Lezione 7. Data Warehouse & OLAP
|
|
|
- Alice Mancini
- 10 anni fa
- Visualizzazioni
Transcript
1 Lezione 7 Data Warehouse & OLAP
2 Che cos'è un Data Warehouse? Termine inventato da Bill Inmon alla fine degli anni È una base di dati contenente dati provenienti da uno o più basi di dati operative che sono stati Consolidati Integrati Aggregati Strutturati In modo da poter essere impiegati in un processo Analitico Decisionale
3 OLAP On-Line Analytical Processing Usa un modello dei dati multidimensionale Il concetto centrale è quello dell'ipercubo Ipercubo: Fatti numerici (misure) Categorizzati in dimensioni, che descrivono delle etichette Esempio: fatturato di un'azienda Le misure sono i numeri del fatturato Le dimensioni possono essere: il tempo: le etichette sono i trimestri, es. 2009Q1, 2009Q2, ecc. le aree geografiche: Europa, America, Asia, Africa, Oceania i settori: pannelli edilizia, pannelli nautica, tavolame nautica, ecc.
4 Un cubo OLAP 135 K area settore tempo 20092Q
5 Conceptual Modeling of Data Warehouses Modeling data warehouses: dimensions & measures Star schema: A fact table in the middle connected to a set of dimension tables Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation
6 Example of Star Schema time time_key day day_of_the_week month quarter year branch branch_key branch_name branch_type Measures Sales Fact Table time_key item_key branch_key location_key units_sold dollars_sold avg_sales item item_key item_name brand type supplier_type location location_key street city state_or_province country
7 Example of Snowflake Schema time time_key day day_of_the_week month quarter year Sales Fact Table time_key item_key item item_key item_name brand type supplier_key supplier supplier_key supplier_type branch branch_key branch_name branch_type Measures branch_key location_key units_sold dollars_sold avg_sales location location_key street city_key city city_key city state_or_province country
8 Example of Fact Constellation time time_key day day_of_the_week month quarter year branch branch_key branch_name branch_type Measures Sales Fact Table time_key item_key branch_key location_key units_sold dollars_sold avg_sales item item_key item_name brand type supplier_type location location_key street city province_or_state country Shipping Fact Table time_key item_key shipper_key from_location to_location dollars_cost units_shipped shipper shipper_key shipper_name location_key shipper_type
9 Aggregazioni Ottenute modificando la granularità di specifiche dimensioni Es.: anni invece di trimestri, Italia/Estero invece di singoli paesi, ecc. Ciascuna aggregazione fornisce una visione differente dei dati Problema della selezione delle viste: Quali aggregazioni devono essere precalcolate? Minimizzare il tempo medio per rispondere alle interrogazioni Complessità: NP-difficile
10 DW vs. DB Data Warehouse Base di dati Modello dimensionale Assenza di normalizzazione Enfasi sulla facilità di interrogazione Statico Progettato per l'analsi dei dati Modello relazionale Normalizzazione dei dati Enfasi sulla consistenza dei dati Dinamico Progettato per l'elaborazione di transazioni (inserimento, modifica, cancellazione)
11 Architettura di un data warehouse Other sources Operational DBs Metadata Extract Transform Load Refresh Monitor & Integrator Data Warehouse OLAP Server Serve Analysis Query Reports Data mining Data Marts Data Sources Data Storage OLAP Engine Front-End Tools
12 Costruzione di un Warehouse Un data warehouse deve essere un sistema distinto dai DB Per popolare un data warehouse, normalmente i dati vengono estratti da un DB operativo Spesso, fino all'80% del lavoro di costruzione risiede nel processo ETL: extract, transform, load. Extract: individuazione dei dati e scrittura di interrogazioni per estrarli dai DB operativi; Transform: scrittura di programmi o script per filtrare, ripulire, e ricondurre i dati a convenzioni di codifica comuni; Load: caricamento dei dati trasformati nel warehouse
13 Estrazione Il primo passo è l'individuazione dei dati che servono Alcuni dati possono risiedere su DB operativi, altri vanno desunti da altre fonti (uffici di statistica, pubblicazioni, Web) I dati vengono estratti dai DB operativi e copiati in un'area di lavoro locale A volte si ha accesso diretto al DB Spesso, però, si ricevono solo degli archivi estratti per noi da qualcun altro Problema di interfacciarsi alle fonti dei dati
14 Trasformazione Dati provenienti da fonti diverse devono essere convertiti in un formato comune È necessario conoscere il significato dei dati nei DB operativi Lo stesso dato può avere nomi distinti in fonti diverse Date, codici, ecc., possono essere codificati in modi diversi Lo stesso attributo di una tabella può avere nomi distinti in sistemi diversi (es.: genere/sesso) e essere rappresentato in modo diverso (es.: {0, 1} piuttosto che {M, F}) Dati numerici possono essere dati usando unità di misure diverse (es.: kjoule/kcal) La stessa misura può essere stata ottenuta con metodi diversi
15 Data Mart Un data warehouse costruito a livello di una singola unità di azienda o ente (area, divisione, dipartimento, centro, ecc.) Solitamente meno impegnativo di un data warehouse Poche fonti dei dati, spesso un solo DB operativo Specifici per un particolare tema o un particolare studio Ambito più ristretto di un data warehouse Indipendente = dati provengono dai DB operativi Dipendente = dati sono estratti da un data warehouse
16 Rappresentare un ipercubo in una tabella Dato un ipercubo con D dimensioni... Si ricava una tabella con D + 1 colonne: Ogni misura contenuta nell'ipercubo diventa una riga La i-esima colonna conterrà l'etichetta della i-esima dimensione L'ultima colonna, la (D + 1)-esima, conterrà la misura.... e viceversa.
17 Rappresentazione di serie storiche Analisi delle tendenze Idea principale: mappare i dati nello spazio delle fasi Spazio delle fasi (Fisica): Spazio di tutti i possibili stati di un sistema Ciascun parametro o grado di libertà corrisponde a un asse Spazio delle fasi ricostruito per una serie storica univariata: Si considera un insieme finito di ritardi, per esempio 0, 1, 2,... Si associa a ciascuna dimensione un ritardo Etichette: dato con ritardo; Misura: dato senza ritardo Spazio delle fasi generalizzato: Usare statistiche della serie (p.es.: medie mobili) al posto dei ritardi
18 Esempio Serie: 7.92, 9.27, 15.02, 14.80, 9.33, 11.78, 9.60, 4.64, 5.34, 6.96 Ricostruiamo lo spazio delle fasi con due ritardi: 1 e 2 Ipercubo con dimensioni X(t 2) e X(t 1) e misura X(t) Otteniamo: X(t 2) = 7.92, X(t 1) = 9.27, X(t) = X(t 2) = 9.27, X(t 1) = 15.02, X(t) = X(t 2) = 15.02, X(t 1) = 14.80, X(t) = 9.33 X(t 2) = 14.80, X(t 1) = 9.33, X(t) = ecc.
19 Data Warehouse Usage Three kinds of data warehouse applications Information processing supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs Analytical processing multidimensional analysis of data warehouse data supports basic OLAP operations, slice-dice, drilling, pivoting Data mining knowledge discovery from hidden patterns supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools
OLAP On Line Analytical Processing
OLAP On Line Analytical Processing Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria [email protected] Testo di Riferimento: J. Han, M.
Ambienti Operativi per OLAP. Casi di Studio
Ambienti Operativi per OLAP. Casi di Studio Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria [email protected] Sommario Installazione e Configurazione
Data Warehousing (DW)
Data Warehousing (DW) Il Data Warehousing è un processo per estrarre e integrare dati storici da sistemi transazionali (OLTP) diversi e disomogenei, e da usare come supporto al sistema di decisione aziendale
Introduzione data warehose. Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa. Data Warehouse
Introduzione data warehose Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa Data Warehouse Che cosa e un data warehouse? Quali sono i modelli dei dati per data warehouse Come si progetta
Analisi dei Dati. Lezione 10 Introduzione al Datwarehouse
Analisi dei Dati Lezione 10 Introduzione al Datwarehouse Il Datawarehouse Il Data Warehousing si può definire come il processo di integrazione di basi di dati indipendenti in un singolo repository (il
Star Schema. Progettazione Logica ROLAP 30/05/2014
Progettazione Logica Progettazione Logica ROLAP La versione multidimensionale dei dati usata nel DW può essere realizzata usando modelli logici diversi: Modello Relazionale: realizza la visione multidimensionale
Data warehousing Mario Guarracino Data Mining a.a. 2010/2011
Data warehousing Introduzione A partire dagli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa lezione vedremo
Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007
Data warehousing Introduzione A partire dalla metà degli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa
La suite Pentaho Community Edition
La suite Pentaho Community Edition GULCh 1 Cosa è la Business Intelligence Con la locuzione business intelligence (BI) ci si può solitamente riferire a: un insieme di processi aziendali per raccogliere
Cosa è un data warehouse?
Argomenti della lezione Data Warehousing Parte I Introduzione al warehousing cosa è un data warehouse classificazione dei processi aziendali sistemi di supporto alle decisioni elaborazione OLTP e OLAP
Introduzione ad OLAP (On-Line Analytical Processing)
Introduzione ad OLAP (On-Line Analytical Processing) Metodi e Modelli per il Supporto alle Decisioni 2002 Dipartimento di Informatica Sistemistica e Telematica (Dist) Il termine OLAP e l acronimo di On-Line
Data warehouse Introduzione
Database and data mining group, Data warehouse Introduzione INTRODUZIONE - 1 Pag. 1 Database and data mining group, Supporto alle decisioni aziendali La maggior parte delle aziende dispone di enormi basi
Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo
Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo Obiettivi. Presentare l evoluzione dei sistemi informativi: da supporto alla operatività a supporto al momento decisionale Definire
Data Warehousing. Argomenti della lezione. Rappresentazioni dei dati. Rappresentazione dei dati. Parte II Analisi multidimensionale
Argomenti della lezione Data Warehousing Parte II Analisi multidimensionale richiami sul data warehousing organizzazione di un data warehouse l analisi multidimensionale data warehousing e internet strumenti
B C I un altro punto di vista Introduzione
Bollicine Community B C Intelligence B C I un altro punto di vista Introduzione Graziano Guazzi General Manager Data Flow Settembre 2007 pag, 1 Cosa misurare La definizione di quale domanda di mercato
Lezione 9. Ambienti Operativi per OLAP Casi di Studio 08/03/2010 1
Lezione 9 Ambienti Operativi per OLAP Casi di Studio 08/03/2010 1 Ambienti Operativi per OLAP. Casi di Studio Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della
Data Warehousing. Esercitazione 1
Esercitazione 1 IBM DB2 UDB DB2 Universal Database Suite di strumenti per la gestione dei dati Funzioni avanzate per soluzioni business intelligence Dispone di strumenti di sviluppo del data warehouse
Data warehousing con SQL Server
Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data
Per capire meglio l ambito di applicazione di un DWhouse consideriamo la piramide di Anthony, L. Direzionale. L. Manageriale. L.
DATA WAREHOUSE Un Dataware House può essere definito come una base di dati di database. In molte aziende ad esempio ci potrebbero essere molti DB, per effettuare ricerche di diverso tipo, in funzione del
Data warehousing con SQL Server
Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing
Lezione 9. Microsoft Analysis Services: Principi e Funzionalità
Lezione 9 Microsoft Analysis Services: Principi e Funzionalità MS Analysis Services (OLAP Server) E l implementazione Microsoft di OLAP Server Offre buone prestazione per realtà aziendali medie/grandi
Data warehousing con SQL Server
Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing
SQL Server BI Development Studio
Il Data warehouse SQL Server Business Intelligence Development Studio Analysis Service Sorgenti dati operazionali DB relazionali Fogli excel Data warehouse Staging Area e dati riconciliati Cubi Report
PBI Passepartout Business Intelligence
PBI Passepartout Business Intelligence TARGET DEL MODULO Il prodotto, disponibile come modulo aggiuntivo per il software gestionale Passepartout Mexal, è rivolto alle Medie imprese che vogliono ottenere,
Data Warehouse Architettura e Progettazione
Introduzione Data Warehouse Architettura! Nei seguenti lucidi verrà fornita una panoramica del mondo dei Data Warehouse.! Verranno riportate diverse definizioni per identificare i molteplici aspetti che
Data Warehousing e Data Mining
Università degli Studi di Firenze Dipartimento di Sistemi e Informatica A.A. 2011-2012 I primi passi Data Warehousing e Data Mining Parte 2 Docente: Alessandro Gori [email protected] OLTP vs. OLAP OLTP vs.
DSCube. L analisi dei dati come strumento per i processi decisionali
DSCube L analisi dei dati come strumento per i processi decisionali Analisi multi-dimensionale dei dati e reportistica per l azienda: DSCube Introduzione alla suite di programmi Analyzer Query Builder
Il modello dimensionale
aprile 2012 1 L organizzazione dei dati del data warehouse costituisce la pietra angolare dell intero sistema DW/BI le applicazioni BI, di supporto alle decisioni, accedono i dati direttamente dal DW l
Capitolo 13. Interrogare una base di dati
Capitolo 13 Interrogare una base di dati Il database fisico La ridondanza è una cosa molto, molto, molto brutta Non si devono mai replicare informazioni scrivendole in più posti diversi nel database Per
Volumi di riferimento
Simulazione seconda prova Esame di Stato Gestione di un centro agroalimentare all ingrosso Parte prima) Un nuovo centro agroalimentare all'ingrosso intende realizzare una base di dati per l'attività di
SQL Server 2005. Introduzione all uso di SQL Server e utilizzo delle opzioni Olap. Dutto Riccardo - SQL Server 2005.
SQL Server 2005 Introduzione all uso di SQL Server e utilizzo delle opzioni Olap SQL Server 2005 SQL Server Management Studio Gestione dei server OLAP e OLTP Gestione Utenti Creazione e gestione DB SQL
Basi di Dati Complementi Esercitazione su Data Warehouse
Sommario Basi di Dati Complementi Esercitazione su Data Warehouse 1. Riassunto concetti principali dalle slide della lezione di teoria 2.Studio di caso : progettazione di un Data Warehouse di una catena
Lorenzo Braidi. Database design. Libro_datadesign.indb 1 23-11-2004 10:06:17
Lorenzo Braidi Database design Libro_datadesign.indb 1 23-11-2004 10:06:17 Sommario Introduzione...XI Capitolo 1 Le basi di dati relazionali... 1 Le basi di dati... 1 Un po di storia... 2 I database gerarchici...
SQL Server. Applicazioni principali
SQL Server Introduzione all uso di SQL Server e utilizzo delle opzioni OLAP Applicazioni principali SQL Server Enterprise Manager Gestione generale di SQL Server Gestione utenti Creazione e gestione dei
Data warehousing con SQL Server
Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data
Progetto Turismo Pisa
2012 Progetto Turismo Pisa Deliverable D2.2 Realizzazione del prototipo per la navigazione dell infrastruttura di conoscenza Coordinamento: Fosca Fosca Giannotti Salvatore Rinzivillo KDD KDD Lab, Lab,
Data warehousing e OLAP
Data warehousing e OLAP Introduzione Il contesto, processi aziendali Decision Support Systems Sistemi di Data Warehousing Data mart Architettura Modellazione Concettuale Star Schema, Dimensioni, Livelli
Supporto alle decisioni e strategie commerciali/mercati/prodotti/forza vendita;
.netbin. è un potentissimo strumento SVILUPPATO DA GIEMME INFORMATICA di analisi dei dati con esposizione dei dati in forma numerica e grafica con un interfaccia visuale di facile utilizzo, organizzata
Pivot Tables. vendite raggruppate per prodotto e zona vendite raggruppate per prodotto e mese
Pivot Tables Le Pivot Tables di Excel consentono di costruire un cubo OLAP a partire da dati memorizzati in una singola tabella Le operazioni OLAP corrispondono, in Excel, ad una tecnica di analisi dei
Dispensa di database Access
Dispensa di database Access Indice: Database come tabelle; fogli di lavoro e tabelle...2 Database con più tabelle; relazioni tra tabelle...2 Motore di database, complessità di un database; concetto di
PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE
Tesi in: ARCHITETTURA DEI SISTEMI INFORMATIVI PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE IN UN AMBIENTE DI DISTRIBUZIONE FARMACEUTICA RELATORE: Prof. Crescenzio Gallo LAUREANDO: Alessandro Balducci
Database. Si ringrazia Marco Bertini per le slides
Database Si ringrazia Marco Bertini per le slides Obiettivo Concetti base dati e informazioni cos è un database terminologia Modelli organizzativi flat file database relazionali Principi e linee guida
Introduzione al data warehousing
Introduzione al data warehousing, Riccardo Torlone aprile 2012 1 Motivazioni I sistemi informatici permettono di aumentare la produttività delle organizzazioni automatizzandone la gestione quotidiana dei
SEGMENTAZIONE INNOVATIVA VS TRADIZIONALE
SEGMENTAZIONE INNOVATIVA VS TRADIZIONALE Arricchimento dei dati del sottoscrittore / user Approccio Tradizionale Raccolta dei dati personali tramite contratto (professione, dati sul nucleo familiare, livello
SISTEMI INFORMATIVI AVANZATI -2010/2011 1. Introduzione
SISTEMI INFORMATIVI AVANZATI -2010/2011 1 Introduzione In queste dispense, dopo aver riportato una sintesi del concetto di Dipendenza Funzionale e di Normalizzazione estratti dal libro Progetto di Basi
Business Intelligence & Data Mining. In ambiente Retail
Business Intelligence & Data Mining In ambiente Retail Business Intelligence Platform DATA SOURCES STAGING AREA DATA WAREHOUSE DECISION SUPPORT Application Databases Packaged application/erp Data DATA
Lezione V. Aula Multimediale - sabato 29/03/2008
Lezione V Aula Multimediale - sabato 29/03/2008 LAB utilizzo di MS Access Definire gli archivi utilizzando le regole di derivazione e descrivere le caratteristiche di ciascun archivio ASSOCIAZIONE (1:1)
La Metodologia adottata nel Corso
La Metodologia adottata nel Corso 1 Mission Statement + Glossario + Lista Funzionalià 3 Descrizione 6 Funzionalità 2 Schema 4 Schema 5 concettuale Logico EA Relazionale Codice Transazioni In PL/SQL Schema
Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni
Data warehouse Data warehouse La crescita dell importanza dell analisi dei dati ha portato ad una separazione architetturale dell ambiente transazionale (OLTP on-line transaction processing) da quello
ControlloCosti. Cubi OLAP. Controllo Costi Manuale Cubi
ControlloCosti Cubi OLAP I cubi OLAP Un Cubo (OLAP, acronimo di On-Line Analytical Processing) è una struttura per la memorizzazione e la gestione dei dati che permette di eseguire analisi in tempi rapidi,
Riccardo Dutto, Paolo Garza Politecnico di Torino. Riccardo Dutto, Paolo Garza Politecnico di Torino
Integration Services Project SQL Server 2005 Integration Services Permette di gestire tutti i processi di ETL Basato sui progetti di Business Intelligence di tipo Integration services Project SQL Server
Abilità Informatiche A.A. 2010/2011 Lezione 9: Query Maschere Report. Facoltà di Lingue e Letterature Straniere
Abilità Informatiche A.A. 2010/2011 Lezione 9: Query Maschere Report Facoltà di Lingue e Letterature Straniere Le QUERY 2 Che cos è una Query? Una Query rappresenta uno strumento per interrogare un database.
Nota Metodologica DW Congiuntura USA
Nota Metodologica DW Congiuntura USA Gennaio 2015 StudiaBo srl via Santo Stefano 57, 40125 Bologna tel. +39 051 5870353 C.F e P.iva: 03087661207 www.studiabo.it Nota Metodologica DW Congiuntura USA Copyright
Esercitazione query in SQL L esercitazione viene effettuata sul database viaggi e vacanze che prevede il seguente modello E/R:
Esercitazione query in SQL L esercitazione viene effettuata sul database viaggi e vacanze che prevede il seguente modello E/R: Si consiglia di creare il data base, inserire i dati nelle tabelle, provare
SQL/OLAP. Estensioni OLAP in SQL
SQL/OLAP Estensioni OLAP in SQL 1 Definizione e calcolo delle misure Definire una misura significa specificare gli operatori di aggregazione rispetto a tutte le dimensioni del fatto Ipotesi: per ogni misura,
processi analitici aziendali
Best practises per lo sviluppo dei processi analitici aziendali Business Brief@CSC Roma, 29 maggio 2008 Tachi PESANDO Business & Management Agenda Importanza della Customer oggi Le due anime di un progetto
SISTEMI INFORMATIVI AZIENDALI
SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg [email protected] Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Sistemi informazionali La crescente diffusione dei
Ciclo di vita dimensionale
aprile 2012 1 Il ciclo di vita dimensionale Business Dimensional Lifecycle, chiamato anche Kimball Lifecycle descrive il framework complessivo che lega le diverse attività dello sviluppo di un sistema
Università degli Studi di Ferrara - A.A. 2014/15 Dott. Valerio Muzzioli ORDINAMENTO DEI DATI
ORDINAMENTO DEI DATI Quando si ordina un elenco (ovvero una serie di righe contenenti dati correlati), le righe sono ridisposte in base al contenuto di una colonna specificata. Distinguiamo due tipi di
4 Data Transformation Services
Data Transformation Services Data Transformation Services (tutorial) 10 novembre 2000 La preparazione dei dati richiede lo svolgimento coordinato di un grande numero di attività attività estrazione dei
Thematica Software Technologies
Sperimentazione di Servizi Innovativi alle Imprese Produttrici di Software Università della Calabria 21-10-2004 Giovanni Laboccetta Thematica s.r.l. www.thematica.it [email protected] Perché i data
I sistemi di reporting e i rapporti direzionali
I sistemi di reporting e i rapporti direzionali Reporting - Sintesi dei fenomeni aziendali secondo modelli preconfezionati e con frequenza e aggiornamento prestabiliti - contabile (dati economici) - extracontabile
Rassegna sui principi e sui sistemi di Data Warehousing
Università degli studi di Bologna FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI Rassegna sui principi e sui sistemi di Data Warehousing Tesi di laurea di: Emanuela Scionti Relatore: Chiar.mo Prof.Montesi
Organizzazione degli archivi
COSA E UN DATA-BASE (DB)? è l insieme di dati relativo ad un sistema informativo COSA CARATTERIZZA UN DB? la struttura dei dati le relazioni fra i dati I REQUISITI DI UN DB SONO: la ridondanza minima i
4 Introduzione al data warehousing
Che cosa è un data warehouse? Introduzione al data warehousing 22 maggio 2001 Un data warehouse è una base di dati collezione di dati di grandi dimensioni, persistente e condivisa gestita in maniera efficace,
ESEMPIO: RITARDI & BIGLIETTI
ESEMPIO: RITARDI & BIGLIETTI Fatto Ritardi: l analisi a livello volo giornaliero, considerando l aeroporto di partenza, la città e lo stato di arrivo e la compagnia Fatto Biglietti: l analisi deve considerare
WE FOR YOU. Gestione Documentale integrata con ERP
Gestione Documentale integrata con ERP Milano, 29 Luglio 2014 L ARCHITETTURA GENERALE Guest Internal Supply Web Admin Functionality Layer Web W4Y W4Y Acquisizione documenti Web Services Layer Conservazione
Estensioni del linguaggio SQL per interrogazioni OLAP
Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Estensioni del linguaggio SQL per interrogazioni OLAP Outline! Esempio introduttivo e motivazioni! Introduzione al modello
La soluzione Easy Net per l analisi visuale di dati georeferenziati
La soluzione Easy Net per l analisi visuale di dati georeferenziati Copyright Easy Net Srl 2011 L Esigenza individuata Perchè usare EasyDMS 1. Efficacia. Osservazione immediata dei fenomeni di interesse
Progetto ASTREA WP2: Sistema informativo per il monitoraggio del sistema giudiziario
Progetto ASTREA WP2: Sistema informativo per il monitoraggio del sistema giudiziario Nell ambito di questa attività è in fase di realizzazione un applicativo che metterà a disposizione dei policy makers,
Architetture per l analisi di dati
Architetture per l analisi di dati Basi di dati: Architetture e linee di evoluzione - Seconda edizione Capitolo 8 Appunti dalle lezioni Motivazioni I sistemi informatici permettono di aumentare la produttività
SOMMARIO. 9- Basi di dati direzionali. Tipi di sistemi direzionali SISTEMI INFORMATIVI DIREZIONALI. Basi di Dati per la gestione dell Informazione
1 SOMMARIO 2 9- Basi di dati direzionali Basi di Dati per la gestione dell Informazione A. Chianese, V. Moscato, A. Picariello, L. Sansone Sistemi Informativi Direzionali (SID) Architettura dei SID La
DATABASE RELAZIONALI
1 di 54 UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI DISCIPLINE STORICHE ETTORE LEPORE DATABASE RELAZIONALI Dott. Simone Sammartino Istituto per l Ambiente l Marino Costiero I.A.M.C. C.N.R.
Servizi finanziari (studio di caso)
(studio di caso) aprile 2012 1 Il processo dei servizi finanziari Viene ora considerato il data warehouse per una grande banca la banca offre diversi servizi finanziari ad esempio, conti correnti, libretti
PROGRAMMA DI CLASSE 5AI
Istituto di Istruzione Superiore Euganeo Istituto tecnico del settore tecnologico Istituto professionale del settore servizi socio-sanitari Istituto professionale del settore industria e artigianato PROGRAMMA
Il linguaggio SQL. è di fatto lo standard tra i linguaggi per la gestione di data base relazionali.
(Structured Query Language) : Il linguaggio è di fatto lo standard tra i linguaggi per la gestione di data base relazionali. prima versione IBM alla fine degli anni '70 per un prototipo di ricerca (System
SOSEBI PAPERMAP2 MODULO WEB MANUALE DELL UTENTE
SOSEBI PAPERMAP2 MODULO WEB MANUALE DELL UTENTE S O. S E. B I. P R O D O T T I E S E R V I Z I P E R I B E N I C U L T U R A L I So.Se.Bi. s.r.l. - via dell Artigianato, 9-09122 Cagliari Tel. 070 / 2110311
Introduzione al Datamining. Francesco Passantino [email protected] www.iteam5.net/francesco
Introduzione al Datamining Francesco Passantino francesco@iteam5net wwwiteam5net/francesco Cos è il datamining Processo di selezione, esplorazione e modellazione di grandi masse di dati, al fine di scoprire
ITI M. FARADAY Programmazione modulare a.s. 2014-2015
Indirizzo: INFORMATICA E TELECOMUNICAZIONI Disciplina: Informatica Docente:Maria Teresa Niro Classe: Quinta B Ore settimanali previste: 6 (3 ore Teoria - 3 ore Laboratorio) ITI M. FARADAY Programmazione
AICA - Workshop 01/03/2011
AICA - Workshop La Mappa di un sistema di BI I tre elementi che hanno "cambiato il gioco": Maturazione degli ETL open source La semplificazione di Amazon EC2 L'arrivo dei DB Colonnari Nel dettaglio Cos'è
Progettaz. e sviluppo Data Base
Progettaz. e sviluppo Data Base! Progettazione Basi Dati: Metodologie e modelli!modello Entita -Relazione Progettazione Base Dati Introduzione alla Progettazione: Il ciclo di vita di un Sist. Informativo
Basi di dati. Il Linguaggio SQL. K. Donno - Il Linguaggio SQL
Basi di dati Il Linguaggio SQL Data Definition Language (DDL) Data Definition Language: insieme di istruzioni utilizzate per modificare la struttura della base di dati Ne fanno parte le istruzioni di inserimento,
Data Mining e Analisi dei Dati
e Analisi dei Dati Rosaria Lombardo Dipartimento di Economia, Seconda Università di Napoli La scienza che estrae utili informazioni da grandi databases è conosciuta come E una disciplina nuova che interseca
OLAP On Line Analytical Processing
OLAP On Line Analytical Processing Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria [email protected] Testo di Riferimento: J. Han, M.
Sistemi Informativi e Sistemi ERP
Sistemi Informativi e Sistemi Trasformare i dati in conoscenza per supportare le decisioni CAPODAGLIO E ASSOCIATI 1 I SISTEMI INFORMATIVI LI - E IMPRESA SISTEMA DI OPERAZIONI ECONOMICHE SVOLTE DA UN DATO
ISTITUTO TECNICO ECONOMICO MOSSOTTI
CLASSE III INDIRIZZO S.I.A. UdA n. 1 Titolo: conoscenze di base Conoscenza delle caratteristiche dell informatica e degli strumenti utilizzati Informatica e sistemi di elaborazione Conoscenza delle caratteristiche
Le Basi di Dati. Le Basi di Dati
Le Basi di Dati 20/05/02 Prof. Carlo Blundo 1 Le Basi di Dati Le Base di Dati (database) sono un insieme di tabelle di dati strutturate in maniera da favorire la ricerca di informazioni specializzate per
DBMS (Data Base Management System)
Cos'è un Database I database o banche dati o base dati sono collezioni di dati, tra loro correlati, utilizzati per rappresentare una porzione del mondo reale. Sono strutturati in modo tale da consentire
Laboratorio di Basi di Dati e Web
Laboratorio di Basi di Dati e Web Docente: Alberto Belussi Lezione 1 SQL Structured Query Language SQL è stato definito nel 1973 ed è oggi il linguaggio più diffuso per i DBMS relazionali Il linguaggio
Lezione 1. Introduzione e Modellazione Concettuale
Lezione 1 Introduzione e Modellazione Concettuale 1 Tipi di Database ed Applicazioni Database Numerici e Testuali Database Multimediali Geographic Information Systems (GIS) Data Warehouses Real-time and
Biglietti e Ritardi: schema E/R
Biglietti e Ritardi: schema E/R Ritardi: Progettazione dello schema di Fatto! Definire uno schema di fatto per analizzare i ritardi; in particolare l analisi deve considerare l aeroporto di partenza, mentre
CORSO ACCESS PARTE II. Esistono diversi tipi di aiuto forniti con Access, generalmente accessibili tramite la barra dei menu (?)
Ambiente Access La Guida di Access Esistono diversi tipi di aiuto forniti con Access, generalmente accessibili tramite la barra dei menu (?) Guida in linea Guida rapida Assistente di Office indicazioni
Data Mining a.a. 2010-2011
Data Mining a.a. 2010-2011 Docente: [email protected] tel. 081 6139519 http://www.na.icar.cnr.it/~mariog Informazioni logistiche Orario delle lezioni A partire dall 19.10.2010, Martedì h: 09.50 16.00
Introduzione. La misurazione dei sistemi di Data Warehouse. Definizioni & Modelli. Sommario. Data Warehousing. Introduzione. Luca Santillo (CFPS)
Introduzione La misurazione dei sistemi di Data Warehouse Luca Santillo (CFPS) AIPA, 17/5/01 In pratica I concetti generali, le definizioni e le regole di conteggio possono essere difficili da applicare
