IL RECUPERO DI ENERGIA. Lidia Lombardi Università degli Studi Niccolò Cusano - Roma

Documenti analoghi
WTE: ANALISI DEL RECUPERO DI ENERGIA IN DIVERSE CONFIGURAZIONI IMPIANTISTICHE. Lidia Lombardi Università degli Studi Niccolò Cusano - Roma

Energia e Fonti Rinnovabili. Un esempio di risparmio energetico: la produzione distribuita di energia elettrica

Termovalorizzatore di Acerra


ALTRE MODALITA DI PRODUZIONE DI ENERGIA

Tali fluidi, utilizzati in prossimità del punto di produzione, o trasportati a distanza, possono essere utilizzati per diversi impieghi:

Impianto di termovalorizzazione I cipressi (FI) Fasi di funzionamento dell'impianto: Prima fase. Schema. Sezione

WORKSHOP. I controlli di ARPA agli impianti di incenerimento dei rifiuti in Emilia - Romagna Stato attuale e prospettive RIMINI.

Quadro dei consumi energetici

Il ruolo della cogenerazione nello scenario energetico italiano al 2020

CORSO DI SISTEMI ENERGETICI II - A.A Prof. Ing. Giorgio Cau

ALLEGATO II. Calcolo della produzione da cogenerazione

CONVERSIONE TERMOCHIMICA

Intervento di Revamping Impianto di termovalorizzazione Sito in Busto Arsizio

Workshop: ENEA E LE TECNOLOGIE PER LA GESTIONE SOSTENIBILE DEI RIFIUTI Roma,

CORSO DI MACCHINE E SISTEMI ENERGETICI A.A. 2014/ Prova di valutazione intermedia del 9 Gennaio 2015

LABORATORIO NORD - OVEST Offerta di energia. Il sistema Cogen-Barca

COGENERAZIONE E TRIGENERAZIONE A GAS

VERONA FORUM DEGLI ENERGY MANAGER

RECUPERATORE DI CALORE AD ALTISSIMA EFFICIENZA ENERGETICA

STRUMENTI DI INCENTIVAZIONE PER L EFFICIENZA ENERGETICA: CONTO TERMICO, CERTIFICATI BIANCHI, CAR

BIOGAS DA RR.SS.UU. Esperienze in Sardegna

REGOLAZIONE DELLA POTENZA IN UNA RETE ELETTRICA IN PRESENZA DI GENERAZIONE DISTRIBUITA: LA COGENERAZIONE. Giuseppe Dell Olio GRTN SpA, Direzione Rete

INCENTIVI PER LA COGENERAZIONE DIFFUSA

Impianti di COGENERAZIONE

Lo sviluppo del teleriscaldamento a Milano. Milano, 24 ottobre 2012

L'ENERGIA PRIMARIA CONSUMATA DA UN EDIFICIO: FATTORI DI CONVERSIONE

Come funziona una centrale a ciclo combinato? Aggiungere l immagine sotto e fare un mix dei due testi di spiegazione del funzionamento

Cogenerazione e teleriscaldamento urbano a Mirandola

L Italia delle fonti rinnovabili

Taglia i costi Dimezza le emissioni

Workshop Industria. Le opportunità offerte dai Titoli di Efficienza Energetica. Francesco Santangelo Massimo Cassibba eni spa divisione gas & power

L EFFICIENZA ENERGETICA IN AMBITO INDUSTRIALE: UNA SCELTA IMPRENDITORIALE

La quantificazione dei benefici di BIOCASA sui consumi energetici ed emissioni di CO 2

Per saperne di più contattaci al numero oppure mob Ing. Beatrice Marconi mob Ing.

352&(662',&20%867,21(

GENERAZIONE DISTRIBUITA COGENERAZIONE NEL SETTORE INDUSTRIALE

Recupero di metalli mediante la termovalorizzazione

IMPIANTI DI CLIMATIZZAZIONE

Caratteristiche peculiari IV

PRODUZIONE DI ENERGIA DALLE BIOMASSE E DAI RIFIUTI

FORUM BIOEDILIZIA E RISPARMIO ENERGETICO ING. LUCIANO ACETI

CC C T U Gruppo turbogas 3

L energia che consumo. Fabio Peron. Combustione. Aria di combustione. Combustione

La situazione dell efficienza energetica in Italia Andamento dell efficienza energetica del Paese Italia e per settore

ENERGIA COMBUSTIBILI FOSSILI

Il ruolo delle pompe di calore nel futuro contesto energetico. Ennio Macchi Dipartimento di Energetica - Politecnico di Milano

ALLEGATO I. Tecnologie di cogenerazione oggetto del presente decreto

Meno rifiuti a Roma. A cura di: Nome Cognome - Nome Cognome - Nome Cognome - Nome Cognome

SOSTENIBILITA ENERGETICA SOSTENIBILITA AMBIENTALE SVILUPPO SOCIO-ECONOMICO

COGENERAZIONE. Tipologie di impianti di cogenerazione

Un passo avanti e due indietro: il settore termoelettrico nel sistema EU ETS

Consumi energetici dei caseifici dell'area del sisma ed energia fotovoltaica

Azioni di incremento dell efficienza energetica nel settore delle piastrelle di ceramica: esperienze e limiti normativi. MILANO 14 giugno 2011

La cogenerazione: bilancio energetico ed economico

La Cogenerazione ad Alto Rendimento (CAR)

Scaglioni di potenza (kw) 1<P 3 3<P 6 6<P 20 20<P <P P> /kw /kw /kw /kw /kw /kw - 2,2 2 1,8 1,4 1,2. Tabella 1

ristrutturazione centrali termiche comunali dei comuni di Trezzo d Adda (MI), Vaprio d Adda (MI), Pozzo d Adda (MI), Grezzago (MI) PROGETTO:

Ispezioni per l efficienza energetica. Franco De Col, ispettore impianti termici

tecnologia che migliora il mondo

RELAZIONE ANNUALE SULLA COGENERAZIONE IN ITALIA ANNO PRODUZIONE 2011

MINISTERO DELLO SVILUPPO ECONOMICO

Gli scenari di sviluppo del termovalorizzatore. (o impianto di trasformazione e produzione?) Gianni Bidini

Efficienza energetica e Cogenerazione Casi pratici di installazione e gestione Milano, 26 gennaio 2012

Metodologia. 5 rapporto sull energia

MESSA A PUNTO DI UN PROGRAMMA DI ANALISI DEI DATI STORICI DI FUNZIONAMENTO DI UNA CENTRALE TERMOELETTRICA DI COGENERAZIONE. (riassunto) Luca Bianchini

Il potenziale delle fonti termiche per i Piani Energetici Regionali

Il Solare Termodinamico per la Produzione di Energia Elettrica e Calore a Media Temperatura

MICRO-COGENERAZIONE tecnologie e vantaggi delle fuel cell

UNIVERSITÀ DEGLI STUDI DI PISA. 2. Sistemi motori gas/vapore. Roberto Lensi

SCHEDA H. PRODUZIONE Energia prodotta nell intero impianto (per le caratteristiche delle unità di produzione di energia compilare la Tab. H.

I vantaggi energetici ed ambientali della piccola e micro cogenerazione

Caratterizzazione di un cogeneratore a combustione esterna: la macchina di Striling nel laboratorio mobile del progetto Sinergreen

Centrali per Teleriscaldamento

Potenzialità dei Rifiuti per la riduzione dei gas climalteranti

Nuove centrali ed emissioni di CO2 in Lombardia

-Il solare termico -

Reti di Teleriscaldamento e sfruttamento del calore

Studio di fattibilità per la climatizzazione di edificio residenziale di nuova costruzione mediante sistema di trigenerazione

Energia. RSA Provincia di Milano. Energia

ANALISI DEI COSTI DELL ENERGIA IN FUNZIONE DEL COMBUSTIBILE

Città di Saronno (Varese) TELERISCALDAMENTO CITTADINO. Aspetti normativi, energetici ed ambientali. Sintesi

METODOLOGIE DI RISPARMIO DI ENERGIA TERMICA

referente per richiesta dati... ubicazione sito... tipo di attività ore di lavoro giornaliero... giorni lavorativi settimanali...

POMPE DI CALORE ELETTRICHE UN CONTATORE DEDICATO

Generazione di biometano per autotrazione su piccola scala. Chiara Gamberini - Safe SpA Convegno sul Biometano Bologna

LA RIQUALIFICAZIONE IMPIANTISTICA

CERTIFICATI BIANCHI e EFFICIENZA ENERGETICA requisiti - potenziali - esempi pratici

Lo scenario energetico in Italia

MICRO COGENERAZIONE CAR e INCENTIVI

QUADRO DI PROGRAMMAZIONE PER UNA POLITICA ENERGETICA REGIONALE

Vitomax - Tecnologia moderna per la generazione di calore nei grandi impianti

Relazione Tecnica. Allegato n 1. Valutazione Impatto Ambientale CENTRALE DI COGENERAZIONE. IMPIANTO DI POST COMBUSTIONE DEL CHP3 (Camino n 3)

LE FONTI RINNOVABILI ED IL LORO UTILIZZO. APPLICAZIONI NEL CAMPUS DI FISCIANO

Milano, 27 giugno 2013!

L innovazione tecnologica per l efficienza energetica e lo sviluppo di fonti rinnovabili

STABILIMENTO DI TARANTO. Febbraio Allegato D10

AGGIORNAMENTO DEL FATTORE DI CONVERSIONE DEI KWH IN TEP CONNESSO AL MECCANISMO DEI TITOLI DI EFFICIENZA ENERGETICA

Emissioni e risparmi di CO2 per tonnellata trattata (Prognos 2008)

VALUTAZIONE SINTETICA DELLE MITIGAZIONI AMBIENTALI POSSIBILI CON LA REALIZZAZIONE DI UNA RETE DI TELERISCALDAMENTO.

Transcript:

IL RECUPERO DI ENERGIA Lidia Lombardi Università degli Studi Niccolò Cusano - Roma 1

Sommario - Gerarchia - RD e RUI - Contenuto energetico e potenzialità di recupero - Recupero energetico - Alcuni indicatori - Conclusioni 2

La gerarchia di azioni nella gestione dei rifiuti Prevenzione Preparazione per il riutilizzo Riciclaggio Recupero di altro tipo, per esempio il recupero di energia Smaltimento. 3

Raccolte Differenziate e Rifiuto Urbano Indifferenziato Il riutilizzo ed il recupero di materia si attuano attraverso le raccolte differenziate, mentre ciò che non è differenziabile non può trovare altra collocazione che nel sacchetto del Rifiuto Urbano Indifferenziato (RUI) o meglio Rifiuto Urbano Residuale (RUR). Produzione RU - 2012 [t] RD - 2012 [t] RD - 2012 [%] RUI 2012 [t] 29.962.096 11.964.821 39,9 17.997.275 PCI RUI_EU = 10,3 GJ/t (Reimann, 2012) PCI RUI_IT = 12 GJ/t RD umido RD vetro RD metalli PCI metano = 50.000 kj/kg PCI gas naturale = 45.000 kj/kg PCI gasolio = 43.000 kj/kg PCI carbone = 32.000 kj/kg PCI buona biomasa = 20.000 kj/kg Reimann, D. O., 2012. CEWEP Energy Report III. (Status 2007-2010). 4

Contenuto energetico del Rifiuto Urbano Indifferenziato RUI 2012 [t] PCI RUI [GJ/t] Contenuto di energia [GJ/a] [TEP/a] 17.997.275 10,3 185.371.933 4.427.533 10.486.734 (RD 65%) 10,3 108.013.356 2.579.855 Consumo interno lordo energia primaria 176.310.000 TEP/anno Dati ISTAT, 2012 2,51 % energia primaria consumata in italia (RD 65% 1,5%) 5

Potenzialità energetica Dettaglio energia elettrica Energia elettrica netta prodotta da impianti RUI (2010) = 3.190.471 MWh (Rapporto Federamebiente-ENEA RAPPORTO SUL RECUPERO ENERGETICO DA RIFIUTI URBANI I N ITALIA - 3a edizione marzo 2012) Energia elettrica consumata IT (2010) = 309.929.500 MWh (http://www.autorita.energia.it) EE da RUI 1% EE IT Ci sono poi da considerare: altri rifiuti speciali, il biogas e l energia termica Il recupero di energia dai rifiuti può assumere ulteriore importanza se inquadrato nell ambito generale del settore energetico italiano. Questo deve far fronte ad una domanda crescente in un contesto di elevati prezzi dei combustibili fossili e di politiche europee di contenimento dei cambiamenti climatici. Dal punto di vista meramente economico, i rifiuti rappresentano una risorsa (purtroppo) abbondante che non dipende da forniture estere. 6

Potenzialità energetica dal PAN (Piano di azione nazionale per le energie rinnovabili dell Italia 2010) Si segnala altresì il crescente ricorso alla valorizzazione energetica dei rifiuti per la produzione di elettricità, calore e biogas, coerentemente con quanto disciplinato dalla direttiva 2009/98/CE. La produzione di elettricità dalla componente biodegradabile dei rifiuti può accedere agli incentivi previsti per la produzione di energia elettrica da fonti rinnovabili. Si fa peraltro notare che, come è stato messo in luce dallo studio dell Osservatorio Nazionale dei Rifiuti Riduzione dei gas climalteranti: Potenzialità derivante dal settore di trattamento dei rifiuti, il recupero di energia da rifiuti contribuisce alla riduzione dei gas climalteranti, sia in virtù del mancato conferimento in discarica, sia in virtù della sostituzione di una quota di energia altrimenti prodotta con combustibili fossili. Ipotizzando di impiegare tutto il residuo della raccolta differenziata in impianti di termovalorizzazione sarebbe possibile generare il 3-4% 1,2 dell energia richiesta dalla rete elettrica italiana, un contributo piccolo ma importante date le caratteristiche del combustibile utilizzato. 1 assumendo un rendimento elettico netto 0,2-0,25 2 se RD 65%: 1,9-2,4% (rendimento 0,2-0,25) 7

Recupero energetico - R1 D altra parte è dall epoca del Decreto Ronchi (D. Lgs. 22/1997) che nel nostro paese il processo di combustione dei rifiuti urbani non può avvenire in assenza di recupero di energia, ma è solo più recente il recepimento delle indicazioni europee in merito ai livelli minimi di produzione di energia da processi di combustione dei rifiuti (la così detta formula R1 ), affinché tali processi possano essere effettivamente classificati come processi de recupero, nel rispetto normativo (D. Lgs. 205/2010). > 0,6 Efficienza energetica = [Ep - (Ef + Ei)]/[0,97 (Ew + Ef)] > 0,65 dove: Ep = energia annua prodotta sotto forma di energia termica o elettrica. E' calcolata moltiplicando l'energia sotto forma di elettricita' per 2,6 e l'energia termica prodotta per uso commerciale per 1,1 (GJ/anno) Ef = alimentazione annua di energia nel sistema con combustibili che contribuiscono alla produzione di vapore (GJ/anno) Ew = energia annua contenuta nei rifiuti trattati calcolata in base al potere calorifico inferiore dei rifiuti (GJ/anno) Ei = energia annua importata, escluse Ew ed Ef (GJ/anno) 0,97 = fattore corrispondente alle perdite di energia dovute alle ceneri pesanti (scorie) e alle radiazioni. Correzione climatica DM 7 agosto 2013 8

Recupero energetico - R1 Recupero energetico in impianti di incenerimento, anno 2011 9

Recupero energetico Il processo di recupero di energia è basato su di un convenzionale ciclo di Hirn. SH VAP ECO DEG PA Gohlke, O., Martin, J., 2007. Drivers for innovation in waste-to-energy technology. Waste Manage. Res. 25, 214-219. Murer, M.J., Spliethoff, H., De Waal, C.M.W., Wilpshaar, S., Berkhout, B., Van Berlo, M. A.J., Gohlke, O., Martin, J.J.E., 2011. High efficient waste-to-energy in Amsterdam: getting ready for the next steps. Waste Manage. Res. 29, 20-29. COND TV PE G ECO: economizzatore TV:turbina a vapore DEG:degasatore PA:pompa di alimento PE:pompa di estrazione SS:scambiatore a superficie SH:surriscaldatore VAP:vaporizzatore G:generatore COND:condensatore Il massimo rendimento elettrico netto riportato in letteratura è pari al 30% (Murer et al., 2011; Gohlke and Martin, 2007) valori medi 20-22%. Impianti termoelettrici tradizionali valori medi internazionali (Graus et al., 2007 1 ): - 35% carbone (max 42%) - 45% gas naturale - 38% gasolio In EU (Graus and Worrell, 2009): - carbone da 34% nel 1990 a 38% nel 2005; 40% atteso nel 2015 Graus, W., Voogt, M., Worrell, M., 2007. International comparison of energy efficiency of fossil power generation. Energ. Policy 35, 3936 3951. Graus, W., Worrell, E., 2009. Trend in efficiency and capacity of fossil power generation in the EU. Energy Policy, 37, 2147 2160. 10

Recupero energetico Il rendimento contenuto è dovuto ad una combinazione di limitazioni tecniche ed economiche SH VAP ECO COND TV G i) Piccole dimensione degli impianti; ii) Parametri contenuti del ciclo a vapore (pressione e temperatura del vapore surriscaldato); iii) Pressione al condensatore; iv) Configurazione del ciclo semplificata rispetto a impianti tradizionali (senza reheating, scarso/assente preriscaldamento); v) Perdite al camino (temperatura e portata); vi) Elevati autoconsumi. PE PA DEG ECO: economizzatore TV:turbina a vapore DEG:degasatore PA:pompa di alimento PE:pompa di estrazione SS:scambiatore a superficie SH:surriscaldatore VAP:vaporizzatore G:generatore COND:condensatore 11

Recupero energetico Dimensione/taglia La classificazione del report CEWEP (Reimann, 2012) suddivide gli impianti europei in: - Piccoli impianti: con capacità < 100.000 t/a (circa 37,5% degli esaminati) (P < 35 MW); - Medi impianti: con capacità compresa fra 100.000-250.000 t/a (circa 39,5%) (35 MW < P < 88 MW); - Grandi impianti: con capacità > di 250.000 t/a (circa 22,9%) (P > 88 MW 1 ). - 33 impianti su 53: P< 50 MW; - 16 impianti : 50<P< 100 MW; - 4 (Brescia, Milano, Parona (PV), Acerra (NA)) P > 100 MW. - l efficienza dei dispositivi (turbina, ausiliari, etc.) è inferiore al diminuire della taglia - I costi specifici dei dispositivi sono maggiori, questo impone di scegliere configurazioni semplificate, che hanno però rendimenti inferiori (questo limita le possibili sofisticazioni tecnologiche) 1 La potenza termica di impianti termoelettrici tradizionali è decisamente superiore : 1000-2000 MW *da ENEA-Federambiente - Rapporto sul recupero energetico da rifiuti urbani in Italia 3 edizione marzo 2012 * 12

Recupero energetico Parametri del ciclo a vapore Il rendimento del ciclo aumenta al crescere della pressione e della temperatura del vapore surriscaldato, che sono però limitate a causa di problemi di corrosione acida dello scambiatore lato fumi. Per questa ragione la temperatura massima di ammissione dei fumi nel surriscaldatore è limitata a 650 C. Dal lato vapore questo implica una temperatura massima del surriscaldato di circa 400 C. La pressione del vapore conseguentemente è limitata a circa 40 bar. Percorso fumi Al trattamento fumi VAPORIZZATORE A IRRAGGIAMENTO SURRISCALDATORE ECONOMIZZATORE Alla turbina Percorso fluido termovettore 13

Recupero energetico Prestazioni di alcuni impianti esistenti (solo EE) Fonte Forno Rifiuti PCI Taglia hel Parametri vapore Gross Net P T Tout Pcond Gohlke and Martin, 2007 Gohlke and Martin, 2007 Griglia Griglia MSW, sewage sludge, biomass Biomass, sewage sludge GJ/t t/a (*t/h) bar C C bar 551.728 27 24 61 450 135 257.599 28 25 73 480 135 Murer et al., 2011 Griglia MSW 10 530.000 34,5 30 130 440 1 130-180 0,03 Gohlke, 2009 Griglia MSW 10 21,6* 20,6 40 380 209 0,15 1 reheating (14 bar; 320 C) + condensatore ad acqua 150.000-170.00 t/a Gohlke, O., Martin, J., 2007. Drivers for innovation in waste-to-energy technology. Waste Manage. Res. 25, 214-219. Murer, M.J., Spliethoff, H., De Waal, C.M.W., Wilpshaar, S., Berkhout, B., Van Berlo, M. A.J., Gohlke, O., Martin, J.J.E., 2011. High efficient waste-to-energy in Amsterdam: getting ready for the next steps. Waste Manage. Res. 29, 20-29. Gohlke, O., 2009. Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance. Waste Manage. Res. 27, 894-906. 14

Recupero energetico Rendimento elettrico netto vs. taglia Pt [MW] 12,5 25 50 100 200 300 P [bar] 30 35 40 45 65 70 T [ C] 350 380 400 420 440 450 15

Recupero energetico R1 in EU CEWEP, 2007-2010 (Reimann, 2012). 314 impianti Europei in 17 paesi (15 EU + Svizzera e Norvegia), che trattano 59,4 millioni di t (circa l 85,5% del totale del rifiuto urbano incenerito in EU Dei 314 impianti: 83 solo EE solo il 37,3% degli impianti che producono sono EE hanno R1 0,60. 47 solo ET 184 CHP In generale R1 < 0,60 per piccoli impianti (< 100.000 t/a), di solito localizzati nell Europa sud-occidentale, e che producono solo EE. I valori più alti di R1 sono raggiunti da grandi impianti (>250.000 t/a), localizzati in Nord Europa con CHP. CHP Elettricità Energia termica Usi industriali Riscaldamento Raffrescamento 16

Recupero energetico Rendimento in cogenerazione vs. % spillamento vapore 17

Recupero energetico R1 vs. % spillamento vapore 18

Conclusioni - La combustione con recupero di energia è un trattamento necessario e l unico per il residuo della RD - La produzione di sola energia elettrica è sufficiente solo per grandi impianti (Pt>200 MW) - Per medi e piccoli impianti è necessario cogenerare (caldo/freddo!) - Non è solo una questione di classificazione dell impianto (R1), ma un elemento con forte valenza ambientale (carbon neutral e carbon sink) 19