fotovoltaico: benefici derivanti dall integrazione di verde pensile e sistema di bagnatura



Documenti analoghi
Il Sistema Integrato Genera Innovazione e sostenibilità

Metodologia di monitoraggio Impianti fotovoltaici

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi.

SOFTWARE PV*SOL. Programma di simulazione dinamica per calcolare dimensionamento e rendimento di impianti fotovoltaici

Fare Efficienza Energetica attraverso l automazione degli edifici

RISULTATI DELLA RICERCA CONDOTTA PER CPFILMS SOLUTIA UK LTD: ANALISI ENERGETICA E DI COMFORT SULL EDIFICIO MG TOWER DI PADOVA. RELAZIONE SINTETICA

GENERA Sistema Integrato e GeneraGreenBuilding

Candidato: Giacomo Argentero Relatore: Prof. Paolo Gambino. 20 Luglio 2010

LE CAPPE CHIMICHE USO IN SICUREZZA, VERIFICHE E MANUTENZIONI PERIODICHE

La quantificazione dei benefici di BIOCASA sui consumi energetici ed emissioni di CO 2

METODOLOGIA DI PREVISIONE DELLA DOMANDA ELETTRICA E DELLA

rendimento di un impianto) 4. Superficie a disposizione. Se si dispone di uno spazio sufficientemente

Calcoli statistici e calcoli reali in un impianto fotovoltaico Ibrido

INCONTRO CON I TECNICI

Impianti Solari Fotovoltaici

ANALISI DEI COSTI ENERGETICI DELLE INSTALLAZIONI D ARIA COMPRESSA

Il software di preventivazione e di progettazione di impianti solari fotovoltaici

Mini corso in fiera BESTClass 2.1 (software per la certificazione energetica)

RUOLO DELL'ENERGY BUILDING MANAGER (DGR LOMBARDIA N. 5117/07 E S.M.)

ANALISI DELL IMPIANTO FOTOVOLTAICO

READY-TO-GO PRODUZIONE

Università degli Studi Roma Tre

COS'E' UN IMPIANTO FOTOVOLTAICO E COME FUNZIONA

RAPPORTO DI PROVA R 0874

Chilowattora (kwh) Unità di misura dell energia elettrica. Un chilowattora è l energia consumata in un ora da un apparecchio utilizzatore da 1 kw.

Indice. unimetal.net. 2 Silicio amorfo Profilo fotovoltaico unimetal 3 I moduli fotovoltaici UNI-SOLAR

Analisi del trivai point

ANALISI DELL IMPIANTO FOTOVOLTAICO

Lavori intelligenti per il risparmio energetico

Energia Solare Fotovoltaica

ANALISI DELL IMPIANTO FOTOVOLTAICO

Immagini. Gli impianti tecnici di Palazzo Lombardia: matrimonio riuscito fra tecnologia e rispetto dell ambiente

Workshop Italiano sull ecobuilding

I supporti dei sistemi fotovoltaici

INVERTER DI STRINGA POWER ONE AURORA: Dimensionamento del generatore fotovoltaico con Aurora Designer

Trasforma l energia del sole in energia produttiva

Obiettivo: dimesionare un sistema fotovoltaico che risponda alle seguenti caratteristiche:

ARTICOLO TECNICO Smart-MED-Parks: il Software

Esempi di Progettazione Fotovoltaica. Relatore: Ing. Raffaele Tossini

Integrazione architettonica e rimozione di eternit

PROGETTO SOLE La realizzazione di un impianto fotovoltaico

Euro 7.200,00 compreso iva e trasporto

T*SOL è un software di simulazione dinamica professionale per il dimensionamento e l'ottimizzazione di impianti solari termici.

Bar-Camp: Jam Session di buone pratiche e progetti innovativi

VALUTAZIONE DELLE OMBRE E DELL IRRAGGIAMENTO DEL SISTEMA SOLAR RETROFIT

TEMPERATURA e IMPIANTI FOTOVOLTAICI

UNIONE EUROPEA REPUBBLICA ITALIANA REGIONE AUTONOMA DELLA SARDEGNA

Il Solare Termodinamico per la Produzione di Energia Elettrica e Calore a Media Temperatura

EN15232 con la domotica e l automazione dell edificio. Ing. Michele Pandolfi Resp. Marketing KNX-Italia Padova 22 aprile 2010

Parimenti una gestione delle scorte in maniera non oculata può portare a serie ripercussioni sul rendimento sia dei mezzi propri che di terzi.

Energia solare. Near Zero Energy Building and Renewable Energy. Energia solare ZEB energy supply: PV. Fabio Peron Università IUAV - Venezia

Tali fluidi, utilizzati in prossimità del punto di produzione, o trasportati a distanza, possono essere utilizzati per diversi impieghi:

Application note. CalBatt NomoStor per i sistemi di accumulo di energia

Esercizio 1: trading on-line

B) L utenza rappresenta il 5% degli ingressi medi giornalieri, si ipotizza un utilizzo medio del posto auto di 6 ore, per un massimo di 12 ore

COMUNE DI FAENZA PROVINCIA DI RAVENNA

I collettori solari termici

EFFICIENZA ENERGETICA NEGLI EDIFICI DELLA PA: IL CASO INPS DI SESTRI PONENTE

Calcolo della trasmittanza di una parete omogenea

TASP2: Two Axis SP2. Modifiche dello spettro solare a seconda dello spessore dello strato d acqua attraversato

Efficienza energetica negli edifici

Progetto per la realizzazione di: Impianto Fotovoltaico

ANPE - 2a Conferenza Nazionale

Preferenza dei pannelli Fotovoltaici a quelli a Liquido refrigerante

CONVENZIONE UNIVERSITÀ DI PERUGIA DELTATECH. Rapporto Attività di Ricerca. Prove ad impatto su laminati compositi con.

Note al progetto posto a base di gara Possibilità di modifica Prescrizioni

EDIFICI A ENERGIA QUAZI ZERO VERSO IL 2020 Il roadshow per l efficienza energetica. Mediterranea

CALCOLO DELLA TRASMITTANZA DI UN PANNELLO IN EPS CON GRAFITE CLASSE DI RIFERIMENTO 100/150

COMUNE DI MOLFETTA NUOVO PORTO COMMERCIALE - MONITORAGGIO TRASPORTO SOLIDO CON IMPIEGO DI SONDA MULTIPARAMETRICA E CORRENTOMETRO

Producibilità. Nord kwh/kwp. Centro kwh/kwp. Sud kwh/kwp

L obbligo di dotare gli edifici di impianti alimentati da fonti rinnovabili

Capitolo 13: L offerta dell impresa e il surplus del produttore

L INVESTIMENTO NEL FOTOVOLTAICO ANCHE IN ASSENZA DI INCENTIVI (GRID PARITY) ing. Fabio Minchio, Ph.D.

CORSO SULLA TECNOLOGIA DEL SOLARE FOTOVOLTAICO

I PANNELLI FOTOVOLTAICI. Belotti, Dander, Mensi, Signorini

Sistema di monitoraggio delle correnti in ingresso in impianti fotovoltaici

IMPIANTI FOTOVOLTAICI: VALUTAZIONI SULLA FATTIBILITA E CONVENIENZA ECONOMICA

Impianti fotovoltaici connessi alla rete

Modulo combinato Serie PVT

11.9. Il Costo dell Energia Conservata (CEC)

Sun Tracker GALILEO Western CO.

Sommario PREMESSA... 1 NORMATIVA DI RIFERIMENTO... 1 CALCOLO ILLUMINOTECNICO... 4

Ingvar Kamprad Elmtaryd Agunnaryd. Fondata nel 1943 da Ingvar. La Vision Creare una vita migliore per la maggior parte delle persone

S i s t e m i p e r l a P r o d u z i o n e

SINTETICO COLLETTIVO E INDIVIDUALE

Le coperture verdi aumentano la resa di impianti fotovoltaici

Automazione Industriale (scheduling+mms) scheduling+mms.

Sistema GARANTES: Rete di monitoraggio

La riforma del servizio di distribuzione del

CALCOLO DEL RISPARMIO ENERGETICO IN SEGUITO ALLA SOSTITUZIONE DI UN MOTORE CON UNO A PIÙ ALTA EFFICIENZA

Introduzione allo studio sulla pericolosità meteorologica a scala nazionale: la sensibilità del mercato assicurativo ai

Da sempre MITA sviluppa i propri prodotti ponendo particolare attenzione ai consumi energetici e ai costi di gestione.

Centrale fotovoltaica ad inseguimento

Sistema Evolution Modì: vasche di raccolta o dispersione delle acque piovane

COMUNE DI MOLFETTA NUOVO PORTO COMMERCIALE - MONITORAGGIO TRASPORTO SOLIDO CON IMPIEGO DI SONDA MULTIPARAMETRICA E CORRENTOMETRO

AMBIENTE E RISPARMIO ENERGETICO AMBIENTE E RISPARMIO ENERGETICO. Motori elettrici più efficienti: un opportunità di risparmio

BM FOTOVOLTAICO e SOLARE TERMICO I Software per la progettazione e la preventivazione di impianti fotovoltaici e solari termici

Pannelli Solari Termici. Parete esterna verticale. Tipologia di. inserimento. I pannelli solari termici sono inseriti sulla parete esterna verticale

il fotovoltaico quanto costa e quanto rende

Il progetto PVTRAIN: obiettivi e risultati raggiunti

Transcript:

Producibilità di un impianto fotovoltaico: benefici derivanti dall integrazione di verde pensile e sistema di bagnatura SOMMARIO L aumento di temperatura delle celle fotovoltaiche sottoposte ad elevata radiazione solare, comporta un abbassamento del rendimento dell impianto. Al fine di contrastare questo fenomeno che riduce la capacità produttiva di un impianto fotovoltaico proprio nel periodo estivo di massimo irraggiamento, è possibile raffreddare le celle attraverso un sistema di bagnatura. E altresì noto come l installazione di un impianto fotovoltaico in prossimità di uno spazio verde consenta un minor surriscaldamento dei moduli con conseguente aumento della producibilità. Scopo del presente lavoro è quello di quantificare l incremento, su base annua, della producibilità di un impianto fotovoltaico dovuto all effetto combinato della presenza del verde e della bagnatura dei moduli. A tal fine è stato realizzato, nella periferia di Bologna, un prototipo dotato di verde pensile ed impianto fotovoltaico integrato. L impianto è stato sottoposto a bagnatura programmata dei moduli. Il sistema nel suo complesso è stato modellato attraverso un software di simulazione dinamica e sono stati determinati gli incrementi di produzione annua rispetto ad una installazione tradizionale su copertura. SUMMARY The temperature increase of PV cells due to high solar radiation, yields to a reduction of the overall PV plant efficiency. In order to contrast such phenomenon that reduces the production capacity during summer, that is the period of maximum solar radiation, a water cooling system for PV modules can be adopted. Furthermore, it is well known that installing a PV plant close to a green area has a positive effect on the modules temperature, hence on the modules efficiency. The main objective of this paper is to quantify the annual increasing of PV plant productivity due to the combined effect of a green area and a water cooling system. Therefore, in the suburbs of Bologna, a building prototype has been constructed with a green roof, an integrated PV plant and a water cooling system. The overall system has been modelled by means of a dynamic simulation program and the annual production increase, compare to a traditional PV plant installation, has been evaluated. Tiziano Terlizzese, Sarah Nicolini, Francesco Stella Nier Ingegneria spa LUCA MARZOCCHI Generasistema PREMESSA Il rendimento di produzione di energia elettrica di un modulo fotovoltaico è fortemente influenzato dalla temperatura della cella fotovoltaica. Il rendimento, infatti, decresce quasi linearmente di circa lo 0,4% per ogni grado di aumento della temperatura di cella (1). In letteratura sono descritti diversi sistemi per l aumento delle prestazioni di un sistema fotovoltaico attraverso il raffreddamento dei moduli. Odeh e Behnia (2) dell Università di Sydney propongono una bagnatura in continuo della cella con un film d acqua sottile, mentre Abdolzadeh e Ameri (3) propongono una bagnatura di tipo a getto continuo della cella. Nel primo caso i risultati ottenuti mostrano un incremento medio annuo di produzione pari a circa 4-10%, il range di variabilità è dovuto al fatto che le misure sono state effettuate in Australia a diverse latitudini. Abdolzadeh e Ameri hanno invece ottenuto un incremento di circa il 3,2% riferito, tuttavia, ad un periodo di misura piuttosto breve. E stato inoltre osservato (4) come l accoppiamento fra verde pensile (o tetto verde) ed un impianto fotovoltaico possa portare ad incrementi di produzione di energia elettrica fino Ingegneril Architettil Costruttori I ANNO LXVII I 5_2012 I 730 11

a circa l 8%, in climi tropicali, rispetto ad un impianto fotovoltaico posto sopra ad una copertura priva di verde pensile. Rispetto ad una copertura tradizionale, la superficie verde riflette maggiormente la radiazione incidente e beneficia altresì dell effetto raffrescante dovuto al processo di evapotraspirazione fogliare. Scopo del presente lavoro è quello di quantificare i benefici, in termini di incremento del rendimento di produzione di energia elettrica fotovoltaica, ottenibili considerando l effetto combinato dell integrazione di un sistema fotovoltaico con verde pensile e della simultanea bagnatura dei moduli. A tal fine, la società Generasistema (www. generasistema.it) ha realizzato un prototipo di edificio in scala reale, dotato di copertura con verde pensile, impianto fotovoltaico integrato e sistema di bagnatura a getto dei moduli. Attraverso il monitoraggio continuo delle condizioni climatiche locali, della produzione dell impianto fotovoltaico e della temperatura di cella è stato possibile confrontare l efficienza dell impianto nelle seguenti configurazioni: 1) accoppiamento impianto fotovoltaico verde pensile e sistema di bagnatura programmata dei moduli attivo (RVP), 2) accoppiamento impianto fotovoltaico verde pensile con sistema di bagnatura non funzionante (VP), 3) sistema tradizionale, ossia con copertura priva di verde pensile e assenza di bagnatura (Rif). Le misurazioni sono state condotte durante il periodo aprile agosto 2012. Per poter valutare i benefici su scala annuale e sotto differenti condizioni climatiche, è stato realizzato un modello di simulazione dinamica del sistema sopra descritto utilizzando il software TRNSYS. Le misure sperimentali hanno consentito la taratura del modello. Figura 1 - Il prototipo. L impianto fotovoltaico posizionato in modo complanare alla copertura, circonda l area destinata a verde pensile ed ha inclinazione di 6 rispetto al piano orizzontale e azimuth di 9 verso ovest. La struttura è a Bologna, zona Casteldebole Il prototipo Il prototipo ha un estensione di circa 1700 m2, di cui 121 m2 sono occupati dalla struttura, 40 m2 da un biolago e 256 m2 da un giardino filtrante. L edificio, simile ad una serra, presenta una struttura piuttosto semplice con una parte portante costituita da profilati in acciaio e pareti interamente in vetro (Fig. 1). Sulla copertura costituita da una unica falda leggermente inclinata, è posizionato un impianto fotovoltaico di 8,36 kwp di potenza e 62 m2 ed un area adibita a verde pensile che occupa una superficie di 59 m2. Il verde pensile, o tetto verde, è di tipo estensivo, realizzato secondo le linee guida FLL (5) e in rispetto della UNI 11235 (6): l essenza utilizzata 12 Figura 2 - Sistema di raffreddamento dei moduli fotovoltaici. L acqua, prelevata dal biolago e continuamente fitodepurata, ha caratteristiche tali da non lasciare residui calcarei sui pannelli. Tale risultato lo si può ottenere, in alternativa alla fitodepurazione, con un sistema di addolcimento dell acqua ed uno stoccaggio in serbatoi interrati. Gli ugelli sono gestiti da un impianto di irrigazione programmabile.

è infatti il sedum, pianta erbacea con limitato sviluppo in altezza, che richiede poca manutenzione e ha buone caratteristiche in termini di velocità di radicamento, di ombreggiatura, resistenza alla siccità ed al gelo. L impianto fotovoltaico è composto da 6 stringhe da 8 moduli cadauna, modello SUNAGE tipo SAM72/5 monocristallino da 175 Wp e da due inverter modello SolarMax. Il sistema di raffreddamento dell impianto fotovoltaico è costituito da 21 erogatori, della tipologia ugelli autocompensanti, fissati ad un profilo drenante. La gittata dell acqua è stata indirizzata verso il basso in modo che possa investire interamente la superficie dei moduli. La portata di un singolo erogatore è di 1,6 l/min, per un totale di 33,6 l/min (Fig. 2). L acqua utilizzata per il raffreddamento dei pannelli viene prelevata da un biolago prospiciente la struttura che raccoglie l acqua meteorica proveniente dal giardino filtrante e dalla stessa copertura dell edificio. L acqua del biolago, viene continuamente depurata attraverso un sistema di fitodepurazione e, in caso di necessità, integrata dall acqua di acquedotto. Analisi dei dati raccolti La quantificazione dei benefici dovuti all interazione fra l impianto solare fotovoltaico ed il verde pensile e dei benefici ottenibili dalla bagnatura dei pannelli fotovoltaici, rappresenta gli obiettivi dell attività sperimentale condotta. A tal fine sono state eseguite campagne di misura della produzione di energia elettrica fotovoltaica nei seguenti casi: 1) bagnatura dei moduli fotovoltaici attraverso l apposito impianto d irrigazione in presenza di verde pensile, questo primo caso verrà di seguito identificato con l acronimo RVP, Raffreddamento-VerdePensile per indicare che entrambi gli aspetti, bagnatura dei moduli e verde pensile, sono stati presi in considerazione; 2) assenza di bagnatura in presenza di verde pensile, questo secondo caso verrà di seguito identificato con l acronimo VP, VerdePensile, per indicare che è preso in considerazione l aspetto di raffrescamento dovuto al verde pensile; 3) assenza di bagnatura e copertura totale della superficie verde del tetto con guaine bituminose, questo terzo caso verrà di seguito identificato con l acronimo Rif, per indicare che sarà considerato come caso di riferimento (vedi Fig. 3). Strumenti di misura ed acquisizione dati Il prototipo è stato dotato di una centralina meteorologica, modello Vantage Pro 2 Plus del produttore Davis Instruments, installata ad un altezza di tre metri in prossimità dell edificio. Le variabili meteorologiche monitorate sono: temperatura ambiente, velocità e direzione del vento, irraggiamento solare e precipitazioni. Per la misura della temperatura della cella fotovoltaica è stata installata una termoresistenza PT100 inserita in una apposita lamella in materiale plastico autoadesivo posta a contatto con la parte inferiore del modulo. La rilevazione dei dati di produzione dell impianto fotovoltaico è stata effettuata attraverso il software fornito dal produttore dell inverter che fornisce i dati di potenza, corrente e tensione, in ingresso ed uscita dall inverter stesso. Il prototipo è altresì dotato di un sistema di misura dell acqua meteorica raccolta dal giardino filtrante e dell acqua meteorica raccolta dalla copertura della struttura e convogliata nel biolago. Tali misure sono state utilizzate per una verifica della sostenibilità ambientale del sistema nel suo complesso. Figura 3 - Copertura del verde pensile con guaina bituminosa. Al fine di riprodurre il comportamento di un impianto fotovoltaico installato su una copertura tradizionale, il verde pensile è stato ricoperto con una guaina bituminosa nera (caso Rif) Per ognuno dei casi sopra illustrati sono state registrate, con intervallo di acquisizione pari ad 1 minuto, i dati di produzione fotovoltaica, le variabili ambientali fornite dalla stazione meteorologica e la temperatura di cella dei moduli. Per quanto riguarda il caso RVP è stato scelto di eseguire cicli di bagnatura dei moduli fotovoltaici della durata di 1 minuto ogni 30 minuti dalle ore 11.00 fino alle ore 16.30 per un totale di 12 cicli. 13

Figura 4 - Andamento della temperatura di cella Tc (in blu) e della radiazione solare (in giallo). Dal grafico risulta evidente come alle ore 11 sia iniziato il primo ciclo di bagnatura, della durata di 1 minuto, ed i successivi cicli di bagnatura ogni 30 minuti fino alle ore 16.30. La temperatura di cella, Tc, infatti, cala velocemente durante il periodo di bagnatura per poi risalire fino alla bagnatura successiva. L andamento seghettato della radiazione solare nelle ore pomeridiane è dovuto alla presenza di nubi. Le misure sono state condotte dal per ognuno dei casi analizzati nel 28 aprile al 13 maggio 2012. In Fig. 4 presente lavoro (RVP, VP e Rif), è è riportato l andamento della temperatura di cella durante il periodo ste due grandezze, ossia il rendi- stato calcolato il rapporto fra que- di bagnatura. mento di produzione dell impianto Per ogni valore misurato di potenza elettrica generata dall im- fissato intervallo di temperatura fotovoltaico,η. Dopodiché, per ogni pianto fotovoltaico e di radiazione dell aria esterna e per fissati intervalli di radiazione solare solare incidente sull impianto e incidente sul piano orizzontale, è stato calcolato il valore medio del rendimento nei tre casi: η RVP, η VP e η Rif, rispettivamente. In Tab. 1 è riportato un esempio di quanto è stato elaborato: nella seconda colonna sono riportati i valori medi del rendimento, nel caso VP, calcolati utilizzando i dati di potenza elettrica prodotta e radiazione solare incidente sui moduli, registrati quando la temperatura dell aria esterna era compresa negli intervalli indicati in colonna 1 e la radiazione solare su superficie piana era compresa fra 500 e 600 W/m 2. In questo modo è stato possibile confrontare il comportamento dell impianto fotovoltaico, a parità di condizioni ambientali di temperatura dell aria e di irraggiamento, nei diversi casi analizzati. In Fig. 5 è rappresentato l andamento dell incremento percentuale, p, del rendimento nel caso riportato in Tab. 1. In generale, per ogni fissato intervallo di radiazione solare I I+100 (W/m 2 ), per ogni possibile confronto fra i casi trattati (RVP VP, RVP Rif e VP Rif) è stato possibile definire l equazione, (1) 500 600 [W/m 2 ] η m con raff. η m senza raff. N dati con raff. N dati senza raff. Incremento [%] 20 22 0,1 0,14 56 42 33,7 22 24 0,11 0,15 180 124 32,7 dove f è l equazione della retta interpolante i valori di incremento del rendimento di produzione in funzione della temperatura dell aria esterna, T amb. 24 26 0,11 0,14 479 12 28 26 28 0,11 0,14 396 87 22,1 28 30 0,12 0,13 503 44 14,5 30 32 0,12 0,13 301 38 8,3 Tabella 1 - Rendimenti di produzione in funzione della temperatura dell aria esterna e dell irraggiamento solare. La quarta e quinta colonna della tabella riportano il numero di dati utilizzati per calcolare il valore medio del rendimento nei casi VP e RVP rispettivamente. In ultima colonna è riportato l aumento percentuale del rendimento ottenuto dal confronto fra i due casi analizzati Implementazione di un modello di simulazione dinamica dell impianto L attività descritta finora ha consentito di determinare l andamento 14

Tab. 1. In generale, per ogni fissato intervallo di radiazione solare I I+100 (W/m ), per ogni possibile confronto fra i casi trattati (RVP VP, RVP Rif e VP Rif) è stato possibile definire l equazione, (1) dove f è l equazione della retta interpolante i valori di incremento del rendimento di produzione in funzione della temperatura dell aria esterna, Tamb. 40 [%] 35 30 25 20 15 Incremento [%] In particolare, per il caso RPV, è stata effettuata l ipotesi di attivazione dell impianto di raffreddamento solo quando la temperatura dell aria esterna era superiore a 20 C e la radiazione solare superiore a 500 W/m 2. In Fig. 6 è rappresentato lo schema logico adottato. 10 5 0 [ C] Dati meteo TRY Modello TRNSYS Energia Elettrica fotovoltaica Caso di Applicazione Equazione (1) Energia fotovoltaica con RVP 20 22 22 24 24 26 26 28 28 30 30 32 riferimento Energia Rif, i fotovoltaica Figura 5 Figura Incremento 5 - percentuale Incremento del rendimento percentuale dell impianto del fotovoltaico rendimento in funzione dell impianto della temperatura fotovoltaico ad in acqua funzione attivo e verde della pensile) temperatura e VP (impianto di raffreddamento dell aria non esterna in funzione per e presenza un intervallo di verde pensile). dell aria esterna con VP per un intervallo di radiazione solare compreso fra 500 e 600 W/m 2. Il grafico si riferisce al confronto fra i casi RVP (impianto di E vp raffreddamento di radiazione solare compreso fra 500 e 600 W/m 2. Il grafico si riferisce Figura 6 - Metodo di calcolo adottato. Per ogni i-esima ora dell anno Implementazione al confronto di un fra modello i casi di RVP simulazione (impianto dinamica raffreddamento dell impianto ad acqua attivo e meteorologico di riferimento, attraverso il modello di simulazione, viene L attività verde descritta pensile) finora ha e consentito VP (impianto di determinare di raffreddamento l andamento del rendimento non in funzione dell impianto e presenza di verde pensile). quazione (1) si ottiene (E RVP calcolata la produzione di energia elettrica oraria (E Rif ) i. Applicando l e- fotovoltaico in funzione delle condizioni ambientali in cui l impianto opera. Al fine di studiare la ) i ed analogamente (E VP ) i. La sommatoria estesa a tutte le ore dell anno consente di ottenere l energia annuale prodotta E rvp del rendimento dell impianto fotovoltaico in funzione delle condizioni ambientali in cui l impianto opera. Al fine di studiare la sostenibilità energetica e la fattibilità economica dell accoppiamento verde pensile impianto fotovoltaico e del sistema di bagnatura, è stato necessario individuare l incremento di producibilità su base annua. A tal fine è stato realizzato un modello dell impianto fotovoltaico tramite il software di simulazione dinaminca TRNSYS. Il modello è stato tarato utilizzando i dati sperimentali a disposizione. I dati meteorologici adottati per la simulazione derivano dal database di anni meteorologici tipo (o Test Reference Year, TRY), sviluppato nell ambito di un progetto di ricerca denominato ET-IDEA (Environmental TRY for Innovative Dynamic Environmental and Energetic Analysis) cofinanziato dalla Commissione Europea attraverso il programma LIFE+ 2009, che ha visto coinvolti la società NIER Ingegneria e il Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale dell Università di Bologna. Il TRY è composto da una sequenza di dati meteorologici orari, realmente misurati, selezionati, attraverso metodi statistici (7), da una serie storica almeno decennale. Per approfondimenti sui metodi di calcolo e sulle applicazioni dei TRY si rimanda alla letteratura in merito (8, 9). L impiego del TRY riferito alla città di Bologna, ha consentito di calcolare la producibilità dell impianto fotovoltaico nel caso di riferimento e poi, attraverso l impiego dell equazione (1) è stato possibile stimare la producibilità dell impianto nei casi PV e RPV. nei diversi casi, rispettivamente E VP ed E RVP. Il confronto così effettuato, su scala annuale, fra l energia ottenibile dall impianto fotovoltaico in esame nella condizione di riferimento e l energia ottenibile nel caso RVP, ossia con effetto combinato della bagnatura dei moduli e presenza di verde pensile ha mostrato un incremento, nel caso RVP, pari al 6,1%. E stato altresì calcolato l incremento di produzione annuale dovuto alla sola bagnatura dei moduli fotovoltaici che è risultato pari al 4,5%. Conclusioni I risultati, in sostanziale accordo con quanto presentato in letteratura, mostrano un incremento della produzione di un impianto fotovoltaico dovuto all effetto combinato della presenza di verde pensile e della bagnatura dei moduli pari a circa il 6% su base annuale. Per una valutazione di fattibilità economica dell investimento, non oggetto del presente lavoro, devono essere presi in considerazione molteplici aspetti; da una parte i costi sostenuti inizialmente per l installazione del verde pensile, del sistema di bagnatura e del sistema di recupero e stoccaggio dell acqua meteorica, dall altra i benefici, fra cui si citano: incremento della produzione di energia elettrica fotovoltaica, 15

miglioramento delle prestazioni energetiche dell involucro edilizio, soprattutto in regime estivo grazie al verde pensile, diminuzione dei costi di pulizia dei pannelli. bibliografia 1. Skoplaki E, Palyvos JA, On the temperature dependance of photovoltaic module electrical performance: A review of efficiency/power correlations, Solar Energy 2009; 83:614-624. 2. Odeh S, Behnia M, Improving Photovoltaic Module Efficiency Using Water Cooling, Heat Transfer Engineering 2009; 30(6):499-505. 3. Abdolzadeh M, Ameri M, Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells, Renewable Energy 2009; 34:91-96. 4. Sam CM, Chan SC, Integration of green roof and solar photovoltaic systems, Joint Symposium 2011: integrated Building Design in the New Era of Sustanability, 2011, Hong Kong. 5. FLL Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e V., Guidelines for the Planning, Construction and Maintenance of Green Roofing Green Roofing Guideline, 2008. 6. UNI 11325:2007 Istruzioni per la progettazione, l esecuzione, il controllo e la manutenzione di copertura verde. 7. Finkelstein JM, Schafer RE, Improved goodnessof-it tests, Biometrika 1971; 58(3):641-645. 8. Marion W, Urban K, User s Manual for TMY2s Typical Meteorological Years, 1995, National Renewable Energy Laboratory, Golden, CO, USA 9. Mandurino C, Vestrucci P, Using meteorological data to model pollutant dispersion in the atmosphere, Environmental Modelling & Software 2009; 24:270-278. 16