1.2 Equazioni del Comfort di Fanger

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1.2 Equazioni del Comfort di Fanger"

Transcript

1 1.2 Equazioni del Comfort di Fanger Per comfort termoigrometrico si intende la condizione per cui una persona non avverte sensazione di caldo o di freddo. Il comfort termoigrometrico non è l unico: si può individuare anche un comfort acustico, (situazione per cui il rumore o il suono non provocano fastidio) un comfort illuminotecnico (condizione per cui non si prova affaticamento della vista a causa della illuminazione troppo scarsa) e un comfort olfattivo (assenza di cattivi odori). Nel seguito ci si occuperà di comfort termoigrometrico, in quanto prove sperimentali hanno dimostrato che non vi è influenza di un tipo di comfort sull altro (non si può condizionare una stanza ed esempio dipingendone le pareti di azzurro, o riscaldarla dipingendole di rosso). Invece la temperatura e la umidità relativa giocano un ruolo congiuntamente a creare la sensazione di caldo o di freddo, per cui si parla di comfort termoigrometrico. Le grandezze che influenzano il confort termoigrometrico di un individuo in un determinato ambiente sono 6; di queste 4 sono ambientali e 2 individuali. Le 4 ambientali sono: 1. temperatura dell aria; 2. temperatura media radiante (crf seguito) 3. velocità dell aria 4. umidità relativa. Le 2 individuali sono: 1. livello di attività (metabolismo) 2. vestiario. La trattazione del comfort termico è stata effettuata per la prima volta da P.O. Fanger 1, il quale ha ottenuto le espressioni che vengono citate qui di seguito sia da considerazioni teoriche, sia attraverso un gran numero di prove sperimentali su persone di sesso, età, vestiario, attività differente, in ambienti climatizzati (sale climatiche) in cui era possibile variare le condizioni ambientali (temperatura, umidità, temperatura media radiante, velocità dell aria). Alle persone veniva chiesto di dare un giudizio sulla sensazione di caldo-freddo avvertita Sistema di termoregolazione del corpo umano Il corpo umano è un termostato a 37 C anche per notevoli variazioni di temperatura ambiente. Questa infatti è la temperatura a cui le reazioni biochimiche dell organismo risultano più efficienti. Come nei termostati utilizzati nei laboratori, per mantenere una temperatura costante è necessario che esista un sistema di regolazione in feed-back, che utilizza per la regolazione il segnale di determinati sensori. I sensori di temperatura sono soprattutto nella pelle ed in parte nei polmoni e nei muscoli. Esistono sensori di freddo e di caldo differenti, sensibili a variazioni temporali di 0.25 C/min per il freddo e di 0.06 C/min per il caldo. Oltre a mantenere la temperatura costante, l organismo umano si comporta come una macchina termica, in cui viene prodotta una determinata quantità di calore per combustione degli alimenti (metabolismo), viene effettuato un determinato lavoro e una certa quantità di calore viene ceduta all esterno. In qualsiasi condizione di temperatura esterna è sempre necessario che una determinata quantità di calore venga ceduta all esterno. Perché questo avvenga anche quando la temperatura esterna è superiore a quella interna, esiste il meccanismo della traspirazione e sudorazione. Il calore proveniente dal metabolismo in condizioni di riposo vale circa 1 W/kg di massa corporea. Con il freddo il metabolismo aumenta anche di tre volte e in tale condizione la vasocostrizione diminuisce il flusso di sangue dall interno verso la superficie del corpo per limitare il flusso termico verso l esterno che trovandosi a temperatura inferiore produrrebbe un raffreddamento eccessivo. In 1 P.O. Fanger, Thermal Comfort, McGraw-Hill /New, York),

2 conseguenza della vasocostrizione le estremità (mani e piedi) si raffreddano. Con il caldo avviene il fenomeno inverso, la vasodilatazione, e aumenta il trasporto di sangue dall interno verso la superficie (circa 10 volte il minimo). Come conseguenza c è poca differenza di temperatura tra interno ed esterno. Se la differenza di temperatura tra superficie corporea e esterno non è sufficiente a far smaltire il calore del metabolismo, quest ultimo viene diffuso nell ambiente per evaporazione del sudore. La temperatura interna del corpo può variare nel range C per variazioni di temperatura esterna tra 17 e 40 C. Durante il giorno la temperatura interna cambia di circa 1 C (ritmo circadiale), se si svolge attività fisica aumenta a causa del maggiore metabolismo. In ambiente caldo aumenta lo scambio per il flusso sanguigno e la temperatura interna sale sino a (42 43) C massimo. In ambiente freddo c è prima la vasocostrizione, poi il brivido (aumenta il lavoro meccanico e quindi il metabolismo e quindi il riscaldamento). A 33 C di temperatura interna finisce il brivido e inizia il coma da freddo. A 25 C interviene la morte per assideramento. In figura 1.8 viene riportata l andamento della temperatura per diversi organi del corpo umano, quella interna e quella media della superficie in funzione della temperatura esterna Bilancio termico del corpo umano Il bilancio termico complessivo dell organismo umano assume l espressione S = M ± W ± R ± C ± K E RES (1.2.1) dove i singoli termini sono descritti nel seguito: S: accumulo di calore M: metabolismo W: lavoro esterno R radiazione C : calore scambiato per convezione K conduzione E: calore perso per evaporazione RES: calore scambiato per respirazione. Tutti i termini sono espressi come flusso termico per unità di superficie corporea, in W/m 2. In condizioni stazionarie deve chiaramente essere S=0, perché l organismo non deve né assorbire né cedere calore in totale, altrimenti si riscalderebbe o raffredderebbe. Inoltre K, C e R non sono indipendenti tra di loro, ma si considera che tutto il calore prodotto venga ceduto per conduzione dalla pelle (superficie corporea) ai vestiti per conduzione (K cl, dove cl sta per cloths, vestiario), e quindi dai vestiti all ambiente per convezione e irraggiamento, per cui M ± W E RES = calore scambiato con l' esterno = K #$ $$ " $ $$! cl = C + R #"! calore prodotto all'int erno Esaminiamo ora i singoli termini del bilancio termico. calorescambiato dai vestiti (1.2.2) Metabolismo Il metabolismo rappresenta la quantità di calore prodotta dall organismo per ossidazione degli alimenti. In generale viaria nel range compreso tra i seguenti limiti: 45 W M 500 W m 2 15 m 2

3 Fig

4 Fig. 1.9 Il metabolismo di una persona seduta a riposo è di circa 58 W/m 2 Tale quantità viene assunta come unità di misura del metabolismo, e viene denominata Met. Per la precisione essa vale 58,15 W/m 2. Dall intervallo sopra indicato precedentemente risulta 0.8 Met M 9 Met In figura 1.9 è riportata un serie di metabolismi corrispondenti a determinate attività comunemente praticate Lavoro esterno L energia fornita dal metabolismo viene convertita in parte in lavoro ed in parte in calore (o maggiore afflusso di sangue ai muscoli, etc.). In realtà il corpo umano è una macchina termica in cui il rendimento massimo che si riesce a raggiungere vale il 20% (per atleti ben allenati). Di conseguenza per 10 W/m 2 di lavoro prodotto almeno 40 vengono ceduti all esterno o dispersi per sudorazione per evitare l aumento di temperatura interna. Il lavoro può avere segno sia positivo che negativo. E negativo per esempio quando si frena in discesa o quando si abbassano dei pesi da uno 17

5 scaffale (trasformazione di energia potenziale in calore che deve esser smaltito verso l esterno in aggiunta in questo caso al metabolismo). A causa della difficoltà di valutazione di questo termine viene in genere inglobato nel metabolismo, e indicato con M ± W Calore perso per evaporazione E il calore latente ceduto all ambiente dall evaporazione dell acqua contenuta nella pelle, o più precisamente nelle cellule e nei capillari sottocutanei. Vi sono due meccanismi per cui l acqua contenuta all interno dell organismo evapora dalla pelle, e cioè la traspirazione E d (diffusione del vapore attraverso la pelle) e l evaporazione del sudore E sw (sw sta per sweat, sudore) Il primo dei due termini vale 3 W E d = ( ps pa ) 2 (1.2.3) m dove = λ µ, essendo λ il calore latente di evaporazione dell acqua, in J/kg, e µ la permeabilità della pelle, in kg/(s m 2 Pa), che corrisponde alla portata massica di vapore che attraversa la pelle per unità di superficie e unità di differenza di pressione parziale di vapore tra pelle e ambiente; p a è la pressione di vapore esistente nell ambiente, e p s la pressione di saturazione del vapor d acqua alla temperatura della pelle, che nell intervallo in cui si usano queste relazioni può essere approssimata con una funzione lineare della temperatura p s = 256 t s 3373 [Pa], (1.2.4) Sostituendo quindi: 3 Ed = (256 ts 3373 pa ).(1.2.5) E d è una funzione costante dell organismo, e non dipende dal sistema di termoregolazione ma solo dalle condizioni esterne, vale circa 10 W/m 2. Il calore perso per sudorazione E su, è un meccanismo molto efficace per mantenere la temperatura costante, in particolare in ambiente caldo o con metabolismo elevato. Il flusso termico corrispondente varia tra 0 a 400 W/m 2. La capacità di sudare è individuale: arriva al massimo a 1 litro per ora, per un massimo di 3.5 litri. Il calcolo termico relativo è molto complicato e non ancora ben compreso. Ad esempio quando il sudore scende a gocce, si verifica una perdita di liquido senza corrispondente calore latente. L efficienza del meccanismo di termoregolazione effettuato dalla sudorazione è evidente nell esempio della sauna: in una sauna anche a C si riesce a resistere senza troppi problemi, a causa del calore latente disperso nell ambiente per effetto dell evaporazione del sudore. Tuttavia è sufficiente che venga gettata dell acqua sulle piastre scaldanti, e che quindi aumenti l umidità relativa, perché l evaporazione del sudore sia ostacolata, e la sensazione di caldo risulta fortemente aumentata. Addirittura la vampata di vapore prodotta che arriva sulla pelle viene avvertita come una fiammata. A causa della difficoltà di analizzare teoricamente il fenomeno, come detto, si utilizza per trattare la sudorazione una delle due equazioni empiriche ottenute da Fanger stesso (cfr ) ottenuta in condizione di comfort: 2 [ W/m ] E sw = 0.42 ( M W 58.15) (1.2.6) L andamento corrispondente è riportato in Fig Dalla relazione sopra scritta appare evidente come non si ha sudorazione per attività sedentaria (Met=1) se ci si trova in condizioni di comfort. 18

6 Fig Calore perso per respirazione Anche il calore perso per respirazione è dovuto a due componenti: la prima alla differenza di temperatura tra l aria espirata e quella ambiente, la seconda alla differenza di umidità relativa. 1. Per la temperatura: W L = 0,014 M (34 ta ) 2 (1.2.7) m dove si è assunta una temperatura dell aria espirata di 34 C, M rappresenta la quantità di calore prodotta per metabolismo e t a la temperatura dell aria dell ambiente. Il coefficiente 0,014 tiene conto del flusso termico trasportato dall aria espirata, dalla formula Q! = mc! pδt con c p =1,0 kj/kg K e m! =1, M. Ad esempio per un persona che corre a 7 Met, questo termine vale circa 25 W/m Per la differenza di contenuto d acqua tra aria espirata e inspirata 5 W E res = M (5867 pa ) 2 (1.2.8) m dove p a è pressione di vapore alla temperatura dell aria ambiente. Per lo stesso esempio di cui sopra (persona che corre a 7Met) questo termine vale circa 36 W/m 2. Generalmente questi due termini si trascurano per le normali attività sedentarie Scambio termico per conduzione tra pelle e vestiti Questo termine viene espresso dalla solita relazione Q! = UAΔT, è vale pertanto: 1 Kcl = ( Ts Tcl ) (1.2.9) 0,155 I cl 19

7 Dove I cl rappresenta la resistenza termica dei vestiti in una unità particolare, definita allo scopo, e chiamata clo (da cloths). In fig è riportata una tabella con i valore della resistenza termica dei vestiti in clo per i principali abbigliamenti utilizzati. Si nota come i valori risultano compresi nell intervallo 0 I ce 4. Nel caso di grande attività l isolamento dei vestiti può diminuire per lo scambio di aria attraverso di essi. Fig Scambio termico per radiazione Rappresenta il flusso termico scambiato per radiazione tra la persona e le superfici che la circondano (pareti, finestre, pannelli radianti, sole, volta stellare, etc.). Si esprime mediante la relazione: dove: o f eff feff eff cl 4 4 [ T T r ] R = f f ε σ (1.2.10) 20 cl area radianteeffettiva del corpovestito = fattore di area radiante efficacie = ; area totale della superficiedel corpo vestito tiene conto che non tutta la superficie scambia per radiazione con l esterno ma anche con se stessa. Il valore di f eff è 0,695 per una persona seduta, e 0,725 per una persona in piedi.si assume in genere un valore medio rappresentativo di tutte le situazioni pari a f =0,71 eff o ε è l emissità della superficie corporea che irraggia nell ambiente; vale 1 per un corpo nudo (la pelle umana costituisce un ottimo corpo nero), e vale 0,95 per i vestiti (almeno

8 o nell infrarosso dove avvengono la quasi totalità degli scambi termici a temperatura ambiente negli spazi chiusi), pertanto si assume il valore medio 0,97; superficiecorpo vestito f cl è il fattore di area del vestiario, definito come f cl = ; è superficie del corpo nudo maggiore od uguale a 1 (il corpo vestito presenta superficie maggiore rispetto a quello nudo); o = 5,67 10 [ W/m K ] o σ è la costante di Stephan Boltzmann; T è la temperatura media dei vestiti cl o T r = Fp 1 T1 + Fp 2 T2 + + Fp n Tn (1.2.11) è la temperatura media radiante, definita come la temperatura di un ambiente isotermo che circonda la persona e che scambia con essa lo stesso flusso termico dell ambiente considerato. Tenuto conto che l ambiente che circonda la persona si comporta come un corpo nero essendo una cavità, dalla definizione di temperatura media radiante si ottiene direttamente l espressione sopra scritta. Si ricordi che per l irraggiamento, e quindi in tutte le espressioni di questo sottoparagrafo, la temperatura va espressa in Kelvin, non in gradi Celsius Considerando in definitiva le approssimazioni effettuate la relazione (1.2.10) diventa: W R = 3,95 10 fcl [ Tcl T r ] 2 (1.2.12) m Flusso termico scambiato per convezione Tale componente si può scrivere con la solita relazione W C = fcl hc ( Tcl Ta ) 2 (1.2.13) m dove hc è il coefficiente di scambio convettivo. A seconda del meccanismo di convezione, naturale o forzato, hc assume due differenti espressioni: 0,25 W hc = 2,38( Tcl Ta ), per la convezione naturale, cioè se 2 m K h = 12, 1 se la convezione è forzata. c u ar u ar < 0, Equazioni del comfort di Fanger Perché in un ambiente ci sia confort termico, innanzi tutto ci deve essere bilancio termico, quindi devono valere le equazioni (1.2.2). Si noti che la (1.2.2) è l insieme di due equazioni, corrispondenti ai due uguali. Utilizzando ora le espressioni dalla (1.2.3) sino alla (1.2.13), [tranne la (1.2.6)], si I, t a, r u., p a (e quindi può scrivere tutto in funzione delle seguenti nove variabili: M, cl l umidità relativa φ), T s, E sw T, a T cl. Si hanno cioè due equazioni in nove variabili, corrispondenti a un equazione in otto variabili. Per avere una equazione in sei variabili (le sei variabili del comfort sopra definite), occorre avere a disposizione ancora due equazioni. Si noti inoltre che le equazioni sino ad ora descritte (a parte la che è stata ottenuta empiricamente e specifica già E sw) sono di tipo teorico e valide quindi in un ampio campo di condizioni, non solo in condizioni di comfort. Le due equazioni rimanenti sono state ottenute da Fanger proprio attraverso prove sperimentali su persone, e sono relative espressamente a condizioni m s 21

9 di comfort, pertanto aggiunte alle equazioni precedenti rendono il sistema di equazioni complessivo un sistema relativo al comfort termoigrometrico. Tali due equazioni esprimono : la prima, la dipendenza del calore perso per sudorazione dal metabolismo, ed è già stata citata come e l andamento è riportato in fig. 1.10, la seconda, la temperatura che deve avere la pelle, sempre in funzione del metabolismo, perché la persona non avverta sensazioni di caldo o freddo (è chiaro che se aumenta il metabolismo, la temperatura della pelle deve diminuire per avere comfort). L andamento sperimentale di questa seconda relazione è riportato in figura Si noti come le figure 1.10 e 1.12 presentano una notevole dispersione dei dati sperimentali, cosa per altro comprensibile considerata la variabilità intrinseca delle sensazioni delle differenti persone. Una regressione dei minimi quadrati sui dati della fig. 1.11, analogamente a quanto effettuato nella figura 1.9 che conduce all eq , porta alla seguente relazione: ( M W ) [ C] t s = 35,7 0, 0275 (1.2.14) Sostituendo tutte le espressioni elencate sino ad ora nella 1.2.2, si ha in definitiva una equazione in sei incognite, le sei variabili del comfort, che prende nome di equazione del comfort di Fanger. Pertanto quando delle sei variabili cinque vengono fissate, la sesta rimane univocamente determinata. Ad esempio conoscendo il metabolismo e il vestiario di una persona, l umidità relativa, la temperatura media radiante e la velocità dell aria nell ambiente, viene dall equazione di Fanger determinata univocamente la temperatura dell aria perché la maggior parte delle persone non avvertano caldo o freddo.. Fig

10 A causa della difficoltà a maneggiare contemporaneamente il sistema di equazioni che costituiscono l equazione di Fanger, e anche a causa delle esigenze pratiche di utilizzo di questa equazione (spesso non è necessario differenziare la temperatura media radiante da quella dell aria, oppure l umidità relativa è poco influente, o non conosciuta, e viene fissata ad un valore, nominale, tipo il 50%), al posto della soluzione analitica del sistema si preferisce utilizzare dei diagrammi, denominati diagrammi del benessere. Nel seguito vengono riportati alcuni esempi di questi diagrammi, tratti dal libro di Fanger. In figura 1.13 sono riportati due diagrammi relativi a due diverse resistenze dei vestiti (0,5 clo, vestiario estivo interno agli edifici e 1 clo, vestiario invernale, sempre interno) L umidità relativa è fissa al 50%. La temperatura dell aria è considerata uguale alla temperatura media radiante ed è riportata in ascissa. In ordinata compare la velocità dell aria e le diverse curve sono relative a diversi livelli di attività metabolica. In Fig sono riportati nella stessa pagina 6 diagrammi. In verticale vi sono due serie di tre diagrammi a parità di vestiario(0,5 clo e 1,0 clo).. I tre diagrammi si differenziano per tre valori diversi di metabolismo. In ascissa è riportata la temperatura media dell aria, supposta uguale alla temperatura media radiante, in ordinata la temperatura a bulbo umido, collegata con l umidità relativa dell aria, e le diverse curve si riferiscono a diverse velocità dell aria. In fig sono riportati i risultati dell equazione del comfort, sempre come 6 diagrammi, relativi come nella figura precedente a 2 livelli di vestiario e tre livelli di attività, con in ascissa la temperatura dell aria e in ordinata la temperatura media radiante. Le diverse curve si riferiscono a diverse velocità dell aria, L umidità relativa è costante per tutti i diagrammi, ed è pari al 50% In funzione dei dati a disposizione, si sceglie il diagramma più opportuno, e conoscendo tutte le variabili del comfort meno una si può determinare la rimanente. Fig

11 Fig

12 Fig

13 1.2.4 Variabilità delle condizioni di comfort; punto di comfort e zona di comfort; PMV e PPD L equazione del comfort di Fanger predice un singolo valore, o meglio, come detto, una superficie a 5 dimensioni nello spazio a 6 dimensioni delle 6 variabili del comfort. Tuttavia è esperienza comune che la sensazione di caldo, di freddo, e l assenza di tali sensazioni non avvengano ad un preciso valore, bensì in un determinato intervallo. Questo è il cosiddetto intervallo individuale di comfort. Sperimentalmente vi è in intervallo almeno di 1 C di temperatura in cui l organismo si adatta alla situazione dell ambiente e la sensazione di caldo e di freddo non vengono percepite. D altra parte anche se le condizioni previste dall equazione del comfort sono perfettamente rispettate, vi sarà sempre un determinato numero di persone che avvertono discomfort (caldo o freddo). Questo è dovuto alla sensazione individuale del comfort, dovuta al fatto che singolarmente ogni persona ha proprie caratteristiche. Tentativi di attribuire le sensazioni di caldo o freddo anche ad altri fattori oltre a quelli elencati, non hanno portato a risultati soddisfacenti. Ad esempio si pensa generalmente che le donne siano più freddolose degli uomini, che le persone anziane siano più freddolose dei giovani, e che le persone abituate a climi rigidi avvertano di meno il freddo. Questo è vero solo in parte, e le prove sperimentali effettuate da Fanger non hanno mostrato differenza tra i diversi gruppi. Dalle figure 1.10 e 1.12 non si notano infatti differenze di comportamento tra i gruppi di maschi e femmine. Si attribuisce pertanto la maggiore freddolosità delle donne al loro vestiario più leggero, mentre è risaputo che il metabolismo degli anziani è rallentato, mentre quello dei giovani e soprattutto dei bambini è accelerato (sono normali nelle nursery temperature di C). Inoltre prove sperimentali effettuate su lavoratori dell industria dei surgelati danese, su gente proveniente dai tropici o abituali nuotatori invernali (quei tizi che a Natale in Danimarca, ma anche in Italia o altrove, fanno il bagno in mare), non hanno mostrato differenze sostanziali tra la temperatura di comfort scelta, bensì solo alla tolleranza al caldo o al freddo. Per quanto concerne la variabilità individuale e il range di tolleranza individuale, si può dare un interpretazione grafica osservando che nello spazio a 6 dimensioni di cui si è detto sopra il singolo individuo non ha un punto di comfort, bensì una zona, delimitata da certi limiti. In figura 1.16 è rappresentata questa situazione in uno spazio a due dimensioni (potrebbero essere ad esempio la temperatura dell aria e l umidità relativa, trascurando l effetto delle altre variabili) con diverse aree per un elevato numero di individui. G2 Fig G1 26

14 Le zone individuali di comfort sono solo parzialmente sovrapposte le une con le altre, ed in totale non esisterà alcun punto appartenente a tutte le varie zone individuali di comfort (questo equivale a dire che per quanto accurate si possano impostare le condizioni ambientali, qualcuno che sente freddo o caldo si troverà sempre). Tuttavia se si considera la densità di occupazione delle varie zone del piano di Fig (o del volume a 6 dimensioni dello spazio completo delle 6 variabili), si può notare come esiste un punto di massima densità, ovvero un punto (cioè un insieme di valori delle 6 variabili del comfort) per cui la maggior parte delle persone si trovano in condizioni di comfort. Tale punto è proprio quello previsto dall equazione di Fanger. Per quantificare meglio i concetti sopra esposti, sono state definite due grandezze ulteriori, il PMV e il PPD. Il PPD (Predicted percentage of dissatisfieds) rappresenta la percentuale prevedibile (e quindi predetta dalla equazioni) di persone non soddisfatte, che cioè denunciano di non trovarsi in condizioni di comfort (sentono caldo o freddo). Il PMV (Predicted mean vote, voto medio predetto), rappresenta, in una scala tra 3 e +3, il giudizio che una persona può dare alla sensazione di caldo e freddo, e precisamente: -3: molto freddo -2: freddo -1: fresco 0: comfort +1: tiepido +2: caldo +3: molto caldo Le due grandezze non sono indipendenti, ma sono legate da una relazione, che è riportata graficamente in figura Da essa si nota che anche se le condizioni di comfort dell ambiente sono perfettamente rispettate, e quindi in condizioni di PMV=0 (cosa che si verifica se l equazione di Fanger è soddisfatta), vi è sempre un determinato numero di persone, circa il 5%, che si dichiarerà insoddisfatto, cioè che dichiara di avvertire caldo o freddo. Tale fatto è ben conosciuto dai progettisti di impianti, che una volta realizzato l impianto hanno a che fare con una percentuale di malcontenti, che spesso supera quel 5% della figura Fig

15 Della figura 1.17 esiste anche la seguente relazione analitica: 0.033PMV 4 + 0,217PMV PPD = e (1.2.15) Inoltre il voto medio predetto può essere espresso in funzione dello scostamento dalle condizioni di comfort, cioè in funzione dello differenza tra il metabolismo e i flussi termici ceduti all esterno: 2 PMV = 0,036M ( 0,303 e + 0,28)[ M W E E E L R C] d sw res (2.1.16) Dal punto di vista progettuale il ragionamento adottato è il seguente: considerato che, nonostante l accuratezza impiegata per garantire il controllo delle condizioni termoigrometriche, rimane sempre una percentuale di insoddisfatti non trascurabile, si preferisce avere a disposizione una tolleranza maggiore nelle condizioni di progetto, e tollerare una percentuale di insoddisfatti del 10%, cioè un PMV tra 0,5 e +0,5. In tale modo il progettista ha a disposizione un intervallo maggiore di temperature, umidità relative, etc, che l impianto deve garantire. A tale ragione si può pertanto attribuire la scelta di 20 C come temperatura di comfort invernale e 25 C estiva. Dall equazione di Fanger, in realtà, la temperatura di comfort sarebbe più elevata in inverno (circa 21-21,5 C) e più bassa d estate (24 C), ma le considerazioni di cui sopra rendono accettabili anche i valori sopra riportati. 28

Università di Roma Tor Vergata

Università di Roma Tor Vergata Università di Roma Tor Vergata Facoltà di Ingegneria Dipartimento di Ingegneria Industriale Corso di: TERMOTECNICA 1 COMFORT TERMOIGROMETRICO: EQUAZIONE DEL COMFORT, PPD e PMV Ing. G. Bovesecchi gianluigi.bovesecchi@gmail.com

Dettagli

Università di Roma Tor Vergata

Università di Roma Tor Vergata Università di Roma Tor Vergata Facoltà di Ingegneria Dipartimento di Ingegneria Industriale Corso di: TERMOTECNICA 1 COMFORT TERMOIGROMETRICO: GENERALITÀ Ing. G. Bovesecchi gianluigi.bovesecchi@gmail.com

Dettagli

Corso di Fisica Te T cnica Ambientale Benessere nesser termico Benessere nesser integr ato integr Il b enessere termico

Corso di Fisica Te T cnica Ambientale Benessere nesser termico Benessere nesser integr ato integr Il b enessere termico Benessere integrato Il benessere termico Il benessere integrato Quella condizione mentale di soddisfazione nei riguardi dell ambiente termico acustico luminoso Stato di neutralità termica, in cui il soggetto

Dettagli

Teoria del comfort e monitoraggio ambientale

Teoria del comfort e monitoraggio ambientale SIMEA: Sistema Integrato/distribuito di Monitoraggio Energetico ed Ambientale SIMEA WORKSHOP 29 Novembre 2010 Teoria del comfort e monitoraggio ambientale Giacomo Villi Dipartimento di Fisica Tecnica Università

Dettagli

BENESSERE AMBIENTALE ED IMPLICAZIONI PROGETTUALI. Relatore: Dr.Ing. Francesco Carrer

BENESSERE AMBIENTALE ED IMPLICAZIONI PROGETTUALI. Relatore: Dr.Ing. Francesco Carrer BENESSERE AMBIENTALE ED IMPLICAZIONI PROGETTUALI Relatore: Dr.Ing. Francesco Carrer Comfort Psicologico Comfort Termoigrometrico Condizioni di Benessere Ambientale Comfort Respiratorio Olfattivo Comfort

Dettagli

SOFTWARE Norma UNI EN manuale d utilizzo 1 SOFTWARE. Benessere Termico Norma UNI EN 7730

SOFTWARE Norma UNI EN manuale d utilizzo 1 SOFTWARE. Benessere Termico Norma UNI EN 7730 SOFTWARE Norma UNI EN 7730 - manuale d utilizzo 1 SOFTWARE Benessere Termico Norma UNI EN 7730 SOFTWARE Norma UNI EN 7730 - manuale d utilizzo 2 SCOPO DEL SOFTWARE Calcolare gli indici di comfort termico

Dettagli

Tecnica del controllo ambientale: Il benessere Termoigrometrico Parte II Gli ambienti moderati. Marco Dell isola

Tecnica del controllo ambientale: Il benessere Termoigrometrico Parte II Gli ambienti moderati. Marco Dell isola Tecnica del controllo ambientale: Il benessere Termoigrometrico Parte II Gli ambienti moderati Marco Dell isola Indice PARTE 2 Gli ambienti moderati Generalità Gli indici di benessere Indici di sensazione

Dettagli

Lo scambio termico per diffusione

Lo scambio termico per diffusione Lo scambio termico per diffusione La diffusione di vapore acqueo attraverso la pelle è un fenomeno indipendente dal sistema di termoregolazione. i ( φ ) E = Q = rμ p p d udiff, sk as Legge di Fick dove

Dettagli

A6.7 MICROCLIMA. CORSO DI FORMAZIONE RESPONSABILI E ADDETTI SPP EX D.Lgs. 195/03. MODULO A Unità didattica

A6.7 MICROCLIMA. CORSO DI FORMAZIONE RESPONSABILI E ADDETTI SPP EX D.Lgs. 195/03. MODULO A Unità didattica Sistema di Riferimento Veneto per la Sicurezza nelle Scuole MICROCLIMA MODULO A Unità didattica A6.7 CORSO DI FORMAZIONE RESPONSABILI E ADDETTI SPP EX D.Lgs. 195/03 Definizioni CLIMA Fattori atmosferici

Dettagli

UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTÁ DI INGEGNERIA E ARCHITETTURA. Laurea Magistrale in Archite>ura

UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTÁ DI INGEGNERIA E ARCHITETTURA. Laurea Magistrale in Archite>ura UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTÁ DI INGEGNERIA E ARCHITETTURA Laurea Magistrale in Archite>ura L. I. di PROGETTAZIONE TECNICA E STRUTTURALE Modulo Impianti a.a. 2012-2013 Teoria del comfort Docente:

Dettagli

ISO 9920 Stima dell isolamento termico e della resistenza evaporativa dell abbigliamento

ISO 9920 Stima dell isolamento termico e della resistenza evaporativa dell abbigliamento Università degli Studi di Firenze Dipartimento di Tecnologie e Design Pierluigi Spadolini Il benessere termoigrometrico negli edifici Simone Secchi Riferimenti normativi inerenti il benessere D.P.R 303/56

Dettagli

Comfort termoigrometrico. Prof. Marina Mistretta

Comfort termoigrometrico. Prof. Marina Mistretta Comfort termoigrometrico Prof. Marina Mistretta Benessere termico Il benessere termico è definito come lo stato di piena soddisfazione del soggetto nei confronti dell ambiente termico. La condizione di

Dettagli

Comfort termoigrometrico. Prof. Marina Mistretta

Comfort termoigrometrico. Prof. Marina Mistretta Comfort termoigrometrico Prof. Marina Mistretta Benessere termico Il benessere termico è definito come lo stato di piena soddisfazione del soggetto nei confronti dell ambiente termico. La condizione di

Dettagli

Alcuni appunti in materiali di:

Alcuni appunti in materiali di: Alcuni appunti in materiali di: STRUMENTI E METODI PER LA PROGETTAZIONE DEL BENESSERE L ambiente in cui viviamo e lavoriamo è un organismo estremamente complesso, per questo: si devono affrontare i problemi

Dettagli

BENESSERE TERMOIGROMETRICO

BENESSERE TERMOIGROMETRICO Progettazione Impianti per larchittettura A.A. 2012-2013 BENESSERE TERMOIGROMETRICO ing. Simona Bartocci e-mail: simona.bartocci@uniroma2.it Introduzione Lo scopo dell impiantistica edilizia è quello di

Dettagli

VALUTAZIONE DEL MICROCLIMA

VALUTAZIONE DEL MICROCLIMA VALUTAZIONE DEL MICROCLIMA COS È IL MICROCLIMA? Con il termine Microclima si indica il clima degli ambienti confinati (uffici, mezzi di trasporto, scuole, ospedali, ambienti di lavoro ) ovvero il complesso

Dettagli

Comfort Termoigrometrico

Comfort Termoigrometrico Corso ARCHITETTURA E IMPIANTI Comfort Termoigrometrico Prof. Giuliano Dall Ò giuldal@polimi.it Comfort termoigrometrico pag. 2 Indice 1 Le interazioni termiche tra uomo e ambiente...3 1.1 La variazione

Dettagli

Benessere Termoigrometrico

Benessere Termoigrometrico Benessere Termoigrometrico Massimo Garai DIN - Università di Bologna http://acustica.ing.unibo.it Copyright (C) 2004-2019 Massimo Garai - Università di Bologna 1 Importanza del benessere (comfort) Nei

Dettagli

Benessere Termoigrometrico

Benessere Termoigrometrico Benessere Termoigrometrico Prof. Ing. Giorgio Raffellini DTAeD, via san Niccolò 89/a, 50125 Firenze Università degli Studi di Firenze, Facoltà di Architettura Trasmissione del calore per irraggiamento.

Dettagli

PROGETTISTI. Arch. Corrado NATALE. Arch. Corrado NATALE. Geom. Lidiano BIGIARINI. Ing. Michele Migliorini. Ing. Michele Migliorini

PROGETTISTI. Arch. Corrado NATALE. Arch. Corrado NATALE. Geom. Lidiano BIGIARINI. Ing. Michele Migliorini. Ing. Michele Migliorini AREA TECNICA SETTORE PROGETTAZIONE STAZIONE APPALTANTE COMMITTENTE EDILIZIA PROVINCIALE GROSSETANA SPA SEDE LEGALE: Via Arno, n. 2-58100 GROSSETO CAPITALE SOCIALE: 4.000.000,00 interamente versato CODICE

Dettagli

Sicurezza e ambiente. 9659A Sicurezza e ambiente L'AMBIENTE TERMICO E IGROMETRICO

Sicurezza e ambiente. 9659A Sicurezza e ambiente L'AMBIENTE TERMICO E IGROMETRICO L'AMBIENTE TERMICO E IGROMETRICO 1 VALUTAZIONE: di idoneità all uso, alla permanenza ed all attività delle persone CONTROLLO: con il fine di realizzare e mantenere tale idoneità L'AMBIENTE TERMICO E IGROMETRICO

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA AREA AMBIENTE E SICUREZZA Pavia, via S.Epifanio 12 tel /8/9 fax:

UNIVERSITÀ DEGLI STUDI DI PAVIA AREA AMBIENTE E SICUREZZA Pavia, via S.Epifanio 12 tel /8/9 fax: VALUTAZIONE DELLE CONDIZIONI MICROCLIMATICHE AMBIENTALI INTRODUZIONE I fattori microclimatici ambientali (temperatura Ta, Tr; umidità rh; ventilazione, Va), unitamente all intensità dell impegno fisico

Dettagli

Termoregolazione 1. Meccanismi fisici di scambio di calore con l esterno

Termoregolazione 1. Meccanismi fisici di scambio di calore con l esterno Termoregolazione 1. Meccanismi fisici di scambio di calore con l esterno Carlo Capelli, Fisiologia Generale e dell Esercizio, Facoltà di Scienze Motorie, Università degli Studi di Verona Obiettivi Animali

Dettagli

Lezioni del Corso di Misure Meccaniche e Termiche

Lezioni del Corso di Misure Meccaniche e Termiche Facoltà di Ingegneria Lezioni del Corso di Misure Meccaniche e Termiche A06. Il Benessere Termoigrometrico Indice degli Argomenti Il Benessere 1. L Attività Metabolica 2. I Meccanismi di Termoregolazione

Dettagli

BENESSERE TERMOIGROMETRICO. arch. Cristina Carletti Dip.. TAeD Università di Firenze

BENESSERE TERMOIGROMETRICO. arch. Cristina Carletti Dip.. TAeD Università di Firenze BENESSERE TERMOIGROMETRICO arch. Cristina Carletti Dip.. TAeD Università di Firenze Benessere ambientale dell individuo IL BENESSERE È INDIVIDUALE E NON COLLETTIVO: corrisponde per definizione al soddisfacimento

Dettagli

Fisica per Medicina. Lezione 9 - Termodinamica. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 9 - Termodinamica. Dr. Cristiano Fontana Fisica per Medicina Lezione 9 - Termodinamica Dr. Cristiano Fontana Dipartimento di Fisica ed Astronomia Galileo Galilei Università degli Studi di Padova 17 novembre 2016 Grandezze in gioco Trasporto di

Dettagli

Simonazzi Gianluca , Yabre Maurice Mercoledì 06/04/ /13.30

Simonazzi Gianluca , Yabre Maurice Mercoledì 06/04/ /13.30 Simonazzi Gianluca 263537, Yabre Maurice 263533 Mercoledì 06/04/2016 10.30/13.30 INDICE 1. Benessere Termoigrometrico 2. Termoregolazione del corpo umano 3. Equazione di bilancio dell energia 4. Termini

Dettagli

Il microclima. Cosa vuol dire?

Il microclima. Cosa vuol dire? 1 Cosa vuol dire? DEFINIZIONE Insieme degli aspetti fisici che caratterizzano l aria degli ambienti confinati, intendendosi per tali tutte quelle infrastrutture più o meno separate dall ambiente esterno

Dettagli

PSICROMETRIA PROPRIETÀ TERMODINAMICHE DEI GAS PERFETTI

PSICROMETRIA PROPRIETÀ TERMODINAMICHE DEI GAS PERFETTI PSICROMETRIA PROPRIETÀ TERMODINAMICHE DEI GAS PERFETTI Un modello di comportamento interessante per la termodinamica è quello cosiddetto di gas perfetto. Il gas perfetto è naturalmente un astrazione, tuttavia

Dettagli

La temperatura sul posto di lavoro e i suoi rischi

La temperatura sul posto di lavoro e i suoi rischi La temperatura sul posto di lavoro e i suoi rischi Rev. 2 ott. 2009 Microclima slide 1 di 36 Definizione di omeotermia L organismo umano può essere visto come un sistema in grado di assorbire o rilasciare

Dettagli

IL MICROCLIMA. Il lavoro del consulente a seguito di ispezione e prescrizione in ambiente di lavoro SEVERO CALDO / SEVERO FREDDO

IL MICROCLIMA. Il lavoro del consulente a seguito di ispezione e prescrizione in ambiente di lavoro SEVERO CALDO / SEVERO FREDDO IL MICROCLIMA Il lavoro del consulente a seguito di ispezione e prescrizione in ambiente di lavoro SEVERO CALDO / SEVERO FREDDO Dott. Massimo ALTAMURA Geom. Marco DE SANTIS IL MICROCLIMA Complesso di parametri

Dettagli

IMPIANTI MECCANICI LEZIONE DEL 27 SETTEMBRE 2007

IMPIANTI MECCANICI LEZIONE DEL 27 SETTEMBRE 2007 IMPIANTI MECCANICI LEZIONE DEL 27 SETTEMBRE 2007 1 INTRODUZIONE... 2 2 LE CONDIZIONI AMBIENTALI DI BENESSERE... 3 3 BILANCIO ENERGETICO FRA UOMO ED AMBIENTE.... 4 3.1 Perdite calore sensibile... 5 3.2

Dettagli

MICROCLIMA estate/inverno tropici/poli

MICROCLIMA estate/inverno tropici/poli MICROCLIMA estate/inverno tropici/poli le protesi dell uomo bilancio termico parametri e misure benessere termico inquinamento ergonomia L. Bandini Buti Diapo-Ex-9-Microclima 1 PREMESSA Gli animali, per

Dettagli

MISURE MICROCLIMATICHE METODOLOGIE E STRUMENTI

MISURE MICROCLIMATICHE METODOLOGIE E STRUMENTI MISURE MICROCLIMATICHE METODOLOGIE E STRUMENTI NORMATIVE DI RIFERIMENTO UNI EN ISO 7730:2006 Ergonomia degli ambienti termici. Determinazione analitica e interpretazione del benessere termico mediante

Dettagli

Si riportano le verifiche contenute nella Relazione tecnica ai sensi del D.M. 26/06/ I.T.R.02 - rev.03 - ottobre 2018

Si riportano le verifiche contenute nella Relazione tecnica ai sensi del D.M. 26/06/ I.T.R.02 - rev.03 - ottobre 2018 CAM: verifiche ai sensi del decreto 11 ottobre 2017 2.2.5 2.3.3 Approvvigionamento energetico L approvvigionamento energetico termico del palazzetto dello sport avviene mediante teleriscaldamento sia per

Dettagli

Elaborazione dati ambientali microclimatici

Elaborazione dati ambientali microclimatici Elaborazione dati ambientali microclimatici IPER CARREFOUR SAN GIULIANO MILANESE S.S. Emilia Km 315 20098 San Giuliano Milanese(MI) INDICE Indice... 2 PREMESSA... 3 IL RISCHIO FISICO: CONDIZIONI GENERALI...

Dettagli

Calore. Il calore (Q)

Calore. Il calore (Q) Due corpi messi a contatto si portano alla stessa temperatura Il calore (Q) Calore Trasferimento di energia interna dal corpo più caldo a quello più freddo. Si dice che tra i due sistemi vi è stato scambio

Dettagli

23/04/2013. Comfort ambientale. Piercarlo ROMAGNONI Università IUAV di Venezia

23/04/2013. Comfort ambientale. Piercarlo ROMAGNONI Università IUAV di Venezia Comfort ambientale Piercarlo ROMAGNONI Università IUAV di Venezia pierca@iuav.it 1 COMFORT BENESSERE TERMOIGROMETRICO UNI EN 15251 Criteri per la progettazione dell ambiente interno e per la valutazione

Dettagli

Università di. Intorno all uomo: la Prefabbricazione Radiante - Innovazione, eco-sostenibilità, risparmio energetico e sicurezza.

Università di. Intorno all uomo: la Prefabbricazione Radiante - Innovazione, eco-sostenibilità, risparmio energetico e sicurezza. Università di Udine Intorno all uomo: la Prefabbricazione Radiante - Innovazione, eco-sostenibilità, risparmio energetico e sicurezza. Sistema di prefabbricazione radiante caratteristiche e vantaggi prof.

Dettagli

Laurea in Archite:ura

Laurea in Archite:ura UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTÁ DI INGEGNERIA E ARCHITETTURA Laurea in Archite:ura IMPIANTI PER LA SOSTENIBILITA' ENERGETICA DEGLI EDIFICI A.A. 2018-2019 Le condizioni ambientali di comfort

Dettagli

L edificio adibito ad asilo nido, oggetto del presente intervento, verrà climatizzato

L edificio adibito ad asilo nido, oggetto del presente intervento, verrà climatizzato 1. PREMESSA L edificio adibito ad asilo nido, oggetto del presente intervento, verrà climatizzato mediante un sistema ad acqua impiegando come unità terminali dei ventilconvettori sistemati a pavimento.

Dettagli

Fisicaa Applicata, Area Infermieristica, M. Ruspa. Esercizio. Si trasformino 20 o Faranheit in gradi centigradi e Kelvin.

Fisicaa Applicata, Area Infermieristica, M. Ruspa. Esercizio. Si trasformino 20 o Faranheit in gradi centigradi e Kelvin. Esercizio Si trasformino 20 o Faranheit in gradi centigradi e Kelvin 124 EQUILIBRIO TERMICO Due corpi a temperature t 1 e t 2 (t 2 > t 1 ) sono posti in contatto termico, isolati dall ambiente circostante

Dettagli

La manutenzione degli impianti di condizionamento Requisiti di progetto, collaudo e manutenzione igienica per una migliore qualità dell aria

La manutenzione degli impianti di condizionamento Requisiti di progetto, collaudo e manutenzione igienica per una migliore qualità dell aria La manutenzione degli impianti di condizionamento Requisiti di progetto, collaudo e manutenzione igienica per una migliore qualità dell aria Anna Magrini Marco Roveta Il segreto per avere impianti di condizionamento

Dettagli

Due corpi a temperature t 1 e t 2 (t 2 > t 1 ) sono posti in contatto termico, isolati dall ambiente circostante. t 1 t 2

Due corpi a temperature t 1 e t 2 (t 2 > t 1 ) sono posti in contatto termico, isolati dall ambiente circostante. t 1 t 2 EQUILIBRIO TERMICO Due corpi a temperature t 1 e t 2 (t 2 > t 1 ) sono posti in contatto termico, isolati dall ambiente circostante t 1 t 2 Dopo un certo tempo, i due corpi raggiungeranno una temperatura

Dettagli

Esercizio sulle verifiche termoigrometriche

Esercizio sulle verifiche termoigrometriche Prof. Marina Mistretta Esercizio sulle verifiche termoigrometriche 1) Una parete verticale costituita due strati di calcestruzzo (λ 1 =0,7 W/m K) con interposto uno strato di isolante (λ 2 =0,04 W/mK),

Dettagli

Trasmissione del calore:

Trasmissione del calore: Trasmissione del calore: - Conduzione - Convezione - Irraggiamento Cos è la Convezione: È lo scambio di calore che avviene tra una superficie e un fluido che si trovano a diversa temperatura e in movimento

Dettagli

Il Benessere termo-igrometrico

Il Benessere termo-igrometrico Corso di IMPIANTI TECNICI per l EDILIZIA Il Benessere termo-igrometrico Prof. Paolo ZAZZINI Dipartimento INGEO Università G. D Annunzio Pescara www.lft.unich.it Comfort ambientale: L individuo inserito

Dettagli

UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTÁ DI INGEGNERIA E ARCHITETTURA. Laurea Magistrale in Archite>ura

UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTÁ DI INGEGNERIA E ARCHITETTURA. Laurea Magistrale in Archite>ura UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTÁ DI INGEGNERIA E ARCHITETTURA Laurea Magistrale in Archite>ura L. I. di Modulo Impianti a.a. 2012-2013 Teoria del comfort Docente: Ing. ROBERTO RICCIU Teoria del

Dettagli

LA SICUREZZA E LA SALUTE SUL LAVORO cominciamo a SCUOLA

LA SICUREZZA E LA SALUTE SUL LAVORO cominciamo a SCUOLA LA SICUREZZA E LA SALUTE SUL LAVORO cominciamo a SCUOLA MICROCLIMA E ILLUMINAZIONE protocollo d intesa 5 febbraio 2015 ASL Brescia ASL Vallecamonica Sebino - Direzione Territoriale del Lavoro Ufficio Scolastico

Dettagli

Corso Integrato di: Fisica tecnica ambientale e. Tecnica del Controllo Ambientale. a.a

Corso Integrato di: Fisica tecnica ambientale e. Tecnica del Controllo Ambientale. a.a Corso Integrato di: Fisica tecnica ambientale e Tecnica del controllo ambientale Modulo: Tecnica del Controllo Ambientale a.a. 2010-2011 Benessere ambientale dell individuo Benessere ambientale dell individuo

Dettagli

Parete opaca non soleggiata che separa due ambienti a temperature diverse

Parete opaca non soleggiata che separa due ambienti a temperature diverse Parete opaca non soleggiata che separa due ambienti a temperature diverse K i = 10 W/m 2 K K e = 20 W/m 2 K Stagione invernale: andamento quantitativo della temperatura attraverso una parete perimetrale

Dettagli

ORDINE DEGLI INGEGNERI DELLA PROVINCIA DI VITERBO CORSO DI AGGIORNAMENTO 40 h per C.S.P. e C.S.E. AI SENSI DELL ALLEGATO XIV del D.LGS.

ORDINE DEGLI INGEGNERI DELLA PROVINCIA DI VITERBO CORSO DI AGGIORNAMENTO 40 h per C.S.P. e C.S.E. AI SENSI DELL ALLEGATO XIV del D.LGS. ORDINE DEGLI INGEGNERI DELLA PROVINCIA DI VITERBO CORSO DI AGGIORNAMENTO 40 h per C.S.P. e C.S.E. AI SENSI DELL ALLEGATO XIV del D.LGS. 81/08 e smi In collaborazione con CEFAS IL MICROCLIMA A cura di:

Dettagli

Corso di: Tecnica del controllo ambientale. a.a

Corso di: Tecnica del controllo ambientale. a.a Corso di: Tecnica del controllo ambientale a.a. 2012-2013 Benessere ambientale dell individuo Benessere ambientale dell individuo Benessere termoigrometrico t i Condizione di neutralità termica, in cui

Dettagli

DOCUMENTO DI VALUTAZIONE DEL RISCHIO MICROCLIMA

DOCUMENTO DI VALUTAZIONE DEL RISCHIO MICROCLIMA DOCUMENTO DI VALUTAZIONE DEL RISCHIO MICROCLIMA Azienda AZIENDA ESEMPIO Sede COMUNE DI SALERNO Indirizzo: Via Irno Datore di lavoro Rossi Paolo Responsabile Servizio Prevenzione e Protezione De Santis

Dettagli

Il comfort termico nei sistemi radianti

Il comfort termico nei sistemi radianti Il comfort termico nei sistemi radianti Marzo 2017 Ing. Clara Peretti Segretario Generale Consorzio Q-RAD Nel riscaldamento radiante la superficie attiva (pavimento, parete o soffitto) cede calore sia

Dettagli

La misura della temperatura

La misura della temperatura Calore e temperatura 1. La misura della temperatura 2. La dilatazione termica 3. La legge fondamentale della termologia 4. Il calore latente 5. La propagazione del calore La misura della temperatura La

Dettagli

Tutto sul raffrescamento con i sistemi radianti

Tutto sul raffrescamento con i sistemi radianti Tutto sul raffrescamento con i sistemi radianti Giugno 2017 Ing. Clara Peretti Segretario Generale Consorzio Q-RAD Introduzione A causa della contenuta differenza di temperatura tra l acqua e l ambiente

Dettagli

Risparmio energetico degli edifici

Risparmio energetico degli edifici Risparmio energetico degli edifici Comfort termoigrometrico Prof. arch. Fabio Sciurpi Dipartimento di Tecnologia dell Architettura e Design Pierluigi Spadolini Università degli Studi di Firenze La Qualità

Dettagli

PASSAGGIO DEL CALORE E DIFFUSIONE DEL VAPORE

PASSAGGIO DEL CALORE E DIFFUSIONE DEL VAPORE Francesco Nicolini 259407, Giulia Voltolini 26354 9 Marzo 206, 0:30 3:30 PASSAGGIO DEL CALORE E DIFFUSIONE DEL VAPORE. CALCOLO DELLA POTENZA TERMICA Q Il calcolo della potenza termica in regime stazionario

Dettagli

Progettare il comfort: IL COMFORT TERMICO

Progettare il comfort: IL COMFORT TERMICO Convegno SICUREZZA E COMFORT NELLE ABITAZIONI CON STRUTTURE DI LEGNO Verona, 16 Giugno 2001 Progettare il comfort: IL COMFORT TERMICO Immagine: www.sips.org Dr. Paolo LAVISCI LegnoDOC srl Sommario Il comfort

Dettagli

MICROCLIMA E ILLUMINAZIONE

MICROCLIMA E ILLUMINAZIONE 01/09/2003 dr. Gabriele M. Campurra 1 ENEA ENEA --Sede Sede di di Brindisi Corso Corso di di Formazione e Informazione 22 22 e 23 23 maggio maggio 2002 2002 MICROCLIMA E ILLUMINAZIONE Dr. Dr. Gabriele

Dettagli

IL COMFORT TERMOFISIOLOGICO

IL COMFORT TERMOFISIOLOGICO IL COMFORT TERMOFISIOLOGICO Da Wikipedia: Il comfort o confort è una sensazione puramente soggettiva percepita dall'utente, nell'ambiente di lavoro o in determinate condizioni di servizio e serve ad indicare

Dettagli

Corso di: Tecnica del controllo ambientale

Corso di: Tecnica del controllo ambientale CORSI DI LAUREA Ingegneria Civile Ambientale Ingegneria per l'ambiente e il Territorio a.a. 2017-2018 Corso di: Tecnica del controllo ambientale Obiettivi del corso Benessere ambientale dell individuo

Dettagli

Il Benessere termo-igrometrico

Il Benessere termo-igrometrico Corso di IMPIANTI TECNICI per l EDILIZIA Il Benessere termo-igrometrico Prof. Paolo ZAZZINI Dipartimento INGEO Università G. D Annunzio Pescara www.lft.unich.it Comfort ambientale: L individuo inserito

Dettagli

Master Universitario di II livello in Edilizia sostenibile ed efficienza energetica Politecnico di Torino Ed. I a.a. 2011/2012 TESI DI MASTER

Master Universitario di II livello in Edilizia sostenibile ed efficienza energetica Politecnico di Torino Ed. I a.a. 2011/2012 TESI DI MASTER Master Universitario di II livello in Edilizia sostenibile ed efficienza energetica Politecnico di Torino Ed. I a.a. 2011/2012 TESI DI MASTER Sviluppo del progetto di ricerca WSAN M&C Wireless Sensor &

Dettagli

SUISM Fisiologia Modulo di Fisica. Lezione 6

SUISM Fisiologia Modulo di Fisica. Lezione 6 SUISM Fisiologia Modulo di Fisica a.a. 2017-2018 Lezione 6 Suism 17-18 - Fluidi AA 1 Metabolismo corporeo DEFINIZIONE: Complesso di reazioni biochimiche di sintesi e di degradazione che si svolgono in

Dettagli

Università di Roma Tor Vergata

Università di Roma Tor Vergata Università di Roma Tor Vergata Facoltà di Ingegneria Dipartimento di Ingegneria Industriale Corso di: TERMOTECNICA TRASMISSIONE DEL CALORE: RESISTENZA DI CONTATTO Ing. G. Bovesecchi gianluigi.bovesecchi@gmail.com

Dettagli

BENESSERE TERMOIGROMETRICO. ing. Simona Bartocci

BENESSERE TERMOIGROMETRICO. ing. Simona Bartocci BENESSERE TERMOIGROMETRICO ing. Simona Bartocci e-mail: simona.bartocci@uniroma2.it Introduzione La problematica del contenimento dei consumi energetici di un edificio è legata sia alla quantità di combustibile

Dettagli

La climatizzazione radiante a pavimento, soffitto e parete

La climatizzazione radiante a pavimento, soffitto e parete La climatizzazione radiante a pavimento, soffitto e parete Fisica del radiante Concetti generali legati alla fisica della climatizzazione radiante Fisica del radiante Analisi dello scambio di calore tra

Dettagli

LA SENSAZIONE DI CALORE E IL BENESSERE TERMICO. Acqua, Luce, Calore: uso e risparmio

LA SENSAZIONE DI CALORE E IL BENESSERE TERMICO. Acqua, Luce, Calore: uso e risparmio A LA SENSAZIONE DI CALORE E IL BENESSERE TERMICO 1. IL NOSTRO ORGANISMO E CAPACE DI AUTOREGOLAZIONE TERMICA PER LA SOPRAVVIVENZA, IL NOSTRO ORGANISMO MANTIENE LA SUA TEMPERATURA INTERNA COSTANTE (A CIRCA

Dettagli

Rischio microclimatico: gli ambienti severi freddi

Rischio microclimatico: gli ambienti severi freddi Rischio microclimatico: gli ambienti severi freddi Condizioni microclimatiche estreme di sia all aperto che in ambienti chiusi costituiscono un fattore di rischio per la salute dei lavoratori. In questo

Dettagli

LA TERMOREGOLAZIONE FEDERAZIONE ITALIANA NUOTO CORSO ISTRUTTORI DI NUOTO CONEGLIANO 04 FEBBRAIO 2018 DOTT. LUCA POLESEL

LA TERMOREGOLAZIONE FEDERAZIONE ITALIANA NUOTO CORSO ISTRUTTORI DI NUOTO CONEGLIANO 04 FEBBRAIO 2018 DOTT. LUCA POLESEL LA TERMOREGOLAZIONE FEDERAZIONE ITALIANA NUOTO CORSO ISTRUTTORI DI NUOTO CONEGLIANO 04 FEBBRAIO 2018 DOTT. LUCA POLESEL L EQUILIBRIO INTERNO DEL CORPO Il corpo per funzionare ha necessità di situazioni

Dettagli

L irraggiamento termico

L irraggiamento termico L irraggiamento termico Trasmissione del Calore - 42 Il calore può essere fornito anche mediante energia elettromagnetica; ciò accade perché quando un fotone, associato ad una lunghezza d onda compresa

Dettagli

Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv

Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv Prefazione alla terza edizione italiana...xi Ringraziamenti dell Editore...XIII Guida alla lettura...xiv 1 INTRODUZIONE E UNO SGUARDO D INSIEME...1 1.1 Introduzione alle scienze termiche...2 1.2 La termodinamica

Dettagli

Termodinamica: introduzione

Termodinamica: introduzione Termodinamica: introduzione La Termodinamica studia i fenomeni che avvengono nei sistemi in seguito a scambi di calore (energia termica) ed energia meccanica, a livello macroscopico. Qualche concetto rilevante

Dettagli

3) Un solaio piano è costituito da 5 strati:

3) Un solaio piano è costituito da 5 strati: 3) Un solaio piano è costituito da 5 strati: La temperatura dell aria nell ambiente interno è pari a 20 C mentre la temperatura esterna è di 0 C. Il solaio scambia calore verso l alto. Si determini: a)

Dettagli

Condizioni di benessere e prestazioni termiche

Condizioni di benessere e prestazioni termiche Condizioni di benessere e prestazioni termiche Corso di Tecniche del controllo ambientale Prof.Arch.Gianfranco Cellai Laboratorio di Fisica Ambientale per la Qualità Edilizia Università di Firenze Riferimenti

Dettagli

Termodinamica: introduzione

Termodinamica: introduzione Termodinamica: introduzione La Termodinamica studia i fenomeni che avvengono nei sistemi in seguito a scambi di calore (energia termica) ed energia meccanica, a livello macroscopico. Qualche concetto rilevante

Dettagli

GAS TERMODINAMICA CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE

GAS TERMODINAMICA CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE GAS TERMODINAMICA GAS PERFETTI E GAS REALI TRASFORMAZIONI TERMODINAMICHE TRASMISSIONE DEL CALORE A. A. 2015-2016 Fabrizio

Dettagli

BENESSERE TERMOIGROMETRICO

BENESSERE TERMOIGROMETRICO BENESSERE TERMOIGROMETRICO Livio de Santoli, Francesco Mancini Università La Sapienza di Roma livio.desantoli@uniroma1.it francesco.mancini@uniroma1.it www.eeplus.it www.ingenergia.it Introduzione Le condizioni

Dettagli

D.Lgs 81/08 All. IV. Temperatura. Aerazione. Umidità. Parametri Normativa di riferimento UNI EN ISO. Europee elaborate dal CEN

D.Lgs 81/08 All. IV. Temperatura. Aerazione. Umidità. Parametri Normativa di riferimento UNI EN ISO. Europee elaborate dal CEN Parametri Normativa di riferimento Temperatura D.Lgs 81/08 All. IV Aerazione Umidità EN ISO UNI EN ISO Europee elaborate dal CEN Comitato Europeo di Normazione Internazionali elaborate dall OIN Organizzaz.

Dettagli

il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche.

il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche. 16 Il ciclo di Stirling Il coefficiente di effetto utile per il ciclo frigorifero di Carnot è, in base alla (2.9): T min ɛ =. (2.31) T max T min Il ciclo di Carnot è il ciclo termodinamico che dà il maggior

Dettagli

Introduzione. Trasmissione del calore Prof. Ing. Marina Mistretta

Introduzione. Trasmissione del calore Prof. Ing. Marina Mistretta Introduzione Trasmissione del calore Prof. Ing. Marina Mistretta Cos è la Fisica Tecnica Studio degli scambi di energia e di materia tra i sistemi e l ambiente circostante. Il calore si disperde nel verso

Dettagli

Ambiente termico moderato. Indagine strumentale e valutazione dell ambiente microclimatico in alcune cabine di guida di locomotori.

Ambiente termico moderato. Indagine strumentale e valutazione dell ambiente microclimatico in alcune cabine di guida di locomotori. Ambiente termico moderato. Indagine strumentale e valutazione dell ambiente microclimatico in alcune cabine di guida di locomotori. P.Tura, M. Fontana ARPA Piemonte Rischio Industriale ed Igiene Industriale

Dettagli

BENESSERE TERMOIGROMETRICO

BENESSERE TERMOIGROMETRICO CAPITOLO 6 6.1 Generalità Per benessere termoigrometrico si intende la sensazione di soddisfazione che le persone provano all interno di un ambiente circa la sensazione termica (sentire caldo/freddo).

Dettagli

Condensa interstiziale, Metodo Glaser. Corso di Fisica Tecnica a.a. 2017/2018 Prof. Marina Mistretta

Condensa interstiziale, Metodo Glaser. Corso di Fisica Tecnica a.a. 2017/2018 Prof. Marina Mistretta Condensa interstiziale, Metodo Glaser Corso di Fisica Tecnica a.a. 2017/2018 Prof. Marina Mistretta difici : quadro generale Fenomeni di condensazione di vapore negli edifici : quadro generale Fenomeni

Dettagli

Richiami sulla resistenza termica equivalente

Richiami sulla resistenza termica equivalente Lezione XLII 9/05/003 ora 8:30 0:30 Conduzione sfera cava, coefficiente di irraggiamento, esempi Originali di Azzolini Cristiano e Fontana Andrea ichiami sulla resistenza termica equivalente Ai fini della

Dettagli

T = t o (1.1) Nella scala kelvin il ghiaccio fonde a 273 K e l acqua bolle a 373 K. Un grado kelvin è uguale a un grado celsius

T = t o (1.1) Nella scala kelvin il ghiaccio fonde a 273 K e l acqua bolle a 373 K. Un grado kelvin è uguale a un grado celsius Termologia. La temperatura è la grandezza fisica che misura lo stato termico di un sistema fisico (un corpo). 2. Scale termometriche. - Scala Celsius ( o C). Proposta nel 742. 0 o C è la temperatura di

Dettagli

POTENZA METABOLICA. Fisica Applicata, Area Infermieristica, M. Ruspa

POTENZA METABOLICA. Fisica Applicata, Area Infermieristica, M. Ruspa POTENZA METABOLICA La potenza metabolica (MR) e l energia prodotta all interno del corpo umano nell unita di tempo. Se con U indichiamo l energia interna del nostro organismo L energia minima per unita

Dettagli

Sono processi unitari le Sintesi industriali.

Sono processi unitari le Sintesi industriali. 1 1 Per risolvere i problemi relativi agli impianti chimici è necessario fare uso di equazioni, esse vengono classificate in : equazioni di bilancio e equazioni di trasferimento. -Le equazioni di bilancio

Dettagli

BENESSERE TERMOIGROMETRICO

BENESSERE TERMOIGROMETRICO BENESSERE TERMOIGROMETRICO 2.1 GENERALITÁ Per benessere termoigrometrico si intende la sensazione di soddisfazione che, in un ambiente, le persone provano nei riguardi della sensazione termica (sentire

Dettagli

Termoscopio di Galileo Sfrutta la dilatazione termica dell aria contenuta al suo interno.

Termoscopio di Galileo Sfrutta la dilatazione termica dell aria contenuta al suo interno. Danno informazioni sullo stato termico di un corpo (ma non ne misurano la temperatura): a contatto con esso, assumono la sua stessa temperatura (si dice che raggiungono l equilibrio termico). Termoscopio

Dettagli

Eventuale post-riscaldamento se la necessitàdi deumidificazione ha comportato una diminuzione eccessiva di temperatura

Eventuale post-riscaldamento se la necessitàdi deumidificazione ha comportato una diminuzione eccessiva di temperatura La scelta delle condizioni termoigrometriche di immissione in Ideve essere fatta in modo tale da compensare le qt e gli apporti di mv. Si utilizza ti pari a 30-35 C. Cmq in modo da avere nell embinete

Dettagli

Trasmittanza di una parete

Trasmittanza di una parete Trasmittanza di una parete Quantità di calore q scambiata tra due fluidi aventi temperaturet 1 et 2 separati da una parete piana di dimensioni trasversali grandi rispetto allo spessore ' Ritenute valide

Dettagli

\ BlBLJOTECA CENTRALE ~ E QUALITÀ DELL'ARIA INTERNA, BENESSERE TERMICO. ce a! C ASA EDITRICE AMBROSIANA G. MONCADA LO GIUDICE M.

\ BlBLJOTECA CENTRALE ~ E QUALITÀ DELL'ARIA INTERNA, BENESSERE TERMICO. ce a! C ASA EDITRICE AMBROSIANA G. MONCADA LO GIUDICE M. BENESSERE TERMICO E QUALITÀ DELL'ARIA INTERNA, G. MONCADA LO GIUDICE M. COPPI ---- - - -... 1!>.:._., IUAV - VENEZIA A I 85 l I I \ BlBLJOTECA CENTRALE ~ ce a! C ASA EDITRICE AMBROSIANA IUAV- VENEZIA A

Dettagli

CONSULENZE TECNICHE IN ACUSTICA, VIBRAZIONI, MICROCLIMA E ILLUMINAMENTO NEGLI AMBIENTI DI LAVORO

CONSULENZE TECNICHE IN ACUSTICA, VIBRAZIONI, MICROCLIMA E ILLUMINAMENTO NEGLI AMBIENTI DI LAVORO CONSULENZE TECNICHE IN ACUSTICA, VIBRAZIONI, MICROCLIMA E ILLUMINAMENTO NEGLI AMBIENTI DI LAVORO La salute e sicurezza dei lavoratori è influenzata, nei diversi luoghi di lavoro, da numerosi fattori di

Dettagli

Geber Radiatori...Il Calore che Arreda!

Geber Radiatori...Il Calore che Arreda! Mercoledì 6 Marzo 2019 ServiceFarbe Caparol via Renata Bianchi, 15 Genova Campi partner Arredo bagno su misura, piastre radianti e soluzioni innovative: Geber Radiatori...Il Calore che Arreda! www.geberradiatori.it

Dettagli

TERMODINAMICA bilancio termico. TERMODINAMICA bilancio termico

TERMODINAMICA bilancio termico. TERMODINAMICA bilancio termico elio giroletti 1 UNIVERSITÀ DEGLI STUDI DI PAVIA dip. Fisica nucleare e teorica via Bassi 6, 27100 Pavia, Italy tel. 038298.7905 - girolett@unipv.it - www.unipv.it/webgiro TERMODINAMICA FISICA MEDICA e

Dettagli

1.1.1 Termodinamica applicata, p Trasmissione del calore, p Termodinamica dell aria umida, p. 11

1.1.1 Termodinamica applicata, p Trasmissione del calore, p Termodinamica dell aria umida, p. 11 Indice XIII Prefazione XIV L Editore ringrazia 1 Capitolo Primo - Introduzione 1 1.1 Contenuti 1.1.1 Termodinamica applicata, p. 2-1.1.2 Trasmissione del calore, p. 8-1.1.3 Termodinamica dell aria umida,

Dettagli