Gli alimentatori stabilizzati: cenni alle problematiche relative alla trasmissione di



Documenti analoghi
Generazione campo magnetico

Le macchine elettriche

Lezione 16. Motori elettrici: introduzione

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE


Elettricità e magnetismo

- semplicità delle macchine generatrici (alternatori) - possibilità di utilizzare semplicemente i trasformatori

LA CORRENTE ELETTRICA Prof. Erasmo Modica

Tesina di scienze. L Elettricità. Le forze elettriche

Le centrali idroelettriche

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira. un campo magnetico variabile genera una corrente

Istituto Tecnico dei Trasporti e Logistica Nautico San Giorgio Genova A/S 2012/2013 Programma Didattico Svolto Elettrotecnica ed Elettronica

Lezione 18. Magnetismo

Generatore radiologico

1 di 3 07/06/

Regole della mano destra.

Motore passo passo: Laboratorio di Elettronica 1

ENERGIA ELETTRICA: Generatori e tipi di collegamento. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico

Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo si complica

La corrente elettrica

La caratteristica meccanica rappresenta l'andamento della coppia motrice C in

Sistemi Elettrici. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

APPUNTI SUL CAMPO MAGNETICO ROTANTE

PROGETTAZIONE DI UN CONTROLLO ON-OFF CON CRITERI E METODOLOGIA

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.)

Fondamenti di macchine elettriche Corso SSIS 2006/07

ITI M. FARADAY Programmazione modulare

MISURE DI GRANDEZZE ELETTRICHE

Dispositivo di conversione di energia elettrica per aerogeneratori composto da componenti commerciali.

Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

LA CORRENTE ELETTRICA

Vengono detti attuatori i dispositivi in grado di agire sull ambiente esterno comandati da segnali elettrici.

Prova intercorso di Fisica 2 dott. Esposito 27/11/2009

SISTEMA DI ATTUAZIONE DEI GIUNTI

FAM. Serie 34: Elettrodinamica IX. Esercizio 1 Legge di Faraday e legge di Lenz. C. Ferrari. Considera una spira come nella figura qui sotto

Macchina sincrona (alternatore)

ESSEZETA eolico - pag. 1

Principi costruttivi e progettazione di Gioacchino Minafò IW9 DQW. Tratto dal sito web

INTRODUZIONE ALLA CONVERSIONE ELETTROMECCANICA

I motori elettrici più diffusi

FISICA DELLA BICICLETTA

La corrente elettrica

AZIONAMENTI ELETTRICI

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA

Struttura Sistema Elettrico Reti elettriche di distribuzione e archittettura della rete AT/MT

Introduzione 2. Serie P20 4. Serie P28 6. Serie P35 8. Serie P Serie P Serie P Serie P Serie P85 18.

I.T.I.S. M. FARADAY - Programmazione modulare

Definizione di mutua induzione

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono.

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

11. Macchine a corrente continua. unità Principio di funzionamento

LA CORRENTE ELETTRICA CONTINUA

PRODUZIONE DI ENERGIA DA FONTI RINNOVABILI RISPARMIO ENERGETICO

Storia dei generatori di tensione e della corrente elettrica

CALCOLO ELETTRICO DELLE LINEE ELETTRICHE

Energy in our life. 6. Perché risparmiare energia? 1. Forme di energia:

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

BILANCIO ENERGETICO DI UN MAT

Unità realizzata con la collaborazione dell alunno GIANMARCO BERTONATI (Elaborato d Esame a.s.:2011/2012 classe 3 D)

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica

Impianti navali B. Parte 4. II semestre

Gamma BRUSHLESS CROUZET

Generatore di Forza Elettromotrice

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

GENERALITA SUI SISTEMI ELETTRICI

Principi di ingegneria elettrica. Lezione 15 a. Sistemi trifase

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

LA MACCHINA FRIGORIFERA E LA POMPA DI

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4

IL TRASFORMATORE REALE

P od o u d z u io i n o e n e d e d l e l l a l a c o c r o ren e t n e e a l a t l er e na n t a a alternatori. gruppi elettrogeni

CALCOLO DEL RISPARMIO ENERGETICO IN SEGUITO ALLA SOSTITUZIONE DI UN MOTORE CON UNO A PIÙ ALTA EFFICIENZA

Motori brushless. Alimentando il motore e pilotando opportunamente le correnti I in modo che siano come nella figura 2 si nota come

PREMESSA caratteristiche di funzionamento metodo diretto metodo indiretto

Ministero dell Istruzione, dell Università e della Ricerca M334 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE

Servomeccanismi 1. Cassa. Albero. 1. Il motore elettrico in corrente continua

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1

Correnti e circuiti a corrente continua. La corrente elettrica

Michele D'Amico (premiere) 6 May 2012

GRANDEZZE ELETTRICHE E COMPONENTI

Libri di testo adottati: Macchine Elettriche, HOEPLI di Gaetano Conte;

METODO PER LA DESCRIZIONE DEL CAMPO MAGNETICO ROTANTE

Indice: TAELLE DI AVVOLGIMENTO AVVOLGIMENTO RETTANGOLARE EMBRICATO TIPO A AVVOLGIMENTO FRONTALE EMBRICATO TIPO A... 11

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

Inizia presentazione

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

Macchine elettriche. La macchina sincrona. Corso SSIS prof. Riolo Salvatore

Azionamenti in Corrente Continua

Sistemi di distribuzione a MT e BT

nei materiali (Inserendo un materiale all interno di un campo magnetico generato da un magnete permanente)

FISICA E LABORATORIO

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi.

Impianti di propulsione navale

Soluzione del prof. Paolo Guidi

Induzione elettromagnetica

Transcript:

Gli alimentatori stabilizzati: cenni alle problematiche relative alla trasmissione di energia elettrica Abbiamo già accennato nella dispensa sugli alimentatori stabilizzati che la necessità del loro utilizzo deriva dal bisogno di alimentare dispositivi elettronici che abbisognano di un alimentazione costituita da una tensione continua di pochi volt mentre si ha a disposizione una tensione fornita dalla società di distribuzione elettrica sotto forma di tensione alternata di elevato valore massimo. Vogliamo spiegare qui perché l energia elettrica viene distribuita in questa forma. La convenienza del trasporto dell'energia elettrica aumenta con l'aumentare della tensione. La perdita di energia in un elettrodotto è dovuta principalmente all'effetto Joule, per il quale la corrente elettrica che scorre nei cavi produce calore secondo la formula P=RI 2. Sono in corso studi per impiegare cavi superconduttori per la trasmissione di energia elettrica. L'annullamento della resistenza elettrica annullerebbe le perdite per effetto Joule e permetterebbe di trasmettere più energia in cavi di minore sezione. Il problema principale è la difficoltà e il costo energetico elevato dovuto alla 1

necessità di refrigerare i cavi a bassissima temperatura, cosa che rende il progetto non conveniente a livello di costi energetici totali rispetto ai metodi tradizionali e pertanto non ancora attuato. Quindi si può fare poco con le tecnologie attuali per ridurre le perdite agendo sulla resistenza R dei cavi. Poiché, però, la potenza trasferita dalla linea è uguale al prodotto di tensione per corrente, si intuisce che, a parità di potenza, è sufficiente aumentare la tensione per ridurre la corrente e quindi le perdite. E per questo motivo che la rete di distribuzione dell energia elettrica si basa su dorsali in cui l energia viene trasportata utilizzando tensioni elevatissimi 2

Il sistema di trasmissione dell UCTE è composto da linee con tensioni comprese fra 110 e 400 kv e da sottostazioni che le connettono alle reti di distribuzione. Circa 100.000 km hanno tensioni di 380/400 kv, altri 110.000 km sono invece a 220-300 kv, a cui si aggiungono 4.500 km di cavi interrati. La tendenza è verso la sostituzione delle tratte a 220-300 kv a favore di linee con tensioni superiori. Il primato mondiale di maggior tensione in corrente alternata: 1150 kv sulla linea Ekibastuz-Kokshetau in Kazakistan. 3

L'uso di tensioni elevate presenta dei limiti, dovuti principalmente al problema dell'isolamento. L'aria infatti ha una rigidità dielettrica di circa 10 000 volt per ogni centimetro, oltre la quale si innesca una scarica elettrica che oltre a disperdere energia danneggia conduttori ed isolanti. Nelle linee a centinaia di kilovolt la lunghezza degli elementi isolanti che sostengono i cavi e tutte le distanze cavo-cavo e cavotraliccio sono nell'ordine dei metri. 4

Quando la tensione supera il milione di volt subentrano altri fenomeni negativi, come la formazione di scariche conduttore-aria e l'effetto corona, per cui i fili emettono una caratteristica luminescenza e disperdono energia. Tensioni elevate rendono problematica anche la realizzazione di trasformatori e interruttori. 5

Si pone dunque il problema di elevare la tensione dell energia prodotta dalle centrali di produzione mediante l utilizzo, ad esempio, di turbine idrauliche negli impianti idroelettrici, fino alle tensioni di esercizio delle grandi dorsali di trasporto. 6

Il processo inverso deve avvenire invece nella rete di distribuzione che deve portare l energia elettrica nelle nostre case. La distribuzione elettrica è l'ultima fase nel processo di consegna dell'elettricità all'utente finale dopo la produzione e la trasmissione. Generalmente comprende linee elettriche ad alta tensione (tra i 60 e 150 kv, più raramente a 220 kv), linee a media tensione (tra i 5 e i 25 kv) e linee a bassa tensione (inferiore a 1000 V, normalmente 400 V), impianti di trasformazione AT/MT (cabine primarie), trasformatori su pali o cabine elettriche a media tensione (cabine secondarie), sezionatori ed interruttori, strumenti di misura. A partire dagli anni '60 la consegna e la distribuzione dell'energia elettrica in Italia veniva svolta in regime di monopolio dall'enel; negli anni '90 il settore è stato progressivamente liberalizzato (decreto n 79 del 1999), e attualmente diverse aziende tra cui società private e municipalizzate svolgono il servizio producendo in proprio l'energia o acquistandola alla borsa elettrica da produttori e trasportatori. 7

Per poter operare tali manipolazioni del valore della tensione si utilizza una macchina elettrica chiamata trasformatore 8

Il trasformatore più semplice è costituito da due conduttori elettrici (solenoidi) avvolti su un anello di materiale ferromagnetico detto nucleo magnetico. L'avvolgimento al quale viene fornita energia viene detto primario, mentre quello dalla quale l'energia è prelevata è detto secondario. Il trasformatore più semplice è costituito da due conduttori elettrici (solenoidi) avvolti su un anello di materiale ferromagnetico detto nucleo magnetico. L'avvolgimento al quale viene fornita energia viene detto primario, mentre quello dal quale l'energia è prelevata è detto secondario. Quando sul primario viene applicata una tensione elettrica alternata sinusoidale, per effetto dell'induzione magnetica si crea nel nucleo un flusso magnetico con andamento sinusoidale. Per la legge di Faraday- Neumann-Lenz, questo flusso variabile induce nel secondario una tensione sinusoidale. 9

La tensione prodotta nel secondario è proporzionale al rapporto tra il numero di spire del primario e quelle del secondario secondo la relazione: dove Vp è la tensione applicata sul primario, Vs la tensione indotta sul secondario, Np il numero di spire del primario e Ns il numero di spire del secondario, k 0 è chiamato rapporto di trasformazione. La legge di Faraday o legge dell'induzione elettromagnetica è una legge fisica che quantifica il fenomeno dell'induzione elettromagnetica, ovvero l'effetto di produzione di corrente elettrica in un circuito posto in un campo magnetico variabile oppure un circuito in movimento in un campo magnetico costante. È stata scoperta nel 1831 dal fisico inglese Michael Faraday, ed è attualmente alla base del funzionamento dei comuni motori elettrici, generatori elettrici e trasformatori. La legge di Faraday afferma che la forza elettromotrice indotta in un circuito chiuso da un campo magnetico è proporzionale alla variazione del flusso magnetico di tale campo che attraversa l'area abbracciata dal circuito nell'unità di tempo. 10

È importante notare come un campo magnetico costante non dia origine al fenomeno dell'induzione. Non è possibile quindi, ad esempio, collocare un magnete all'interno di un solenoide ed ottenere energia elettrica dal nulla; essa può ottenersi solo muovendo il magnete, a spese dell'energia meccanica quindi. Ne deriva che un trasformatore fornisce una tensione sull avvolgimento secondario soltanto se è presente una tensione variabile nel tempo sul primario. E questo il motivo per cui l energia elettrica viene prodotta sotto forma di tensione variabile nel tempo. La sua forma sinusoidale deriva poi dall utilizzo di una macchina detta alternatore Se ora guardiamo i seguenti schemi che mostrano i diversi tipi di produzione possibile della energia elettrica dal solare, all idroelettrico, dal geotermico all eolico, dalla centrale termica alla nucleare fino alla futuribile generazione mediante reattore a fusione nucleare notiamo che in ogni schema vi è sempre un blocco alternatore. 11

12

13

14

Troviamo nelle figure seguenti la struttura di principio di un alternatore. L'alternatore è una macchina elettrica rotante basata sul fenomeno dell'induzione elettromagnetica, che trasforma energia meccanica in energia elettrica sotto forma di corrente alternata assumendo la funzione di trasduttore. La macchina è costituita da una parte cava fissa, chiamata statore, al cui interno ruota una parte cilindrica calettata sull'albero di rotazione, detta rotore. Sullo statore sono presenti gli 15

avvolgimenti elettrici su cui vengono indotte le forze elettromotrici che sosterranno la corrente elettrica prodotta. 16

Il rotore genera il campo magnetico rotante per mezzo di elettromagneti. Di seguito abbiamo la dimostrazione analitica della natura intrinsecamente alternata dell energia generata da un alternatore. 17

L'alternatore, nella sua forma più semplice è composto da una spira che è investita da un campo magnetico ed è vincolata a ruotare attorno ad un asse perpendicolare alle linee di campo. La legge di Faraday-Neumann afferma che in una spira metallica immersa in un campo magnetico si produce una differenza di potenziale pari a: quindi in questo caso, dato che la spira ruota ci saranno variazioni del flusso magnetico che attraversa la spira e la suddetta relazione può essere indicata come: che, applicando le regole delle derivate, diventa: e ponendo si ottiene che: 18

per α0 si intende l'angolazione iniziale da cui parte l'alternatore; quindi dividendo tutto per la resistenza: La formula trovata quindi descrive l'andamento della corrente o della tensione generata da un alternatore, essa ha un andamento sinusoidale. Da quanto detto sopra discende che: la tensione è direttamente proporzionale al campo magnetico e alla velocità di rotazione; la frequenza è direttamente proporzionale alla velocità di rotazione ed al numero di poli. 19