sia G un gruppo ciclico di ordine n, sia g un generatore di G

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "sia G un gruppo ciclico di ordine n, sia g un generatore di G"

Transcript

1 logaritmo discreto sia G un gruppo ciclico di ordine n, sia g un generatore di G dato y 1 G bisogna determinare l unico intero x con 1 x n 1 tale che g x = y ex: in U(Z 9 ) con g = 2, se y = 7 si ha x = 4, perché 2 4 = 7. l intero x si chiama il logaritmo discreto di y in base g, e si denota con log g y ex: in U(Z 9 ), 4 = log 2 7 logaritmo discreto come funzione unidirezionale in generale, lavoreremo con il gruppo Z p o più in generale con F q, q = p m, p primo, spesso p = 2 dati g generatore di Z p e x tale che 1 x p 1, calcolare y = g x è computazionalmente facile (y g x (mod p) si usa l algoritmo square-and-multiply ) si ritiene che, dati g generatore di Z p e y Z p, determinare x = log g y sia difficile (sotto opportune ipotesi su p) in particolare, p devessere grande (2048 bit), p dati g e y posso trovare x tale che g x = y per tentativi calcolando g x per tutti gli x, 1 x p 1 ma il numero di tentativi è enorme

2 scambio della chiave di Diffie-Hellman Alice e Bob scelgono pubblicamente un primo p e un elemento primitivo g (mod p) Alice sceglie casualmente a {2,..., p 2}; calcola g a mod p e invia il risultato a Bob Bob sceglie casualmente b {2,..., p 2}; calcola g b mod p e invia il risultato a Alice Alice calcola (g b ) a mod p Bob calcola (g a ) b mod p la chiave è k = g ab DH problem se Eve sa risolvere il problema del logaritmo discreto, sa ricavare la chiave comune di Bob e Alice dall osservazione di g a, g b mod p ricava a e b, quindi calcola k = g ab DH problem: dato un gruppo ciclico G, g un generatore e dati g a, g b trovare g ab basta che sappia risolvere il DH problem per trovare la chiave equivalenza DH - DL?

3 crittosistema Elgamal (ca 1985) sia p un primo, g un elemento primitivo mod p P = U(Z p ) C = U(Z p ) U(Z p ) Lo spazio delle chiavi è K = {(p, g, a, β) β g a (mod p)}. p, g e β sono la chiave pubblica a è la chiave privata crittosistema Elgamal prima di cifrare il messaggio x P, Alice sceglie un numero casuale (segreto) h {2,..., p 2} e k (x, h) = (y 1, y 2 ) con y 1 = g h, y 2 = xβ h (mod p) Bob riceve (y 1, y 2 ) U(Z p ) U(Z p ) non conosce h ma conosce a calcola y a 1 = (g h ) a = (g a ) h = β h (mod p) calcola (β h ) 1 (mod p) e ottiene x = y 2 (β h ) 1 d k ((y 1, y 2 )) = y 2 (y a 1 ) 1 (mod p) notare la somiglianza con DH non si inverte la funzione x g x (mod p) Alice sceglie un nuovo h a ogni trasmissione (randomized encryption)

4 esempio Bob sceglie p = 83, g = 2 e la chiave privata a = 30 β = mod 83 la chiave pubblica di Bob è (83, 2, 40) il messaggio di Alice è x = 54 il numero scelto per la cifratura è h = 13 Alice invia (g h, xβ h ) = (2 13, ) (58, 71) mod 83 per decifrare, Bob calcola (g h ) a = = 9 l inverso di 9 mod 83 è 37 il messaggio è quindi = 54 mod 83 la cifratura è una moltiplicazione: x xg ha si può invece usare un cifrario a blocchi (AES) e cifrare x e g ha(x) anche per Elgamal, si usa p di almeno 2048 bit, p 1 con un fattore primo grande e a fattorizzazione nota anche per violare Elgamal, basta che Eve sappia risolvere il DH problem se dati g h e β = g a sa trovare g ah = β h, può leggere il messaggio se Eve sa risolvere il logaritmo discreto può ricavare l esponente h e quindi ricavare direttamente x oppure ricavare a e decifrare come Alice (conviene h cambia in ogni trasmissione)

5 da chi proviene un messaggio? in un crittosistema simmetrico solo Alice e Bob conoscono la chiave se Bob riceve un messaggio di Alice e la decifratura del messaggio ha senso, il messaggio proviene certamente da Alice in un crittosistema a chiave pubblica, chiunque può scrivere un messaggio cifrato a Bob affermando di essere Alice serve una firma digitale firma manuale associa un documento a un utente firmatario la firma fa fisicamente parte del documento la firma viene verificata confrontandola con una firma campione depositata dovrebbe essere difficile da falsificare è vincolante dal punto di vista legale (contratti etc.)

6 firma digitale - differenze deve sempre associare un utente a un documento - tramite una stringa digitale c è bisogno di un metodo che leghi la firma al documento ci vuole un algoritmo pubblico di verifica previene la falsificazione una copia di un documento digitale è uguale all originale bisogna evitare che una firma sia riutilizzabile schemi di firma Alice firma un messaggio da mandare a Bob ci sono due componenti: un algoritmo sig per firmare e un algoritmo ver per verificare quello per firmare dev essere privato (solo Alice può firmare) quello per verificare dev essere pubblico (Bob - e chiunque altro - può verificare che viene da Alice) per firmare il messaggio x Alice usa l alg sig k che dipende da una chiave privata k, e calcola sig k (x) = y data una coppia (x, y) dove x è il messaggio e y la firma, l algoritmo ver k (x, y) dà in output vero se y è una firma valida di x, falso altrimenti

7 definizione formale Uno schema di firma è una 5-pla (P, A, K, S, V) dove 1 P è un insieme finito di possibili messaggi 2 A è un insieme finito di possibili firme 3 K, lo spazio delle chiavi, è un insieme finito di possibili chiavi 4 k K c è un algoritmo di firma sig k S e un corrispondente algoritmo di verifica ver k V. 5 sig k : P A e ver k : P A {V, F } sono funzioni tali che x P e y A vale ver k (x, y) = { V se y = sigk (x), F se y sig k (x) procedura di firma usando un PKCS l algoritmo per firmare sig k dev essere privato (solo Alice può firmare) l algoritmo per verificare ver k dev essere pubblico (Bob - e chiunque altro - può verificare che viene da Alice) idea: usare un CS a chiave pubblica (deterministico) Alice ha la chiave k A, e ka è pubblica e d ka è privata Alice firma il messaggio x ponendo sig ka (x) = y = d ka (x) (è l unica che può decifrare) invia la coppia (x, y) Bob (e chiunque altro) calcola e ka (y) se x = e ka (y), allora ver ka (x, y) = V

8 schema di firma RSA Sia N = pq, p, q primi. Sia P = A = Z N. Lo spazio delle chiavi è K = {(N, p, q, d, e) ed 1 (mod φ(n))}. N e e sono la chiave pubblica, p, q, d sono la chiave privata Se k = (N, p, q, d, e) è una chiave, poniamo sig k (x) x d (mod N) ver k (x, y) = V x y e (mod N) esempio la chiave RSA di Alice è k A = (N A, p A, q A, d A, e A ) = (2773, 47, 59, 17, 157), φ(n A ) = 2668 Alice vuole firmare e trasmettere il messaggio x = 920 usa la chiave privata d A = 17 e calcola sig ka (920) = (mod 2773) la coppia (messaggio, firma) è quindi (920, 948) Bob riceve (x, y) = (920, 948) verifica la firma usando la chiave pubblica di Alice e A = (mod 2773) ver ka (920, 948) = V

9 combinare firma e cifratura Alice ha il messaggio x da inviare a Bob firma e ottiene y = sig ka (x) cifra (x, y) usando e kb ottiene z = e kb (x, y) Alice invia a Bob il testo cifrato z Bob decifra usando la d kb e riottiene (x, y) poi usa l algoritmo di verifica ver ka per controllare se ver ka (x, y) = V esempio con lo schema RSA la chiave di Alice è k A = (N A, p A, q A, d A, e A ) = (2773, 47, 59, 17, 157), φ(n A ) = 2668 la chiave di Bob è k B = (N B, p B, q B, d B, e B ) = (1073, 29, 37, 25, 121), φ(n B ) = 1008 Alice vuole firmare e trasmettere il messaggio x = 920 usa la chiave privata d A = 17 e firma sig ka (920) = 948 la coppia (messaggio, firma) è quindi (920, 948) cifra con la chiave pubblica di Bob e B = 121 il testo cifrato è z = ( , ) = (246, 23) (mod 1073) Bob riceve z = (246, 23) decifra usando la sua chiave privata d B = 25 ritrova (x, y) = (246 25, ) = (920, 948) verifica la firma usando la chiave pubblica di Alice e A = (mod 2773) ver ka (920, 948) = V

logaritmo discreto come funzione unidirezionale

logaritmo discreto come funzione unidirezionale logaritmo discreto come funzione unidirezionale in generale, lavoreremo con il gruppo U(Z p ) = Z p dati g generatore di Z p e x tale che 1 x p 1, calcolare y = g x è computazionalmente facile (y g x (mod

Dettagli

sia G un gruppo ciclico di ordine n, sia g un generatore di G bisogna determinare l unico intero x con 1 x n 1 tale che g x = y

sia G un gruppo ciclico di ordine n, sia g un generatore di G bisogna determinare l unico intero x con 1 x n 1 tale che g x = y gruppi ciclici Definizione Un gruppo G con n elementi tale esiste un elemento g G con o(g) = n si dice ciclico, e g si dice un generatore del gruppo U(Z 9 ) è ciclico p. es. U(Z 8 ) non lo è i gruppi U(Z

Dettagli

problema del logaritmo discreto

problema del logaritmo discreto problema del logaritmo discreto consideriamo il gruppo ciclico U(Z p ), p primo sia g un elemento primitivo modulo p sia y {1,..., p 1} = U(Z p ) il minimo intero positivo x con g x = y si dice il logaritmo

Dettagli

da chi proviene un messaggio?

da chi proviene un messaggio? da chi proviene un messaggio? in un crittosistema simmetrico solo Alice e Bob conoscono la chiave se Bob riceve un messaggio di Alice e la decifratura del messaggio ha senso, il messaggio proviene certamente

Dettagli

sia G un gruppo ciclico di ordine n, sia g un generatore di G

sia G un gruppo ciclico di ordine n, sia g un generatore di G logaritmo discreto sia G un gruppo ciclico di ordine n, sia g un generatore di G dato y 1 G bisogna determinare l unico intero x con 1 x n 1 tale che g x = y ex: in U(Z 9 ) con g = 2, se y = 7 si ha x

Dettagli

da chi proviene un messaggio?

da chi proviene un messaggio? da chi proviene un messaggio? in un crittosistema simmetrico solo Alice e Bob conoscono la chiave se Bob riceve un messaggio di Alice e la decifratura del messaggio ha senso, il messaggio proviene certamente

Dettagli

(G, ) un gruppo moltiplicativo di ordine n l ordine di un elemento g G, o(g), è il minimo intero positivo m tale che g m = 1

(G, ) un gruppo moltiplicativo di ordine n l ordine di un elemento g G, o(g), è il minimo intero positivo m tale che g m = 1 ordine di un gruppo G un gruppo finito: ordine di G = o(g) = numero di elementi di G l insieme degli invertibili di Z n è un gruppo rispetto al prodotto si denota con U(Z n ) e ha ordine φ(n) esempio:

Dettagli

da chi proviene un messaggio?

da chi proviene un messaggio? da chi proviene un messaggio? in un crittosistema simmetrico solo Alice e Bob conoscono la chiave se Bob riceve un messaggio di Alice e la decifratura del messaggio ha senso, il messaggio proviene certamente

Dettagli

schema di firma definizione formale

schema di firma definizione formale schema di firma Alice firma un messaggio da mandare a Bob ci sono due componenti: un algoritmo sig per firmare e un algoritmo ver per verificare quello per firmare dev essere privato (solo Alice può firmare)

Dettagli

sia G un gruppo ciclico di ordine n, sia g un generatore di G bisogna determinare l unico intero x con 1 x n 1 tale che g x = y

sia G un gruppo ciclico di ordine n, sia g un generatore di G bisogna determinare l unico intero x con 1 x n 1 tale che g x = y gruppi ciclici Definizione Un gruppo G con n elementi tale esiste un elemento g G con o(g) = n si dice ciclico, e g si dice un generatore del gruppo U(Z 9 ) è ciclico p. es. U(Z 8 ) non lo è i gruppi U(Z

Dettagli

funzione φ di Eulero, o funzione toziente è definita sugli interi positivi φ(n) è il numero di interi positivi n che sono coprimi con n

funzione φ di Eulero, o funzione toziente è definita sugli interi positivi φ(n) è il numero di interi positivi n che sono coprimi con n ordine di un gruppo G un gruppo finito: ordine di G = o(g) = numero di elementi di G l insieme degli invertibili di Z n è un gruppo rispetto al prodotto (mod n) si denota con U(Z n ) e ha ordine φ(n) esempio:

Dettagli

da chi proviene un messaggio?

da chi proviene un messaggio? da chi proviene un messaggio? in un crittosistema simmetrico solo Alice e Bob conoscono la chiave se Bob riceve un messaggio di Alice e la decifratura del messaggio ha senso, il messaggio proviene certamente

Dettagli

funzione φ di Eulero, o funzione toziente è definita sugli interi positivi φ(n) è il numero di interi positivi n che sono coprimi con n

funzione φ di Eulero, o funzione toziente è definita sugli interi positivi φ(n) è il numero di interi positivi n che sono coprimi con n ordine di un gruppo G un gruppo finito: ordine di G = o(g) = numero di elementi di G l insieme degli invertibili di Z n è un gruppo rispetto al prodotto (mod n) si denota con U(Z n ) e ha ordine φ(n) esempio:

Dettagli

una possibile funzione unidirezionale

una possibile funzione unidirezionale una possibile funzione unidirezionale moltiplicare due interi a n bit è facile (in O(n 2 ) con l algoritmo usuale) trovare un primo a n bit, e verificare che è primo, è facile fattorizzare un numero a

Dettagli

si cerca di scegliere e non troppo grande e tale che nella scrittura binaria di e ci siano pochi 1 e piccolo = cifratura più veloce

si cerca di scegliere e non troppo grande e tale che nella scrittura binaria di e ci siano pochi 1 e piccolo = cifratura più veloce crittosistema RSA Sia N = pq, p, q primi. Sia P = C = Z N. Lo spazio delle chiavi è K = {(N, p, q, d, e) de 1 (mod φ(n))}. Se k = (N, p, q, d, e) è una chiave, poniamo e k (x) = x e (mod N) N e e sono

Dettagli

una possibile funzione unidirezionale

una possibile funzione unidirezionale una possibile funzione unidirezionale moltiplicare due interi a n bit è facile (in O(n 2 ) con l algoritmo usuale) trovare un primo a n bit, e verificare che è primo, è facile (vedremo poi) fattorizzare

Dettagli

una possibile funzione unidirezionale

una possibile funzione unidirezionale una possibile funzione unidirezionale moltiplicare due interi a n bit è facile (in O(n 2 ) con l algoritmo usuale) trovare un primo a n bit, e verificare che è primo, è facile (vedremo poi) fattorizzare

Dettagli

idea della crittografia a chiave pubblica

idea della crittografia a chiave pubblica idea della crittografia a chiave pubblica sviluppare un crittosistema in cui data la funzione di cifratura e k sia computazionalmente difficile determinare d k Bob rende pubblica la sua funzione di cifratura

Dettagli

una possibile funzione unidirezionale

una possibile funzione unidirezionale una possibile funzione unidirezionale moltiplicare due interi a n bit è facile (in O(n 2 ) con l algoritmo usuale) trovare un primo a n bit, e verificare che è primo, è facile fattorizzare un numero a

Dettagli

crittografia a chiave pubblica

crittografia a chiave pubblica crittografia a chiave pubblica Whitfield Diffie Martin Hellman New Directions in Cryptography We stand today on the brink of a revolution in cryptography. The development of cheap digital hardware... has

Dettagli

idea della crittografia a chiave pubblica

idea della crittografia a chiave pubblica idea della crittografia a chiave pubblica sviluppare un crittosistema in cui data la funzione di cifratura e k sia computazionalmente difficile determinare d k Bob rende pubblica la sua funzione di cifratura

Dettagli

idea della crittografia a chiave pubblica

idea della crittografia a chiave pubblica idea della crittografia a chiave pubblica sviluppare un crittosistema in cui data la funzione di cifratura e k sia computazionalmente difficile determinare d k Bob rende pubblica la sua funzione di cifratura

Dettagli

Crittografia simmetrica (a chiave condivisa)

Crittografia simmetrica (a chiave condivisa) Crittografia simmetrica (a chiave condivisa) Crittografia simmetrica (a chiave condivisa) Schema di trasmissione con chiave condivisa: Crittografia simmetrica (a chiave condivisa) Schema di trasmissione

Dettagli

una possibile funzione unidirezionale

una possibile funzione unidirezionale una possibile funzione unidirezionale moltiplicare due interi a n bit è facile (in O(n 2 ) con l algoritmo usuale) trovare un primo a n bit, e verificare che è primo, è facile (vedremo poi) fattorizzare

Dettagli

crittografia a chiave pubblica

crittografia a chiave pubblica crittografia a chiave pubblica Whitfield Diffie Martin Hellman New Directions in Cryptography We stand today on the brink of a revolution in cryptography. The development of cheap digital hardware... has

Dettagli

crittografia a chiave pubblica

crittografia a chiave pubblica crittografia a chiave pubblica Whitfield Diffie Martin Hellman New Directions in Cryptography We stand today on the brink of a revolution in cryptography. The development of cheap digital hardware... has

Dettagli

una possibile funzione unidirezionale

una possibile funzione unidirezionale una possibile funzione unidirezionale moltiplicare due interi a n bit è facile (in O(n 2 ) con l algoritmo usuale) trovare un primo a n bit, e verificare che è primo, è facile fattorizzare un numero a

Dettagli

crittografia a chiave pubblica

crittografia a chiave pubblica crittografia a chiave pubblica Whitfield Diffie Martin Hellman New Directions in Cryptography We stand today on the brink of a revolution in cryptography. The development of cheap digital hardware... has

Dettagli

Elementi di Algebra e di Matematica Discreta Cenno alla crittografia

Elementi di Algebra e di Matematica Discreta Cenno alla crittografia Elementi di Algebra e di Matematica Discreta Cenno alla crittografia Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica Discreta 1 / 12 index Cifrare

Dettagli

Introduzione alla crittografia. Diffie-Hellman e RSA

Introduzione alla crittografia. Diffie-Hellman e RSA Introduzione alla crittografia. Diffie-Hellman e RSA Daniele Giovannini Torino 2011, Crittografia a chiave pubblica: oltre RSA Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia

Dettagli

RSA e firma digitale

RSA e firma digitale Università degli Studi di Cagliari Corso di Laurea in Matematica RSA e firma digitale Mara Manca Relatore: prof. Andrea Loi Anno Accademico 2015-2016 Mara Manca Relatore: prof. Andrea Loi RSA e firma digitale

Dettagli

Elementi di Algebra e di Matematica Discreta Cenno di un applicazione alla crittografia

Elementi di Algebra e di Matematica Discreta Cenno di un applicazione alla crittografia Elementi di Algebra e di Matematica Discreta Cenno di un applicazione alla crittografia Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra e di Matematica Discreta

Dettagli

NUMERI PRIMI E CRITTOGRAFIA

NUMERI PRIMI E CRITTOGRAFIA NUMERI PRIMI E CRITTOGRAFIA Parte I. Crittografia a chiave simmetrica dall antichità all era del computer Parte II. Note della Teoria dei Numeri concetti ed algoritmi a supporto della Crittografia Parte

Dettagli

Crittografia. Crittosistemi a Chiave Pubblica. Corso di Laurea Specialistica. in Informatica

Crittografia. Crittosistemi a Chiave Pubblica. Corso di Laurea Specialistica. in Informatica Crittografia Corso di Laurea Specialistica in Informatica Crittosistemi a Chiave Pubblica Alberto Leporati Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano Bicocca

Dettagli

Crittografia per la sicurezza dei dati

Crittografia per la sicurezza dei dati Crittografia per la sicurezza dei dati Esigenza di sicurezza in rete significa: -garanzia di riservatezza dei dati in rete (e-mail) -garanzia di transazioni sicure (e-commerce, home banking) La crittografia

Dettagli

A cosa serve la crittografia? La crittografia serve ad aiutare due utenti, Alice e Bob, a comunicare in modo sicuro...

A cosa serve la crittografia? La crittografia serve ad aiutare due utenti, Alice e Bob, a comunicare in modo sicuro... Crittografia A cosa serve la crittografia? La crittografia serve ad aiutare due utenti, Alice e Bob, a comunicare in modo sicuro... Mister X...anche in presenza di Mister X, un avversario che ascolta la

Dettagli

Privacy e firma digitale

Privacy e firma digitale WORKSHOP Connessione in rete: sicurezza informatica e riservatezza Privacy e firma digitale C. Giustozzi Privacy e firma digitale Corrado Giustozzi (c.giustozzi@iet.it) 1 Le comunicazioni elettroniche

Dettagli

Elementi di crittografia

Elementi di crittografia Elementi di crittografia Francesca Merola a.a. 2010-11 informazioni orario: ma, (me), gio, 14-15.30, aula N1 ricevimento: su appuntamento ma, me, gio, 11.30-12.30 studio 300 dipartimento di matematica

Dettagli

Pr(x y) = Pr(x) si può riformulare questa definizione in termini di indistinguibilità x 0, x 1 P e y C, scelta in modo casuale una chiave k K

Pr(x y) = Pr(x) si può riformulare questa definizione in termini di indistinguibilità x 0, x 1 P e y C, scelta in modo casuale una chiave k K segretezza perfetta un crittosistema CS=(P, C, K, E, D) è a segretezza perfetta se x P e y C Pr(x y) = Pr(x) si può riformulare questa definizione in termini di indistinguibilità x 0, x 1 P e y C, scelta

Dettagli

Corso di Crittografia Prof. Dario Catalano. Primitive Asimmetriche

Corso di Crittografia Prof. Dario Catalano. Primitive Asimmetriche Corso di Crittografia Prof. Dario Catalano Primitive Asimmetriche Introduzione n Oggi discuteremo le primitive sulla base delle quali costruire sistemi asimmetrici affidabili. n Nel caso della crittografia

Dettagli

Sicurezza della comunicazione tra due entità. Prof.ssa Gaia Maselli

Sicurezza della comunicazione tra due entità. Prof.ssa Gaia Maselli Sicurezza della comunicazione tra due entità Prof.ssa Gaia Maselli maselli@di.uniroma1.it La sicurezza nelle reti Principi di crittografia Integrità dei messaggi Autenticazione end-to-end 2 Sicurezza nella

Dettagli

Cifrario di Rabin. Chiara Gasparri

Cifrario di Rabin. Chiara Gasparri Cifrario di Rabin Chiara Gasparri Simbolo di Legendre Sia p un numero primo dispari, definiamo il Simbolo di Legendre come 0 se p divide a a = 1 se a è un quadrato di Z p 1 se a non è quadrato Z p p Proprietà

Dettagli

Cifratura Asimmetrica

Cifratura Asimmetrica Cifratura Asimmetrica 0 Cifrari a chiave pubblica Algoritmo di Cifratura E() c = E(k 1, m) la cifratura del messaggio in chiaro m con la chiave k 1 produce il testo cifrato c Algoritmo di Decifratura D()

Dettagli

CRITTOGRAFIA 2014/15 Appello del 13 gennaio Nome: Cognome: Matricola:

CRITTOGRAFIA 2014/15 Appello del 13 gennaio Nome: Cognome: Matricola: CRITTOGRAFIA 2014/15 Appello del 13 gennaio 2015 Esercizio 1 Crittografia ellittica [9 punti] 1. Descrivere l algoritmo di Koblitz per trasformare un messaggio m, codificato come numero intero, in un punto

Dettagli

Progetto Lauree Scientifiche Crittografia V incontro

Progetto Lauree Scientifiche Crittografia V incontro Progetto Lauree Scientifiche Crittografia V incontro Giovanna Carnovale 13 marzo 2006 Sommario Durante questo incontro analizzeremo la sicurezza del sistema crittografico RSA e parleremo di come trasformare

Dettagli

maggiore velocità per cifratura/decifratura l uso di chiavi più corte comporta: memorizzazione efficiente Alberto Leporati Corso di Crittografia 2

maggiore velocità per cifratura/decifratura l uso di chiavi più corte comporta: memorizzazione efficiente Alberto Leporati Corso di Crittografia 2 Crittografia Corso di Laurea Specialistica in Informatica Crittosistemi basati sulle Curve Ellittiche Alberto Leporati Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di

Dettagli

Cifrari asimmetrici. Cifratura. Cifratura. Crittosistema ElGamal. file pubblico utente chiave pubblica. Alice. file pubblico utente chiave pubblica

Cifrari asimmetrici. Cifratura. Cifratura. Crittosistema ElGamal. file pubblico utente chiave pubblica. Alice. file pubblico utente chiave pubblica Crittosistema ElGamal lfredo De Santis Dipartimento di Informatica ed pplicazioni Università di Salerno Marzo 2012 ads@dia.unisa.it http://www.dia.unisa.it/professori/ads Cifrari asimmetrici kpriv kpub

Dettagli

L one-time pad o cifrario di Vernam (1917) è il crittosistema tale che P = C = K = (Z 2 ) m. è un crittosistema a segretezza perfetta

L one-time pad o cifrario di Vernam (1917) è il crittosistema tale che P = C = K = (Z 2 ) m. è un crittosistema a segretezza perfetta one-time pad L one-time pad o cifrario di Vernam (1917) è il crittosistema tale che P = C = K = (Z 2 ) m se k = (k 1, k 2,..., k m ) si ha e k (x 1, x 2,..., x m ) = (x 1 + k 1, x 2 + k 2,..., x m + k

Dettagli

Seminario sulla Crittografia. Corso: T.A.R.I Prof.: Giulio Concas Autore: Ivana Turnu

Seminario sulla Crittografia. Corso: T.A.R.I Prof.: Giulio Concas Autore: Ivana Turnu Seminario sulla Crittografia Corso: T.A.R.I Prof.: Giulio Concas Autore: Ivana Turnu Crittografia Cos è la crittografia Le tecniche più usate La firma digitale Cos è la crittografia Per garantire la riservatezza

Dettagli

Crittografia. Corso di Laurea Specialistica. in Informatica. Crittosistemi basati sulle Curve. Ellittiche

Crittografia. Corso di Laurea Specialistica. in Informatica. Crittosistemi basati sulle Curve. Ellittiche Crittografia Corso di Laurea Specialistica in Informatica Crittosistemi basati sulle Curve Ellittiche Alberto Leporati Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di

Dettagli

Crittografia Asimmetrica

Crittografia Asimmetrica Sicurezza nei Sistemi Informativi Crittografia Asimmetrica Ing. Orazio Tomarchio Orazio.Tomarchio@diit.unict.it Dipartimento di Ingegneria Informatica e delle Telecomunicazioni Università di Catania Crittografia

Dettagli

La crittografia moderna e la sua applicazione

La crittografia moderna e la sua applicazione La crittografia moderna e la sua applicazione Corso FSE per la GdF Crittosistemi basati sulle Curve Ellittiche Alberto Leporati Dipartimento di Informatica, Sistemistica e Comunicazione Università degli

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica Università di Salerno bmasucci@unisa.it http://www.di.unisa.it/professori/masucci Cifrari simmetrici canale insicuro Bob 1 Distribuzione

Dettagli

Corso di Crittografia

Corso di Crittografia Corso di Crittografia Prova in Itinere del 21 Giugno 2013 1. Si definisca formalmente il concetto di indistinguibilità ind-id-cpa per cifrari basati sull identità. 2. Si consideri il seguente problema

Dettagli

Il Ricevente comunica pubblicamente una chiave e. Il Mittente codifica il messaggio usando la funzione f(m, e) = C e

Il Ricevente comunica pubblicamente una chiave e. Il Mittente codifica il messaggio usando la funzione f(m, e) = C e Crittografia a chiave pubblica. Il problema della crittografia è semplice da enunciare: vi sono due persone, il Mittente e il Ricevente, che vogliono comunicare fra loro senza che nessun altro possa leggere

Dettagli

Lauree scientifiche Crittografia. RSA CRT

Lauree scientifiche Crittografia. RSA CRT Lauree scientifiche Crittografia. RSA CRT Emanuele Cesena emanuele.cesena @ gmail.com Sommario RSA Complessità RSA CRT Crittoanalisi di RSA CRT RSA in pillole Chiave pubblica: intero n = p q di 1024 bit,

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica Università di Salerno bmasucci@unisa.it http://www.di.unisa.it/professori/masucci Costruzioni Vedremo alcune costruzioni basate

Dettagli

Crittografia con Python

Crittografia con Python Crittografia con Python Corso introduttivo Marzo 2015 Con materiale adattato dal libro Hacking Secret Cypher With Python di Al Sweigart (http://inventwithpython.com/hacking/index.html) Ci eravamo lasciati

Dettagli

Corso di Sicurezza nelle reti a.a. 2009/2010. Raccolta di alcuni quesiti del corso da 5CFU e prima parte del corso da 9CFU

Corso di Sicurezza nelle reti a.a. 2009/2010. Raccolta di alcuni quesiti del corso da 5CFU e prima parte del corso da 9CFU Università degli Studi di Parma - Facoltà di Ingegneria Corso di Sicurezza nelle reti a.a. 2009/2010 Raccolta di alcuni quesiti del corso da 5CFU e prima parte del corso da 9CFU 1) Si consideri un semplice

Dettagli

Corso di Crittografia Prof. Dario Catalano. Cifrari Asimmetrici (Terza Parte): RSA-OAEP e Cifrari basati sull identita

Corso di Crittografia Prof. Dario Catalano. Cifrari Asimmetrici (Terza Parte): RSA-OAEP e Cifrari basati sull identita Corso di Crittografia Prof. Dario Catalano Cifrari Asimmetrici (Terza Parte): RSA-OAEP e Cifrari basati sull identita Cifrari sicuri contro attacchi attivi Fino ad oggi abbiamo visto cifrari sicuri contro

Dettagli

Corso di Crittografia Prof. Dario Catalano. Introduzione alla crittografia asimmetrica

Corso di Crittografia Prof. Dario Catalano. Introduzione alla crittografia asimmetrica Corso di Crittografia Prof. Dario Catalano Introduzione alla crittografia asimmetrica Introduzione n La crittografia simmetrica parte dal presupposto che Alice e Bob condividano una chiave segreta. n In

Dettagli

Crittografia Moderna

Crittografia Moderna Crittografia Moderna L'algoritmo DH (Diffie Hellman) L'algoritmo Diffie Hellman risale al 1976 ed è quindi uno dei più antichi algoritmi a chiave pubblica; gli autori furono anche i primi a proporre l'idea

Dettagli

ITC Mossotti - Novara. Verica di Informatica. Nome e Cognome:... 1) Nella cifratura convenzionale. 2) Nella crittograa a chiave pubblica

ITC Mossotti - Novara. Verica di Informatica. Nome e Cognome:... 1) Nella cifratura convenzionale. 2) Nella crittograa a chiave pubblica ITC Mossotti - Novara II Segmento - progetto POLIS Verica di Informatica Nome e Cognome:... Data e Ora:... 1) Nella cifratura convenzionale uso la chiave privata per cifrare l'impronta del messaggio uso

Dettagli

CODICI SEGRETI: UN VIAGGIO NELLA CRITTOGRAFIA

CODICI SEGRETI: UN VIAGGIO NELLA CRITTOGRAFIA CODICI SEGRETI: UN VIAGGIO NELLA CRITTOGRAFIA Agostino Dovier Dip di Scienze Matematiche, Informatiche e Fisiche CLP Lab Univ. di Udine Aprile/Maggio 2017 AGOSTINO DOVIER (UNIV. DI UDINE) CODICI SEGRETI

Dettagli

Altre alternative a RSA interessanti e praticabili

Altre alternative a RSA interessanti e praticabili Altre alternative a RSA interessanti e praticabili Prof. Massimiliano Sala MINICORSI 2011. Crittografia a chiave pubblica: oltre RSA Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia

Dettagli

RSA: Calcolo della chiave privata

RSA: Calcolo della chiave privata . RSA: Calcolo della chiave privata 1 1. Come si cifra e come si decifra Sappiamo che RSA cifra dei numeri. Ad esempio prende il numero n e mediante il modulo di una potenza lo trasforma in c. c = n e

Dettagli

crittosistema: definizione

crittosistema: definizione crittosistema: definizione Definizione Un crittosistema è una quintupla (P, C, K, E, D), dove 1 P è un insieme finito di testi in chiaro (plaintext) 2 C è un insieme finito di testi cifrati (ciphertext)

Dettagli

Firme digitali. Firma Digitale. Firma Digitale. Firma Digitale. Equivalente alla firma convenzionale. Equivalente alla firma convenzionale

Firme digitali. Firma Digitale. Firma Digitale. Firma Digitale. Equivalente alla firma convenzionale. Equivalente alla firma convenzionale irme digitali irma Digitale Barbara asucci Dipartimento di Informatica ed Applicazioni Università di Salerno firma Equivalente alla firma convenzionale masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci

Dettagli

Reti di Calcolatori. Crittografia & Java Cryptographic Architecture (JCA) A.A. 2010/2011 Reti di Calcolatori 1 (Es. 6)

Reti di Calcolatori. Crittografia & Java Cryptographic Architecture (JCA) A.A. 2010/2011 Reti di Calcolatori 1 (Es. 6) Crittografia & Java Cryptographic Architecture (JCA) 1 (Es. 6) La crittografia La crittografia è un particolare processo grazie al quale, per mezzo di sofisticati algoritmi, è possibile trasformare una

Dettagli

CRITTOGRAFIA E NUMERI PRIMI TFA A059 ANNA NOBILI OTTAVIANO ROSI

CRITTOGRAFIA E NUMERI PRIMI TFA A059 ANNA NOBILI OTTAVIANO ROSI CRITTOGRAFIA E NUMERI PRIMI TFA A059 ANNA NOBILI OTTAVIANO ROSI Cenni Storici Nasce dall esigenza di avere metodi efficienti per comunicare in modo segreto e sicuro. La crittografia non mira a nascondere

Dettagli

Protocollo E-cash ed algoritmo RSA. Carlo Manasse Giulio Baldantoni. Corso di laurea in Informatica. May 10, 2012

Protocollo E-cash ed algoritmo RSA. Carlo Manasse Giulio Baldantoni. Corso di laurea in Informatica. May 10, 2012 Corso di laurea in Informatica May 10, 2012 Introduzione RSA è un algoritmo di crittografia asimmetrica. Fu introdotto nel 1978 da Rivest Ronald Shamir Adi Adleman Leonard Ancora oggi è uno degli algoritmi

Dettagli

Identificazione, Autenticazione e Firma Digitale. Firma digitale...

Identificazione, Autenticazione e Firma Digitale. Firma digitale... Identificazione, Autenticazione e Firma Digitale In origine crittografia = confidenzialità Diffusione delle reti: nuove funzionalità. Identificazione Autenticazione Firma digitale Identificazione: un sistema

Dettagli

Gestione della chiave

Gestione della chiave Gestione della chiave La crittografia a chiave pubblica aiuta a risolvere il problema della distribuzione delle chiavi Dobbiamo occuparci... Della distribuzione delle chiavi pubbliche Dell uso della crittografia

Dettagli

Corso di Crittografia Prof. Dario Catalano. Firme Digitali

Corso di Crittografia Prof. Dario Catalano. Firme Digitali Corso di Crittografia Prof. Dario Catalano Firme Digitali Introduzione n Una firma digitale e l equivalente informatico di una firma convenzionale. n Molto simile a MA, solo che qui abbiamo una struttura

Dettagli

Una curva ellittica è una curva definita da un equazione in due incognite del tipo:

Una curva ellittica è una curva definita da un equazione in due incognite del tipo: Lezione tenuta dal Prof. P. D Arco Presentazione di: Francesco Apicella Raffaele De Feo Ermanno Travaglino Una curva ellittica è una curva definita da un equazione in due incognite del tipo: y 2 = x 3

Dettagli

Curve Ellittiche in Crittografia

Curve Ellittiche in Crittografia UNIVERSITÀ DEGLI STUDI "ROMA TRE" Dipartimento di Matematica e Fisica Corso di Laurea Magistrale in Matematica Sintesi della Tesi di Laurea Magistrale Curve Ellittiche in Crittografia Candidata: Luciana

Dettagli

Corso di Sicurezza nelle reti a.a. 2010/2011. Soluzione dei quesiti sulla prima parte del corso

Corso di Sicurezza nelle reti a.a. 2010/2011. Soluzione dei quesiti sulla prima parte del corso Università degli Studi di Parma - Facoltà di Ingegneria Corso di Sicurezza nelle reti a.a. 2010/2011 Soluzione dei quesiti sulla prima parte del corso 1) Si consideri un semplice cifrario a sostituzione

Dettagli

Sicurezza e Crittografia

Sicurezza e Crittografia Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Ringraziamenti Prof. Gabriele D'Angelo, Università di Bologna https://www.unibo.it/sitoweb/g.dangelo/

Dettagli

Sol. (a) Abbiamo p 1 = 78 = Usiamo il criterio dell esercizio 1. Calcolando

Sol. (a) Abbiamo p 1 = 78 = Usiamo il criterio dell esercizio 1. Calcolando Teoria Elementare dei Numeri. Soluzioni Esercizi 6. Il gruppo Z p, radici primitive, logaritmo discreto. 1. Sia p > 2 un numero primo e sia ḡ Z p. (a) Verificare che ḡ è una radice primitiva di Z p se

Dettagli

Introduzione alla Crittografia

Introduzione alla Crittografia Liceo Scientifico N. Tron, 6 febbraio 2006 Riassunto Dato n > 1, la funzione di Eulero ϕ(n) è il numero di elementi < n e coprimi con n. Riassunto Dato n > 1, la funzione di Eulero ϕ(n) è il numero di

Dettagli

IMPLEMENTAZIONI DIDATTICHE DI ALGORITMI DI CIFRATURA PER SICUREZZA INFORMATICA

IMPLEMENTAZIONI DIDATTICHE DI ALGORITMI DI CIFRATURA PER SICUREZZA INFORMATICA UNIVERSITÀ DEGLI STUDI DI UDINE DIPARTIMENTO DI INGEGNERIA ELETTRICA, GESTIONALE E MECCANICA CORSO DI LAUREA IN INGEGNERIA GESTIONALE IMPLEMENTAZIONI DIDATTICHE DI ALGORITMI DI CIFRATURA PER SICUREZZA

Dettagli

DIARIO DEL CORSO DI TEORIA DEI NUMERI E CRITTOGRAFIA. (41 ore complessive di lezione)

DIARIO DEL CORSO DI TEORIA DEI NUMERI E CRITTOGRAFIA. (41 ore complessive di lezione) DIARIO DEL CORSO DI TEORIA DEI NUMERI E CRITTOGRAFIA DOCENTE: SANDRO MATTAREI (41 ore complessive di lezione) Prima settimana. Lezione di martedí 22 febbraio 2011 (due ore) Rappresentazione di numeri interi

Dettagli

Crittografia e firma digitale. Prof. Giuseppe Chiumeo

Crittografia e firma digitale. Prof. Giuseppe Chiumeo Crittografia e firma digitale Prof. Giuseppe Chiumeo giuseppe.chiumeo@libero.it INTRODUZIONE Lo sviluppo dell e-business oggi ha bisogno di garanzie per quanto riguarda l inviolabilità dei dati trasmessi.

Dettagli

Esercitazione per la prova scritta

Esercitazione per la prova scritta Esercitazione per la prova scritta x 2 Esercizio 1 x n k in ECB/CBC/CFB/OFB Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci

Dettagli

una possibile funzione unidirezionale

una possibile funzione unidirezionale una possibile funzione unidirezionale moltiplicare due interi a n bit è facile (in O(n 2 ) con l algoritmo usuale) trovare un primo a n bit, e verificare che è primo, è facile (vedremo poi) fattorizzare

Dettagli

Crittografia ed Aritmetica Modulare VI incontro

Crittografia ed Aritmetica Modulare VI incontro Crittografia ed Aritmetica Modulare VI incontro PLS - CAM Padova, 21 novembre 2014 1 Il Piccolo Teorema di Fermat Come si è osservato nella ATTIVITÀ 1.2. del IV incontro, in generale il comportamento delle

Dettagli

Sicurezza nelle reti: protezione della comunicazione

Sicurezza nelle reti: protezione della comunicazione Sicurezza nelle reti: protezione della comunicazione Gaia Maselli maselli@di.uniroma1.it Queste slide sono un adattamento delle slide fornite dal libro di testo e pertanto protette da copyright. All material

Dettagli

Il Codice di Cesare. c = dxjxul gl exrq fgpsohdqqr k = 3 m = auguri di buon compleanno

Il Codice di Cesare. c = dxjxul gl exrq fgpsohdqqr k = 3 m = auguri di buon compleanno La Crittografia Il problema fondamentale della crittografia è quello di trasmettere riservato in forma cifrata o, dal punto di vista duale, quello di intercettare e decrittare un messaggio cifrato. T m

Dettagli

Firme digitali. Firma Digitale. Firma Digitale. Firma Digitale. Equivalente alla firma convenzionale. Equivalente alla firma convenzionale

Firme digitali. Firma Digitale. Firma Digitale. Firma Digitale. Equivalente alla firma convenzionale. Equivalente alla firma convenzionale irme digitali irma Digitale Barbara asucci Dipartimento di Informatica ed Applicazioni Università di Salerno firma Equivalente alla firma convenzionale masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci

Dettagli

Firma Digitale. Firma Digitale. Firma digitale. Firma digitale. Firma Digitale. Equivalente alla firma convenzionale

Firma Digitale. Firma Digitale. Firma digitale. Firma digitale. Firma Digitale. Equivalente alla firma convenzionale firma irma Digitale Equivalente alla firma convenzionale firma irma Digitale Equivalente alla firma convenzionale Soluzione naive: incollare firma digitalizzata irma Digitale 0 irma Digitale 1 Soluzione

Dettagli

maurizio pizzonia sicurezza dei sistemi informatici e delle reti. tecniche crittografiche e protocolli

maurizio pizzonia sicurezza dei sistemi informatici e delle reti. tecniche crittografiche e protocolli tecniche crittografiche e protocolli 1 obiettivi autenticazione one-way e mutua scambio di chiavi di sessione scambio dei dati integrità confidenzialità 2 autenticazione one-way con shared secret (s1)

Dettagli

RACCOLTA DI ALCUNI ESERCIZI TRATTI DA COMPITI D ESAME SUL SISTEMA CRITTOGRAFICO RSA

RACCOLTA DI ALCUNI ESERCIZI TRATTI DA COMPITI D ESAME SUL SISTEMA CRITTOGRAFICO RSA RACCOLTA DI ALCUNI ESERCIZI TRATTI DA COMPITI D ESAME SUL SISTEMA CRITTOGRAFICO RSA Attenzione: questi sono alcuni esercizi d esame, sugli argomenti di questa dispensa. Non sono una selezione di quelli

Dettagli

Crittografia avanzata Lezione del 14 Marzo 2011

Crittografia avanzata Lezione del 14 Marzo 2011 Crittografia avanzata Lezione del 14 Marzo 2011 Terminologia Modello standard L'attaccante non è limitato se non dalla capacità computazionale e dal tempo disponibili Terze parti fidate (Trent) Si assume

Dettagli

Agostino Dovier. Dip di Matematica e Informatica, Univ. di Udine

Agostino Dovier. Dip di Matematica e Informatica, Univ. di Udine DE Agostino Dovier Dip di Matematica e Informatica, Univ. di Udine Ringrazio l amico e maestro Andrea Sgarro per il materiale tratto dal suo meraviglioso quanto introvabile testo DE DIFFIE E HELLMAN DE

Dettagli

Funzioni Hash. Impronta Digitale. L impronta digitale viene utilizzata per

Funzioni Hash. Impronta Digitale. L impronta digitale viene utilizzata per Funzioni Hash Impronta Digitale Impronta digitale di un messaggio L impronta digitale deve essere facile da calcolare difficile da invertire unica L impronta digitale viene utilizzata per garantire l integrità

Dettagli