i siti di costruzione j M per d j + C j crescenti; Seleziona i primi J siti. -) Ordina i siti di costruzione j M per αd j + β C j crescenti; Seleziona i primi J siti. Dato un insieme di partenza J, si può creare facilmente una mossa che porti ad un nuovo insieme J (ad esempio scambiando un j J con un h / J). Si può quindi pensare ad una tabu list e creare un algoritmo Tabu Search.

13 9. Problemi di Localizzazione di Servizi 12 Rilassamenti Facility Location Problem con integrazione tra depositi: se nella formulazione a due indici si rilassano in modo lineare i vincoli di interezza (5) sulle variabili x si ottiene: z(lb1) = Min j M d j y j + j M c ij x ij i N s.t. j M x ij = 1, i N q i x ij Q j y j, i N y j {0, 1}, j M j M 0 x ij 1, i N, j M LB1 rappresenta il Facility Location Problem con integrazione tra depositi. La domanda dei clienti può essere suddivisa tra più depositi. La risoluzione di LB1 è difficile per la presenza delle variabili intere y.

14 9. Problemi di Localizzazione di Servizi 13 Uncapacitated Facility Location Problem: se nella formulazione a due indici si suppone di avere Q j = (o semplicemente Q j q i ), i N j M, i vincoli di tipo (3) possono essere eliminati. In questo caso si ottiene: z(lb2) = Min j M d j y j + j M c ij x ij i N s.t. j M x ij = 1, i N x ij y j, y j {0, 1}, x ij {0, 1}, i N, j M j M i N, j M Nota che i vincoli x ij y j sono indispensabili in conseguenza dell eliminazione dei vincoli (3). Nota inoltre che, date le variabili y j, le variabili x ij sono facilmente determinabili: ogni cliente è assegnato al deposito più vicino tra quelli costruiti: { 1 se yj = 1 e c x ij = ij c ih, h M : y h = 1; 0 altrimenti La risoluzione di LB2 è difficile per la presenza delle variabili intere y.

15 9. Problemi di Localizzazione di Servizi 14 Branch and Bound Sia i rilassamenti che gli euristici possono essere inseriti ai vari nodi di un albero decisionale di tipo branch and bound: y1=0 y1=1 Fase 1 y2=0 y2=1 x11=0 x11=1 Fase 2 Nella prima fase sono fissati i siti di costruzione e nella seconda sono fissati gli assegnamenti cliente-deposito.

5.3 Metodo dei piani di taglio

5.3 Metodo dei piani di taglio 5.3 Metodo dei piani di taglio (PLI) min s.v. c T x Ax b x interi X Ipotesi: a ij, c j e b i interi Osservazione: La regione ammissibile di un PLI può essere descritta mediante dei vincoli più o meno stringenti

Dettagli

Programmazione Lineare Intera: Piani di Taglio

Programmazione Lineare Intera: Piani di Taglio Programmazione Lineare Intera: Piani di Taglio Andrea Scozzari a.a. 2014-2015 April 22, 2015 Andrea Scozzari (a.a. 2014-2015) Programmazione Lineare Intera: Piani di Taglio April 22, 2015 1 / 23 Programmazione

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

Metodi di Ottimizzazione per la Logistica e la Produzione

Metodi di Ottimizzazione per la Logistica e la Produzione Metodi di Ottimizzazione per la Logistica e la Produzione Parte II Manuel Iori Dipartimento di Scienze e Metodi dell Ingegneria Università di Modena e Reggio Emilia Anno Accademico 2016/17 MOLP Parte III

Dettagli

Struttura del Corso. Durata

Struttura del Corso. Durata Manuel Iori Dipartimento di Scienze e Metodi dell Ingegneria (DISMI) Università degli studi di Modena e Reggio Emilia Via Amendola 2, Pad. Buccola, 42122 Reggio Emilia web: www.or.unimore.it/iori/iori.htm

Dettagli

Ottimizzazione Combinatoria e Reti (a.a. 2007/08)

Ottimizzazione Combinatoria e Reti (a.a. 2007/08) o Appello 6/07/008 Ottimizzazione Combinatoria e Reti (a.a. 007/08) Nome Cognome: Matricola: ) Dopo avere finalmente superato l esame di Ricerca Operativa, Tommaso è pronto per partire in vacanza. Tommaso

Dettagli

4.1 Localizzazione e pianificazione delle base station per le reti UMTS

4.1 Localizzazione e pianificazione delle base station per le reti UMTS esercitazione Ottimizzazione Prof E Amaldi Localizzazione e pianificazione delle base station per le reti UMTS Consideriamo il problema di localizzare un insieme di stazioni radio base, base station (BS),

Dettagli

Rilassamento Lagrangiano

Rilassamento Lagrangiano RILASSAMENTO LAGRANGIANO 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il seguente problema

Dettagli

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I Esercizio 1 Dati n oggetti ed un contenitore, ad ogni oggetto j (j = 1,, n) sono associati un peso p j ed un costo c j (con p j e c j interi positivi). Si

Dettagli

Problemi di localizzazione

Problemi di localizzazione Problemi di localizzazione Claudio Arbib Università di L Aquila Prima Parte (marzo 200): problemi con singolo decisore . Introduzione Un problema di localizzazione consiste in generale nel decidere dove

Dettagli

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il p. 1/4 Algoritmi esatti La teoria ci dice che per problemi difficili (come il KNAPSACK o, ancora di più, il TSP ) i tempi di risoluzione delle istanze, calcolati tramite analisi worst-case, tendono a crescere

Dettagli

Rilassamento Lagrangiano

Rilassamento Lagrangiano Rilassamento Lagrangiano AA 2009/10 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il

Dettagli

COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04

COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 Esercizio 1 Si risolva con il metodo branch-and-bound il seguente problema di PLI max x 1 + x 4x 1 + x + x = 0 x 1 + x + x 4 = x 1, x, x, x 4 0 x 1, x,

Dettagli

Il problema del commesso viaggiatore e problemi di vehicle routing

Il problema del commesso viaggiatore e problemi di vehicle routing Il problema del commesso viaggiatore e problemi di vehicle routing Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre

Dettagli

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 1.0 Aprile 2004 Algoritmo del Simplesso L algoritmo del Simplesso

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2014-2015 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Daniele Vigo rev. 1.1.a ottobre 2014 Fondamenti di Ricerca Operativa

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. p. 1/1 Problema del trasporto Supponiamo di avere m depositi in

Dettagli

(a) Si proponga una formulazione di programmazione nonlineare a variabili misto-intere per problema.

(a) Si proponga una formulazione di programmazione nonlineare a variabili misto-intere per problema. 6. Clustering In molti campi applicativi si presenta il problema del data mining, che consiste nel suddividere un insieme di dati in gruppi e di assegnare un centro a ciascun gruppo. Ad esempio, in ambito

Dettagli

Tecniche euristiche Ricerca Locale

Tecniche euristiche Ricerca Locale Tecniche euristiche Ricerca Locale PRTLC - Ricerca Locale Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo: rilassamenti Rilassamento

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

Algoritmo di Branch & Bound

Algoritmo di Branch & Bound Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Algoritmo di Branch & Bound Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

Problemi di Flusso e Applicazioni

Problemi di Flusso e Applicazioni Problemi di Flusso e Applicazioni Andrea Scozzari a.a. 2013-2014 May 20, 2014 Andrea Scozzari (a.a. 2013-2014) Problemi di Flusso e Applicazioni May 20, 2014 1 / 5 Flussi Multiprodotto I problemi presi

Dettagli

COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2

COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. ( punti) La riformulazione di un problema di PL rispetto alla base B = {x, x, x } è la seguente: max 2x + x 2 x = 2 + x x 2 x = + x 2 x = 2 + x + x 2 x, x 2, x,

Dettagli

Processi di cost management - Programmazione multiperiodale

Processi di cost management - Programmazione multiperiodale Processi di cost management - Programmazione multiperiodale Queste slide (scrte da Carlo Mannino) riguardano il problema di gestione delle attivà di un progetto allorché i costi di esecuzione sono legati

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 3 La dualità nella Programmazione Lineare 3.1 Teoria della dualità Esercizio 3.1.1 Scrivere il problema duale del seguente problema di Programmazione Lineare: min x 1 x 2 + x 3 2x 1 +3x 2 3 x

Dettagli

Week #9 Assessment. Practice makes perfect... November 23, 2016

Week #9 Assessment. Practice makes perfect... November 23, 2016 Week #9 Assessment Practice makes perfect... November 23, 2016 Esercizio 1 Un azienda di trasporto deve caricare m camion {1,..., m} in modo da servire giornalmente un dato insieme di clienti. Nei camion

Dettagli

Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata. Luca Bertazzi

Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata. Luca Bertazzi Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata Luca Bertazzi 0 3 Ulisse: da Troia a Itaca Troia Itaca 509 km Quale è stato invece il viaggio di Ulisse? Il viaggio di Ulisse Troia

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modelli decisionali su grafi - Problemi di Localizzazione Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova Percorso Minimo tra tutte le coppie di vertici 2 Si può applicare n volte Dijstra

Dettagli

Programmazione Lineare Intera

Programmazione Lineare Intera Programmazione Lineare Intera Andrea Scozzari a.a. 2012-2013 May 10, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare Intera May 10, 2013 1 / 16 Programmazione Lineare Intera: Metodo dei Piani

Dettagli

Programmazione Lineare: problema del trasporto Ing. Valerio Lacagnina

Programmazione Lineare: problema del trasporto Ing. Valerio Lacagnina Problemi di trasporto Consideriamo un problema di programmazione lineare con una struttura matematica particolare. Si può utilizzare, per risolverlo, il metodo del simplesso ma è possibile realizzare una

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo):

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo): UNIVERSITA DEGLI STUDI DI SALERNO C.d.L. in INGEGNERIA GESTIONALE Esercizi di Ricerca Operativa Prof. Saverio Salerno Corso tenuto nell anno solare 2009 I seguenti esercizi sono da ritenersi di preparazione

Dettagli

Il metodo dei Piani di Taglio (Cutting Planes Method)

Il metodo dei Piani di Taglio (Cutting Planes Method) Il metodo dei Piani di Taglio (Cutting Planes Method) E un metodo di soluzione dei problemi (IP) di tipo generale. L idea di base: Se la soluzione di (RL) non è intera allora la soluzione ottima intera

Dettagli

Il valore di flusso che si ottiene è

Il valore di flusso che si ottiene è 1) Si consideri un insieme di piste da sci e di impianti di risalita. Lo si modelli con un grafo orientato che abbia archi di due tipi: tipo D (discesa e orientato nel senso della discesa) e tipo R (risalita

Dettagli

Il problema dello zaino: dalla gita in montagna ai trasporti internazionali. Luca Bertazzi

Il problema dello zaino: dalla gita in montagna ai trasporti internazionali. Luca Bertazzi Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0 Ricerca Operativa (Operations Research) The Science of Better Modelli e algoritmi per la soluzione di problemi

Dettagli

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 2x 2 + x 3 = 4 x 1 x 2 x 3 = 3 x 2 + 2x 3 = 1 x 1, x 2, x 3 0

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 2x 2 + x 3 = 4 x 1 x 2 x 3 = 3 x 2 + 2x 3 = 1 x 1, x 2, x 3 0 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (5 punti) Sia dato il seguente problema di PL: max x + x 2 x 2x 2 + x 3 = 4 x x 2 x 3 = 3 x 2 + 2x 3 = x, x 2, x 3 0 Utilizzando il metodo due fasi, si stablisca

Dettagli

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli.

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli. ESERCIZIO 1 Sia dato il grafo orientato in Figura 1. Si consideri il problema di flusso a 1 2 4 Figura 1: costo minimo su tale grafo con b 1 = 4 b 2 = 2 b = b 4 = e c 12 = 2 c 1 = 4 c 14 = 1 c 2 = 1 c

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

Introduzione ai Problemi di Flusso su Reti

Introduzione ai Problemi di Flusso su Reti UNIVERSI DI PIS IROCINIO ORMIVO IVO - I CICLO CLSSE DI BILIZIONE MEMIC PPLIC Introduzione ai Problemi di lusso su Reti Relatore: Prof. V. Georgiev.U: Prof. M. Berni Elisabetta lderighi R.O e Riforma della

Dettagli

Lezioni di Ricerca Operativa 2 Dott. F. Carrabs

Lezioni di Ricerca Operativa 2 Dott. F. Carrabs Lezioni di Ricerca Operativa Dott. F. Carrabs.. 009/00 Lezione 6: - mmissibilità di un vincolo - Vincoli alternativi - Vincoli alternativi a gruppi - Rappresentazione di funzioni non lineari: Costi fissi

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) protocolli reti IP memorizzazione compatta di

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

Problemi di Flusso: Il modello del Trasporto

Problemi di Flusso: Il modello del Trasporto Problemi di Flusso: Il modello del rasporto Andrea Scozzari a.a. 2014-2015 April 27, 2015 Andrea Scozzari (a.a. 2014-2015) Problemi di Flusso: Il modello del rasporto April 27, 2015 1 / 25 Problemi su

Dettagli

Metodi di Ottimizzazione per la Logistica e la Produzione

Metodi di Ottimizzazione per la Logistica e la Produzione Metodi di Ottimizzazione per la Logistica e la Produzione Laboratorio Manuel Iori Dipartimento di Scienze e Metodi dell Ingegneria Università di Modena e Reggio Emilia MOLP Parte I 1 / 41 Contenuto della

Dettagli

LA PROGRAMMAZIONE MATEMATICA (p.m.)

LA PROGRAMMAZIONE MATEMATICA (p.m.) LA PROGRAMMAZIONE MATEMATICA (p.m.) Un problema di programmazione matematica è un problema di ottimizzazione riconducibile alla seguente espressione generale: ricercare i valori delle variabili x 1, x

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 settembre 2004 FOGLIO 1. Cognome: Nome: Matricola:

RICERCA OPERATIVA GRUPPO B prova scritta del 22 settembre 2004 FOGLIO 1. Cognome: Nome: Matricola: RICERCA OPERATIVA GRUPPO B prova scritta del 22 settembre 2004 FOGLIO 1 Cognome: Nome: Matricola: Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta

Dettagli

Esame di Ricerca Operativa del 11/07/2016

Esame di Ricerca Operativa del 11/07/2016 Esame di Ricerca Operativa del /0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un erboristeria vuole produrre una nuova tisana utilizzando tipi di tisane già in commercio. Tali tisane sono per lo più composte

Dettagli

RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione)

RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione) RICERCA OPERATIVA Tema d esame del 04/03/2008 (Simulazione) COGNOME: NOME: MATRICOLA:. Una nota azienda automobilistica produce due modelli di auto (un utilitaria e una berlina), che rivende con un guadagno

Dettagli

Parte III: Algoritmo di Branch-and-Bound

Parte III: Algoritmo di Branch-and-Bound Parte III: Algoritmo di Branch-and-Bound Divide et Impera Sia z * max {c T x : x S} (1) un problema di ottimizzazione combinatoria difficile da risolvere. Domanda: E possibile decomporre il problema (1)

Dettagli

Branch-and-bound per KNAPSACK

Branch-and-bound per KNAPSACK p. 1/1 Branch-and-bound per KNAPSACK Rispetto allo schema generale visto in precedenza dobbiamo specificare: come si calcola un upper bound su un sottinsieme; come si effettua il branching; come si individuano

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema Compito di Ricerca Operativa II Esercizio ( punti). ia dato il problema di flusso massimo sulla rete in figura (le capacit a degli archi sono riportate sopra di essi). 0 8 i consideri il seguente flusso

Dettagli

Programmazione a numeri interi: il metodo del Branch and Bound

Programmazione a numeri interi: il metodo del Branch and Bound Programmazione a numeri interi: il metodo del Branch and Bound L. De Giovanni G. Zambelli Un problema di programmazione lineare intera è una problema della forma z I = maxc T x Ax b x 0 x i Z, i I. (1)

Dettagli

ASSEGNAMENTO DELLE OPERAZIONI DI TAGLIO NELLA PRODUZIONE DI CAPI DI ABBIGLIAMENTO

ASSEGNAMENTO DELLE OPERAZIONI DI TAGLIO NELLA PRODUZIONE DI CAPI DI ABBIGLIAMENTO ASSEGNAMENTO DELLE OPERAZIONI DI TAGLIO NELLA PRODUZIONE DI CAPI DI ABBIGLIAMENTO Lo scenario produttivo Una nota azienda produce capi di abbigliamento per l alta moda Ogni capo è costituito da vari pezzi

Dettagli

Corso di Trasporto merci e logistica. Supporto didattico ad uso esclusivo interno. a cura di: ing. Mario Cordasco A.A

Corso di Trasporto merci e logistica. Supporto didattico ad uso esclusivo interno. a cura di: ing. Mario Cordasco A.A logistica Supporto didattico ad uso esclusivo interno a cura di: ing. Mario Cordasco A.A. 2008-2009 La distribuzione fisica delle merci La logistica è l insieme delle attività e dei servizi che permettono

Dettagli

Problema Determinare la miscelazione ottimale delle materie prime in modo da massimizzare il profitto complessivo

Problema Determinare la miscelazione ottimale delle materie prime in modo da massimizzare il profitto complessivo Mix Produttivo Si dispone di i=1,...,m risorse produttive (ad esempio, materie prime) in quantità limitata. La massima disponibilità delle risorse è b 1,...,b m Si possono produrre j=1,...,n diversi prodotti

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Modelli per la Logistica Distributiva: Single Commodity Minimum Cost Flow Problem Multi Commodity Minimum Cost Flow Problem Fixed Charge

Dettagli

Flusso a Costo Minimo

Flusso a Costo Minimo Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Flusso a Costo Minimo Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria Dal

Dettagli

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR 1 Giovedí 14 Maggio 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Geometria di R n 1 Dare la definizione di Poliedro e Vertice di un Poliedro 2 Dare la definizione di Poliedro e di Politopo

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi Risolutivi per la Programmazione Lineare Intera

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi Risolutivi per la Programmazione Lineare Intera Metodi e Modelli per l Ottimizzazione Combinatoria Metodi Risolutivi per la Programmazione Lineare Intera L. De Giovanni G. Zambelli Un problema di programmazione lineare intera é una problema della forma

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

Contenuto e scopo presentazione. Modelli Lineari Interi/Misti. Piani di taglio. Piani di taglio. Piani di taglio Versione 31/08/

Contenuto e scopo presentazione. Modelli Lineari Interi/Misti. Piani di taglio. Piani di taglio. Piani di taglio Versione 31/08/ Contenuto e scopo presentazione Contenuto: viene presentato un altro metodo di soluzione di problemi di ILP o di MILP. Modelli Lineari Interi/Misti Piani di taglio Versione /8/. Scopo: fornire le capacità

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2015-2016 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Paolo Tubertini, Daniele Vigo rev. 2. ottobre 2016 Fondamenti di

Dettagli

Miscelazione di benzine

Miscelazione di benzine Miscelazione di benzine Una raffineria deve miscelare 4 tipi di petrolio grezzo per ottenere 3 tipi di benzina. La tabella seguente mostra la massima quantità disponibile per ogni tipo di petrolio grezzo

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica:

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica: . SU ALCUNI OPERAORI DI DERIVAZIONE Alcune operazioni tipiche dell analisi matematica hanno un diretto riscontro in termini matriciali. Consideriamo ad esempio una forma lineare: f() l l + l +..l n n ;

Dettagli

Introduzione alla programmazione lineare

Introduzione alla programmazione lineare Introduzione alla programmazione lineare struttura del problema di PL forme equivalenti rappresentazione e soluzione grafica rif. Fi 1.2; BT 1.1, 1.4 Problema di programmazione lineare Dati: un vettore

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioni di Ricerca Operativa Massimo Paolucci Dipartimento di Informatica, Sistemistica e Telematica (DIST) Università di Genova paolucci@dist.unige.it Anno accademico 2000/2001 La Ricerca Operativa (Operation

Dettagli

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea)

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) ESERCIZIO n. 1 - La produzione ed i costi di produzione (1 ) Un impresa utilizza una tecnologia descritta dalla seguente funzione di produzione: I prezzi dei fattori lavoro e capitale sono, rispettivamente,

Dettagli

5.5 Metodi generali per la soluzione di problemi

5.5 Metodi generali per la soluzione di problemi 5.5 Metodi generali per la soluzione di problemi di PLI I problemi di PLI hanno caratteristiche molto diverse dai problemi di PL. In alcuni casi, la soluzione del problema lineare rilassato, ottenuto cioè

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da calcio e da basket che vende a 1 e 20 euro rispettivamente. L azienda compra ogni settimana

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da basket e da calcio che vende rispettivamente a 1 e euro. L azienda compra ogni settimana 00

Dettagli

Problemi di Instradamento di Veicoli

Problemi di Instradamento di Veicoli Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Problemi di Instradamento di Veicoli Renato Bruni bruni@dis.uniroma1.it Il materiale presentato è derivato

Dettagli

Bilanciamento di tempi e costi Progetti a risorse limitate Note bibliografiche

Bilanciamento di tempi e costi Progetti a risorse limitate Note bibliografiche Indice Prefazione 1 1 Modelli di ottimizzazione 3 1.1 Modelli matematici per le decisioni.................... 4 1.1.1 Fasi di sviluppo di un modello................... 7 1.2 Esempi di problemi di ottimizzazione...................

Dettagli

Branch-and-bound per TSP

Branch-and-bound per TSP p. 1/6 Branch-and-bound per TSP Anche qui, rispetto allo schema generale visto in precedenza dobbiamo specificare: p. 1/6 Branch-and-bound per TSP Anche qui, rispetto allo schema generale visto in precedenza

Dettagli

Esame di Ricerca Operativa del 03/09/2015

Esame di Ricerca Operativa del 03/09/2015 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una raffineria di petrolio miscela tipi di greggio per ottenere tipi di carburante: senza piombo, diesel e blu diesel.

Dettagli

2.3.3 Cammini ottimi nei grafi senza circuiti

2.3.3 Cammini ottimi nei grafi senza circuiti .. Cammini ottimi nei grafi senza circuiti Sia un grafo G = (N, A) orientato senza circuiti e una funzione di costo che assegna un valore c ij R ad ogni arco (i, j) A circuito Proprietà I nodi di un grafo

Dettagli

Esame di Ricerca Operativa del 16/06/2015

Esame di Ricerca Operativa del 16/06/2015 Esame di Ricerca Operativa del 1/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una ditta produce vernici in tre diversi stabilimenti (Pisa, Cascina, Empoli) e le vende a tre imprese edili (A, B, C). Il

Dettagli

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una

Dettagli

CASE STUDY 2. Fabbricazione dell acciaio. Un problema di pianificazione: Minimizzazione dei costi di carica del forno. Dati. Formulazione del problema

CASE STUDY 2. Fabbricazione dell acciaio. Un problema di pianificazione: Minimizzazione dei costi di carica del forno. Dati. Formulazione del problema CASE STUDY 2 Fabbricazione dell acciaio Gestione delle risorse produttive nell industria siderurgica Un problema di pianificazione: Minimizzazione dei costi di carica del forno Magazzini materie prime

Dettagli

Esercizi di PLI. a cura di A. Agnetis. Risolvere il seguente problema di PLI con l algoritmo dei piani di Gomory:

Esercizi di PLI. a cura di A. Agnetis. Risolvere il seguente problema di PLI con l algoritmo dei piani di Gomory: Esercizi di PLI a cura di A. Agnetis Risolvere il seguente problema di PLI con l algoritmo dei piani di Gomory: max z = 40x + 24x 2 + 5x + 8x 4 8x + 6x 2 + 5x + 4x 4 22 x i 0 x i intero Si tratta di un

Dettagli

Esame di Ricerca Operativa del 07/09/2016

Esame di Ricerca Operativa del 07/09/2016 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e

Dettagli

Esercitazione n o 6 per il corso di Ricerca Operativa

Esercitazione n o 6 per il corso di Ricerca Operativa Esercitazione n o 6 per il corso di Ricerca Operativa Il problema è stato tratto dal libro C. Mannino, L.Palagi, M. Roma. Complementi ed esercizi di Ricerca Operativa, Edizioni Ingegneria 2000, 1998, ISBN:

Dettagli

Algoritmo per A. !(x) Istanza di B

Algoritmo per A. !(x) Istanza di B Riduzioni polinomiali Una funzione f: T*!T* è detta computabile in tempo polinomiale se esiste una macchina di Turing limitata polinomialmente che la computi. Siano L 1 e L 2 " T* due linguaggi. Una funzione

Dettagli

3.4 Metodo di Branch and Bound

3.4 Metodo di Branch and Bound 3.4 Metodo di Branch and Bound Consideriamo un generico problema di Ottimizzazione Discreta dove X è la regione ammissibile. (P ) z = max{c(x) : x X} Metodologia generale di enumerazione implicita (Land

Dettagli

COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI

COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI In questa Appendice, mostreremo come un impresa possa individuare la sua combinazione di minimo costo dei fattori produttivi attraverso il calcolo

Dettagli

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale 17 Marzo 2005 Nome e Cognome: Matricola: ESERCIZIO N 1 Ricerca Cieca 5 punti 1.A) Elencare in modo ordinato i nodi (dell'albero sotto) che vengono scelti per l'espansione dalle

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera 0 Teoria della Programmazione Lineare Intera 0. INTRODUZIONE Come visto precedentemente, molti problemi particolarmente importanti dal punto di vista applicativo sono riconducibili alla soluzione di un

Dettagli

Esame di Ricerca Operativa del 09/02/2016

Esame di Ricerca Operativa del 09/02/2016 Esame di Ricerca Operativa del 0/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una sartoria produce tipi di vestiti: pantaloni, gonne e giacche, utilizzando stoffa e filo. Settimanalmente, la disponibilità

Dettagli

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Problema di PLI in forma standard: max cx Ax = b x 0, x I n I insieme degli interi. Regione ammissibile:

Dettagli

Parte V: Rafforzamento di formulazioni e algoritmo dei piani di taglio

Parte V: Rafforzamento di formulazioni e algoritmo dei piani di taglio Parte V: Rafforamento di formulaioni e algoritmo dei piani di taglio Noioni di geometria Definiione: Un vettore y R n è combinaione conica dei vettori {,, k } se esistono k coefficienti reali λ,,λ k tali

Dettagli

Corso di Perfezionamento

Corso di Perfezionamento Programmazione Dinamica 1 1 Dipartimento di Matematica e Informatica Università di Camerino 15 febbraio 2009 Tecniche di Programmazione Tecniche di progettazione di algoritmi: 1 Divide et Impera 2 Programmazione

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore Il problema del commesso viaggiatore Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/13 - Corso di Ricerca Operativa Università

Dettagli

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 =

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 = 56 IL METODO DEL SIMPLESSO 7.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli