La produzione di energia serve anche a costruire le componenti della cellula batterica Oltre all energia sono necessari i nutrienti

Documenti analoghi
Utilizzata per le sintesi della cellula batterica

La velocità di crescita è influenzata anche dai fattori abiotici. Ci vogliono anche le condizioni fisiche o chimiche adatte

La membrana e il trasporto di membrana

I materiali della vita

Lezione 1: Atomi e molecole:

TERMOFILI IPERTERMOFILI 65-95

Meccanismi di trasporto dei nutrienti

CITOPLASMA. MATRICE 70% = H2O Lipidi, Proteine, Sali CITOSCHELETRO BATTERICO

Membri dell universo microbico

11/10/16. Il concetto di MOSAICO FLUIDO. Fosfolipidi Colesterolo Glicolipidi

Diffusione facilitata Trasporti mediati da proteine di membrana: i trasportatori

INCLUSIONI MEMBRANA, CAPSULA, PARETE CELL. FLAGELLI PILI RIBOSOMI STRUTTURE CELLULARI INCLUSIONI MEMBRANA, CAPSULA, PARETE CELL.

Plasma membrane. Endoplasmic reticulum. Nucleus. Golgi apparatus. Mitochondrion Lysosome. Ribosome

Permeabilità Di Membrana Cellulare

Le membrane cellulari

5.10 Grazie alle proteine, la membrana plasmatica svolge molteplici funzioni


Trasporto di membrana

Il trasporto attraverso la membrana plasmatica LEZIONE NR PSICOBIOLOGIA

Alessia Pertuso. Veronica Cassiano. Pietro Mongiardini. Alessia Cacciò

Biologia generale Robert J. Brooker, Eric P. Widmaier, Linda E. Graham, Peter D. Stiling Copyright 2009 The McGraw-Hill Companies srl

Fisiologia cellulare e Laboratorio di colture cellulari

5. Trasporto di membrana

Caratteristiche delle membrane biologiche

LA MEMBRANA CELLULARE O PLASMATICA E LA STRUTTURA CHE DELIMITA ESTERNAMENTE LA CELLULA, SIA EUCARIOTICA CHE PROCARIOTICA, SEPARANDO IL COMPARTO INTRAC

LA CHIMICA DELLA VITA

Membrana, trasporti, nutrizione, enzimi

Struttura e funzione delle membrane biologiche

METABOLISMO BATTERICO

2. permettere un continuo scambio di ioni e molecole fra i due compartimenti

Tutta la vita cellulare ha le seguenti caratteristiche in comune. tutte le cellule hanno una membrana cellulare che separa il liquido extracellulare

Metabolismo batterico

Il processo di ultrafiltrazione è interamente passivo e dipende sostanzialmente da tre fattori:

Il livello cellulare di organizzazione: la struttura cellulare. Cattedra di Fisiologia Umana

MEMBRANA CELLULRE. La membrana plasmatica svolge molteplici funzioni:

... La velocità di crescita è influenzata anche dai fattori abiotici. Anche per i microrganismi il cibo non è tutto...

Archaea. Eukarya. Bacteria. Il raggruppamento in. Eukarya, Archaea, Bacteria ALCUNE CLASSIFICAZIONI "GLOBALI" DEGLI ORGANISMI VIVENTI

I MITOCONDRI: LE CENTRALI ENERGETICHE DELLA CELLULA

C.d.L. Scienze Biosanitarie e Farmaceutiche Corso di Microbiologia e Biotecnologie dei Microrganismi

definiscono i confini esterni delle cellule e regolano il traffico di molecole attraverso questi confini. Nelle cellule eucariotiche dividono lo

I PROTIDI ASPETTI GENERALI

Capitolo 6 La respirazione cellulare

Modalità di trasporto di membrana (DIFFUSIONE FACILITATA)

Antibiotici: cenni storici

L ACQUA E LE SUE PROPRIETÀ

Terreni di coltura Contenuto qualitativo (1 di 2)

Le proteine si membrana si possono associare al doppio strato lipidico con modalità differenti

È stimato che oggi sulla terra sono presenti da 10*10 6 a 100*10 6 specie viventi

I ribosomi liberi nel citoplasma sintetizzano le proteine destinate alla via citoplasmatica, cioè quelle destinate a:

la cellula al lavoro: cenni di termodinamica, enzimi, struttura della membrana plasmatica e il trasporto di membrana

Le MEMBRANE in biologia

Le funzioni delle membrane biologiche

CAP.2 Bioelementi. Importanza biologica dell acqua. Ciclo dell acqua. Osmosi. Diffusione.

Energia e metabolismi energetici

Respirazione cellulare

TRASPORTO DI SOSTANZE NELLE PIANTE

Struttura delle membrane biologiche

Immagini e concetti della biologia

La nutrizione minerale. Ovvero gli ioni inorganici necessari alla pianta e modalità di assorbimento e assimilazione

Proprietà di permeabilità della membrana

CICLO GEOLOGICO E CIBO LA NUTRIZIONE DELLE PIANTE. Vincenzino Siani

Somministrazione o assunzione di alimenti allo scopo di nutrire l organismo

Le MEMBRANE in biologia

METABOLISMO CELLULARE

Principi di Biochimica

Nel sec. XIX nasce la chimica agraria

B.U.S.-T.C.S. B. Pascal Reggio Emilia

movimento di molecole e ioni tra i diversi scomparti dei sistemi biologici

Composti organici. I composti organici. Atomi e molecole di carbonio. Atomi e molecole di carbonio. Gruppi funzionali. Isomeri

La parete cellulare. Prof. Vincenzo Cuteri Dipartimento Scienze Veterinarie UNICAM

caratteristiche dei viventi

Gerard Tortora, Brian Derrickson. Conosciamo

3. Citologia i. Strutture cellulari comuni tra cellule animali e vegetali

DIVERSITÀ METABOLICA i procarioti, nel loro insieme, possono utilizzare: quasi tutti i composti naturali. Per il biorisanamento

METABOLISMO BATTERICO

Parete cellulare. Cellula batterica

Trasporto di sostanze in e out dalla cellula

Corso di: Colture vegetali e applicazioni biotecnologiche

CPIA 1 FOGGIA punto di erogazione San Severo. Prof.ssa ANNA LUCIA L. CANCELLIERE

High Hydrostatic Pressure

ORGANISMI PROCARIOTI. BATTERI (Bacteria) ARCHEI (Archaea) ORGANISMI VIVENTI EUCARIOTI PROCARIOTI BACTERIA EUKARYA ARCHAEA

Le molecole biologiche. Sylvia S. Mader Immagini e concetti della biologia Zanichelli editore, 2012

Permeabilità di un doppio strato fosfolipidico artificiale (privo di proteine)

La cellula. Da sito:

Biotecnologie. 2. Produzione di lievito da cucina: i lieviti costituiscono la biomassa;

Capitolo 5 L energia e il trasporto

Mitocondri. -sono visibili al MO (Ø 0,5 µ e lunghezza da 1 a 6 µ) -assenti nei batteri e presenti in tutte le cellule eucariotiche

SOLUZIONI DEGLI ESERCIZI

Fosfolipidi nelle membrane degli Archaea. Archaea. Bacteria. Lipidi di membrana negli Archei

FOSFORILAZIONE OSSIDATIVA

Depuratore Biologico anaerobica con produzione di metano (CH4) da decomposizione organica

Proprietà Esotossine Endotossine

Cibo e Salute Centro di Educazione Nutrizionale ASL 1 Massa Carrara

LE MOLECOLE DELLA VITA

catabolismo anabolismo

Tutti gli esseri viventi sono formati da cellule

Caratteristiche generali dei sistemi viventi

MOLTE PROTEINE SONO LOCALIZZATE IN COMPARTIMENTI DIVERSI DA QUELLO CITOPLASMATICO. Mitocondri Cloroplasti Perossisomi

assorbimento degli elementi necessari per il METABOLISMO

La chimica della vita: i composti organici. CARBOIDRATI LIPIDI PROTEINE ACIDI NUCLEICI (DNA, RNA)

Transcript:

La produzione di energia serve anche a costruire le componenti della cellula batterica Oltre all energia sono necessari i nutrienti carbonio azoto zolfo fosforo oligoelementi

Le tecniche di coltivazione in coltura axenica Usando terreni chimicamente definiti ci hanno permesso di comprendere le esigenze nutrizionali di diverse specie microbiche

A seconda della quantità richiesta le sostanze si dividono in MACRONUTRIENTI micronutrienti

MACRONUTRIENTI -1 CARBONIO AZOTO OSSIGENO IDROGENO ZOLFO FANNO PARTE DEI COMPONENTI STRUTTURALI DELLA CELLULA BATTERICA FOSFORO CARBOIDRATI PROTEINE LIPIDI ACIDI NUCLEICI

MACRONUTRIENTI -2 POTASSIO NECESSARIO A TUTTI ATTIVA ENZIMI MAGNESIO FERRO SODIO NECESSARIO A TUTTI COFATTORE PER ENZIMI STABILIZZA RIBOSOMI, MEMBRANA, ACIDI NUCLEICI NECESSARIO A TUTTI COSTITUENTE DI CITOCROMI COSTITUENTE DI ENZIMI NECESSARIO- MA NON A TUTTI (ORGANISMI MARINI) CALCIO NECESSARIO MA NON A TUTTI STABILIZZA LA PARETE COMPONENTE DELLE ENDOSPORE

MICRONUTRIENTI COBALTO ZINCO SINTESI DI VITAMINA B12 IN METALLOENZIMI E ALTRE PROTEINE MOLIBDENO NELLA NITROGENASI E ALTRI ENZIMI AZOTO-RIDUTTORI RAME IN ENZIMI DELLA RESPIRAZIONE MANGANES E NICKEL ATTIVATORE DI ENZIMI NELLE IDROGENASI

monodermi Il reticolo di peptidoglicano lascia passare acqua e soluti La barriera idrofobica è la membrana interna

didermi acqua + soluti, idrofile fino a 600-700 Da PORINE La prima barriera idrofoba è la OM Eccezioni: per B12 (energizzata?) Per disaccaridi Per chelati organici del ferro

Le molecole idrofobe e quelle idrofile di grandi dimensioni devono essere trasportate attraverso IM TRASPORTO PASSIVO Lungo il gradiente DIFFUSIONE SEMPLICE DIFFUSIONE FACILITATA SISTEMA PTS (traslocazione di gruppo) Il substrato è modificato: Non c è gradiente TRASPORTO ATTIVO Contro gradiente Non modifica il substrato ASSOCIATO A IONI ABC

DIFFUSIONE SEMPLICE POCHI NUTRIENTI O 2 CO 2 H 2 O DIFFUSIONE FACILITATA da permeasi situate nella membrana plasmatica

TRASPORTO ATTIVO trasportatori ABC (ATP-Binding Cassette) ASSOCIATO A IONI SPENDE ENERGIA NON MODIFICA IL SOLUTO DESTINATO AI SOLUTI DA ACCUMULARE NEL CITOPLASMA

TRASPORTATORI ABC proteina che lega il substrato Il substrato si attacca alla proteina di legame proteina che trasduce energia idrolizzando ATP viene trasferito al trasportatore che cambia conformazione ATP ADP E lo trasporta all interno della cellula, a spese dell ATP

trasportatori ABC: transmembranari (sfruttano l energia di membrana) 12 alfa-eliche X uniporto H+ X simporto H+ X antiporto

uniporto simporto antiporto

PER TRASLOCAZIONE DI GRUPPO (sistema PTS) non c è gradiente: la molecola all interno della cellula è diversa da quelle all esterno effettuata da proteine (fosfotransferasi) localizzate nella membrana CHE MODIFICANO (FOSFORILANO) IL SUBSTRATO DURANTE IL TRASPORTO La molecola trasformata non può passare attraverso la IM

Il ferro è essenziale per quasi tutti i microrganismi! Fe 3+ Ma in alcuni ambienti è molto scarso Per esempio in mare è quasi assente: i batteri marini hanno SIDEROFORI estremamente efficienti molecole chelanti, a basso peso molecolare complessano Fe3+ e lo cedono a un recettore proteico per l ingresso nella cellula Fe 3+ Fe 3+ dove viene ridotto a Fe2+ Fe 2+ 3+

in altri ambienti è molto ben protetto Fe Fe Fe transferrina Fe lattoferrina I batteri patogeni devono riuscire a strappare il ferro a proteine eucariotiche, con altissima affinità

SECREZIONE Molte proteine devono poter essere uscire dalla cellula per svolgere la loro funzione Esterno Far passare loro la membrana citoplasmatica è compito dei sistemi di secrezione -SEC (sistema generale di traslocazione) -TAT /twin arginine traslocase Periplasma

SEC: già prima della fine della traduzione, la preproteina è legata da una chaperonina (SecB) e raggiunge l apparato Sec in conformazione idonea alla traslocazione periplasma Le traslocasi Sec(YEG) formano un canale transmembrana le proteine destinate alla secrezione sono avviate al traslocone dalle SRPs

Nei batteri didermi sistemi il passaggio attraverso la membrana esterna è mediato da sistemi di secrezione specializzati dipendenti o meno da Sec/Tat SEC-dipendenti T2SS, T5SS (T4SS) Traslocano proteine che sono state portate al periplasma da SEC/TAT SEC-indipendenti T1SS T3SS (T4SS) Traslocano proteine direttamente senza l intervento di SEC

T1SS SEC-INDIPENDENTE: le proteine sono trasportate in un singolo passo forma un canale semplice e continuo che attraversa la IM e la OM trasporta molecole diverse da ioni a proteine fino a 900 kda periplasma un fattore di virulenza esportato da T1SS è l emolisina di E. coli

T2SS: la proteina viene avviata oltre la membrana esterna da un complesso di 12-14 proteine che formano un poro La maggior parte delle tossine di tipo A/B è esportata attraverso il sistema di secrezione di tipo II periplasma ALTRI SISTEMI DI SECREZIONE SONO TIPICI DEI BATTERI PATOGENI GRAM-NEGATIVI

T5SS (AUTOTRASPORTATORI) proteine traslocate da Sec o Tat nel periplasma Inseriscono nella OM l estremità C-terminale che permette l uscita della zona centrale della proteina (dominio passeggero ) Formando una struttura a barile (beta-barrel) periplasma

T3SS (SEC-INDIPENDENTE) : tipico di alcuni patogeni didermi trasloca le proteine (effettori) non processate, direttamente nel citoplasma della cellula ospite I determinanti si trovano spesso all interno di PAI, a volte su plasmidi i T3SS sia attivano al contatto con la cellula dell ospite periplasma Gli effettori passano attraverso un ago macromolecolare formato dalle proteine strutturali

I TTSS si sono evoluti dal sistema di esportazione dei monomeri di flagellina L P S M T3SS

T4SS può traslocare anche DNA Trasloca proteine direttamente da citoplasma a citoplasma (come i T3SS) Ma può traslocare anche proteine portate nel periplasma da Sec Attraverso componenti comuni al T2SS periplasma

Cellula ospite i sistemi di tipo IV derivano dai sistemi di coniugazione pilo L ago molecolare ha la struttura dei pili di tipo IV Un esempio di tossina secreta attraverso questo sistema è CagA di Helicobacter pylori

monodermi Il reticolo di peptidoglicano lascia passare acqua e soluti La barriera idrofobica è la membrana interna

didermi acqua + soluti, idrofile fino a 600-700 Da PORINE La prima barriera idrofoba è la OM Eccezioni: per B12 (energizzata?) Per disaccaridi Per chelati organici del ferro

Le molecole idrofobe e quelle idrofile di grandi dimensioni devono essere trasportate attraverso IM TRASPORTO PASSIVO Lungo il gradiente DIFFUSIONE SEMPLICE DIFFUSIONE FACILITATA SISTEMA PTS (traslocazione di gruppo) Il substrato è modificato: Non c è gradiente TRASPORTO ATTIVO Contro gradiente Non modifica il substrato ASSOCIATO A IONI ABC

DIFFUSIONE SEMPLICE POCHI NUTRIENTI O 2 CO 2 H 2 O DIFFUSIONE FACILITATA da permeasi situate nella membrana plasmatica

TRASPORTO ATTIVO trasportatori ABC (ATP-Binding Cassette) ASSOCIATO A IONI SPENDE ENERGIA NON MODIFICA IL SOLUTO DESTINATO AI SOLUTI DA ACCUMULARE NEL CITOPLASMA

TRASPORTATORI ABC proteina che lega il substrato Il substrato si attacca alla proteina di legame proteina che trasduce energia idrolizzando ATP viene trasferito al trasportatore che cambia conformazione ATP ADP E lo trasporta all interno della cellula, a spese dell ATP

trasportatori ABC: transmembranari (sfruttano l energia di membrana) X X 12 alfa-eliche uniporto H+ X simporto X antiporto H+

UNIPORTO 1 2

SIMPORTO 1 2

antiporto 1 2 3 4

PER TRASLOCAZIONE DI GRUPPO (sistema PTS) non c è gradiente: la molecola all interno della cellula è diversa da quelle all esterno effettuata da proteine (fosfotransferasi) localizzate nella membrana CHE MODIFICANO (FOSFORILANO) IL SUBSTRATO DURANTE IL TRASPORTO La molecola trasformata non può passare attraverso la IM

Il ferro è essenziale per quasi tutti i microrganismi! Fe 3+ Ma in alcuni ambienti è molto scarso Per esempio in mare è quasi assente: i batteri marini hanno SIDEROFORI estremamente efficienti molecole chelanti, a basso peso molecolare complessano Fe3+ e lo cedono a un recettore proteico per l ingresso nella cellula Fe 3+ Fe 3+ dove viene ridotto a Fe2+ Fe 2+ 3+

in altri ambienti è molto ben protetto Fe Fe transferrina I batteri patogeni devono riuscire a strappare il ferro a proteine eucariotiche, con altissima affinità lattoferrina

La velocità di crescita è influenzata anche dai fattori abiotici Anche per i microrganismi il cibo non è tutto... Ci vogliono anche le condizioni fisiche o chimiche adatte... temperatura ph Terreno disidratato Pressione osmotica Idrostatica..

i microrganismi tollerano variazioni molto ampie di questi fattori Adottando strategie che permettono la vita anche in ambienti caratterizzati da condizioni estreme

TEMPERATURA Dove c è acqua possono esserci microbi PSICROFILI 0-20 TERMOFILI 40-70 MESOFILI 8-46 IPERTERMOFILI ESTREMI 90-115 IPERTERMOFILI 65-95

TEMPERATURA Vr = massima Optimum Tasso di crescita Vr aumenta Minimo temperatura Massimo

OPTIMUM MASSIMA MINIMA Gelificazione della M.I. I trasporti rallentano la crescita si ferma Denaturazione delle proteine Collasso della M.I. termolisi ALTA NORMALE BASSA

Thermus aquaticus comune negli ambienti idrotermali: optimum di temperatura attorno a 70 C Gli enzimi termoresistenti di Thermus aquaticus sono utilizzati per applicazioni biotecnologiche 70 C 30 C Proteine strutturali termostabili enzimi attivi a temperatura alta Lipidi termostabili (archibatteri) Termofili estremi: topoisomerasi inversa Introduce giri positivi Chaperonine particolari e abbondanti Proteine protettive per il DNA Magnesio (stabilizza il DNA neutralizzando i fosfati)

Il limite minimo è correlato alle modificazioni della capacità di solvatazione dell acqua Altera le interazioni idrofobiche Psychromonas ingrahamii (-12 C) Le alte temperature uccidono le cellule batteriche Le basse temperature non uccidono ma un passaggio brusco dal caldo al freddo (shock termico) può uccidere i batteri

PRESSIONE

PRESSIONE Pressione Barofili estremi Barofili moderati Non barofili 1 400 500

Gli involucri esterni e la membrana, permeabili all acqua proteggono i batteri dallo schiacciamento La pressione agisce impedendo che il volume molecolare aumenti Se la forma attivata ha un volume MAGGIORE di quella base l enzima è INIBITO dalla pressione Forma base Forma attivata Se la forma attivata ha un volume MINORE di quella base l enzima è FAVORITO dalla pressione

Saccharomyces non cresce oltre le 8 atmosfere (quelle dello champagne) I barofili estremi non crescono sopra le 400 atmosfere hanno una membrana particolarmente ricca di acidi grassi insaturi più fluida e meno soggetta a variazioni di conformazione sotto pressioni elevate

Pressione osmotica La quantità di acqua EFFETTIVAMENTE disponibile in un substrato Viene detta water-activity (A w ) Ed è definita dal rapporto pressione di vapore della sostanza/pressione di vapore dell acqua pura A w = P/P 0

I valori di Aw sono compresi tra 0 e 1 La maggior parte dei microrganismi Necessita di Aw 0,98 (valore dell acqua marina) Microrganismi alofili estremi riescono a vivere fino a 0,75

1,0 ACQUA PURA 0,99 SANGUE 0,90 SCIROPPI PROSCIUTTO BATTERI 0,95 PANE 0,85 SALAMI 0,80 DOLCI DI FRUTTA MARMELLATE FUNGHI 0,75 PESCE SALATO 0,70 GRANDE LAGO SALATO CEREALI FRUTTA SECCA Procarioti ALOFILI Soprattutto archibatteri

I microrganismi che vivono in ambienti con bassa Aw estraggono acqua dal mezzo circostante mantenendo inalterata la concentrazione salina interna L acqua non può essere trasportata, deve entrare nella cellula per diffusione Lo scopo quindi deve essere raggiunto giocando con la concentrazione e il trasporto di ioni e soluti

I microrganismi alotolleranti sintetizzano o concentrano soluti organici che non danneggino i processi biochimici interni si tratta in genere di zuccheri (saccarosio, mannitolo, glicerolo) o aminoacidi (prolina) e derivati (betaina) e vengono definiti soluti compatibili H 2 O Na+ Na+ Na+ Na+ Na+ H 2 O La concentrazione intracellulare dei soluti compatibili richiama acqua all interno della cellula

La maggior parte degli ambienti naturali hanno un ph compreso tra 5 e 9 I batteri crescono in un intervallo di 2-3 punti di ph in cui è compreso il valore ottimale per la crescita NEUTROFILI 5,5-8 optimum Il ph intracellulare deve essere vicino alla neutralità Limite minimo conosciuto: 4,6 (acidofili estremi) optimum optimum Limite massimo conosciuto: 9,5 (basofili estremi) ACIDOFILI 1-5,5 1 10 ALCALOFILI 8,5-11,5

Ambienti caratterizzati da ph estremi Sorgenti acide acido Acidofili estremi Acidofili Acque acide di miniera neutrofili Laghi alcalini alcalofili basico Alcalofili estremi

I batteri acidofili si trovano soprattutto nelle ACQUE ACIDE DI MINIERA ph fortemente acido Quando giacimenti di carbon fossile vengono aperti, la pirite che si trova nel carbone e nelle rocce circostanti A contatto con l aria si ossida FeS 2 H 2 SO 4

LAGHI ALCALINI (soda-lakes) Fortemente basici > ph 9 elevate concentrazioni di bicarbonato e soda caustica I microrganismi alcalofili sono tutti procarioti (soprattutto archibatteri, ma anche Bacillus e cianobatteri) Devono pompare via gli ioni idrossile (OH-) che neutralizzerebbero i protoni interni distruggendo il normale metabolismo che dipende dai gradienti protonici le membrane di questi microrganismi sono modificate, per combattere l azione degli alcali che saponificano i grassi OH - OH -

I batteri possono vivere in un intervallo di ph più vasto di quello tollerato dalle loro proteine I meccanismi di efflusso ionico sono molto efficienti per mantenere il ph interno E. coli cresce tra ph 8 7 7 7,8 5,8 5,7 6 3,3