Una CPU multi-ciclo. Sommario

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Una CPU multi-ciclo. Sommario"

Transcript

1 Una CPU multi-ciclo Prof. lberto orghese Dipartimento di Scienze dell Informazione Università degli Studi di Milano iferimento sul Patterson: Sezione D3 1/30 Sommario I problemi della UC a singolo ciclo di clock Principi ispiratori di una CPU multi-ciclo. Le fasi di fetch e decodifica. Esecuzione multi-ciclo delle istruzioni Esecuzione multi-ciclo delle istruzioni lw/sw. Esecuzione delle istruzioni di salto. nalisi della CPU multi-ciclo. 2/30 1

2 Ciclo di esecuzione di un istruzione Prelievo istruzione (fase di fetch) Decodifica Calcolo Memoria rite ack 3/30 CPU +UC a Ciclo singolo Clk I T > Tempo necessario per eseguire il cammino critico 4/30 2

3 Problemi Duplicazione della Memoria e triplicazione della LU. Tuttavia le unità funzionali sono utilizzate in fasi diverse del ciclo di esecuzione di un istruzione (e.g. Memoria istruzioni in fase di fetch, Memoria dati in fase di Lettura/scrittura). Durata uguale per istruzioni che richiedono tempi molto diversi. Il clock deve essere impostato secondo il cammino critico. 5/30 Esecuzione in un singolo ciclo di clock ssumiamo: memoria (2ns), LU e sommatori (2ns), lettura/scrittura registri (1ns), decodifica (2ns), nessun ritardo, tempi trascurabili per gli altri elementi della CPU, componenti indipendenti possono lavorare in parallelo. Istruzione Memoria istruzioni Lettura registri Decodifica Operazione LU Memoria dati rite back Totale Tipo ns lw ns sw ns 1 3ns beq ns j ns La durata del ciclo di clock deve essere pari al percorso più lungo (cammino critico). Percorso più lungo dovuto ad istruzione di caricamento (lw) 6/30 3

4 Valutazione della prestazione della CPU a singolo ciclo Dipende dal programma. lw sw beq j fp (add) fp (mul) Durata Clock (max) Durata media Durata 9ns 8ns 6ns 4ns 7ns 12ns 20ns Caso I 24% 12% 18% 2% 44% 9ns 7.36ns Caso II 31% 21% 5% 2% 27% 7% 7% 20ns 8.98ns In ogni caso, un implementazione a clock singolo porta ad uno spreco di tempo notevole. 7/30 Come gestire istruzioni di durata diversa? Quando è efficiente l implementazione a singolo ciclo? Clock di durata variabile è una soluzione? Non viene risolto il problema della duplicazione delle unità funzionali. 8/30 4

5 Sommario I problemi della UC a singolo ciclo di clock Principi ispiratori di una CPU multi-ciclo. Le fasi di fetch e decodifica. Esecuzione multi-ciclo delle istruzioni Esecuzione multi-ciclo delle istruzioni lw/sw. Esecuzione multi-ciclo delle istruzioni di salto. nalisi della CPU multi-ciclo. 9/30 Caratteristiche CPU multi-ciclo Spezza l istruzione in più passi, dove ciascun passo impiega lo stesso tempo. Il clock non sincronizza più l intera istruzione ma solamente il singolo passo. Le istruzioni possono essere eseguite in un numero diverso di cicli di clock. Consente di riutilizzare le unità funzionali (in cicli di clock diversi). ichiede l aggiunta di H addizionali (registri di memoria temporanea). Questi devono memorizzare lo stato delle unità funzionali, cioè l informazione che può servire ai passi successivi e che rischia di essere sovrascritta dal riuso dell unità funzionale. L unità di controllo diventa una FSM. 10/30 5

6 Ciclo di esecuzione di un istruzione Prelievo istruzione (fase di fetch) Decodifica Calcolo Memoria rite ack Le istruzioni richiederanno da 3 a 5 cicli di clock 11/30 Valutazione della prestazione della CPU multi-ciclo Dipende dal programma. lw sw beq j fp (add) fp (mul) Durata 10ns 8ns 6ns 4ns 8ns 12ns 20ns Durata Clock (max singolo ciclo) Durata media Caso I 24% 12% 18% 2% 44% 9ns 8.0ns Caso II 31% 21% 5% 2% 27% 7% 7% 20ns 9.56ns questo confronto va aggiunto che la CPU multi-ciclo consente ancora dei risparmi ulteriori nel tempo di esecuzione. 12/30 6

7 Circuito della fase di fetch multi-ciclo 8004 t PC 8000 t PCrite N: Occorre un segnale esplicito per scrivere in un registro (oltre al segnale di clock). Non occorre per la lettura. Memead I op rs rt rd shamt funct 6 bit 5 bit 5 bit 5 bit 5 bit 6 bit add t add t+1 Irite LUop = Somma 8000 add $s1, $s2, $s lw $s1, 20($s2) /30 I op rs rt rd shamt funct 6 bit 5 bit 5 bit 5 bit 5 bit 6 bit Decodifica e lettura dei registri 1) Leggo l istruzione e genero i segnali di controllo opportuni. 2) Leggo il contenuto dei registri. #eg read 1 #eg read 2 #eg write Unità Controllo <$s1> <$s2> Segnali di controllo = f(codop) 8000 add $s1, $s2, $s lw $s1, 20($s2)... 14/30 = Clk = Clk 7

8 Sommario I problemi della UC a singolo ciclo di clock Principi ispiratori di una CPU multi-ciclo. Le fasi di fetch e decodifica. Esecuzione multi-ciclo delle istruzioni Esecuzione multi-ciclo delle istruzioni lw/sw. Esecuzione multi-ciclo delle istruzioni di salto. nalisi della CPU multi-ciclo. 15/30 Fase di calcolo (tipo ) LUop #eg read 1 #eg read 2 #eg write <$s1> <$s2> <$s1> +<$s2> LUOut 8000 add $s1, $s2, $s lw $s1, 20($s2)... 16/30 8

9 I Fase di rite back (tipo ) op rs rt rd shamt funct 6 bit 5 bit 5 bit 5 bit 5 bit 6 bit #eg read 1 #eg read 2 #eg write <$s3> <$s1> <$s2> 8000 add $s1, $s2, $s lw $s1, 20($s2)... LUop Zero <$s1> +<$s2> isultato LUOut Overflow isultato 17/30 Sommario I problemi della UC a singolo ciclo di clock Principi ispiratori di una CPU multi-ciclo. Le fasi di fetch e decodifica. Esecuzione multi-ciclo delle istruzioni Esecuzione multi-ciclo delle istruzioni lw/sw. Esecuzione multi-ciclo dei salti ed analisi della CPU multi-ciclo. 18/30 9

10 I op rs rt Offset I 6 bit 5 bit 5 bit 16 bit Fase di calcolo (tipo I: lw) 16 Estensione 32 segno #eg read 1 #eg read 2 #eg write <$s1> Null LUop = Somma <$s1> lw $s1, 20($s2) LUOut 19/30 Lettura della memoria + write-back Indirizzo = isultato LU Dato Memoria LUOut <$s2> + 20 Dati MD 8004 lw $s1, 20($s2) LUOut = M #eg read 1 #eg read 2 #eg write 20/

11 Fase di calcolo (tipo I: sw) I op rs rt Offset I 6 bit 5 bit 5 bit 16 bit 16 Estensione 32 segno #eg read 1 #eg read 2 #eg write <$s2> <$s1> 20 LUop = Somma <$s2> + 20 LUOut 8008 sw $s1, 20($s2) 21/30 Scrittura nella memoria 8008 sw $s1, 20($s2) Indirizzo = isultato LU Dato Memoria LUOut <$s2> + 20 Dati MD LUOut = M #eg read 1 #eg read 2 #eg write 22/

12 Sommario I problemi della UC a singolo ciclo di clock Principi ispiratori di una CPU multi-ciclo. Le fasi di fetch e decodifica. Esecuzione multi-ciclo delle istruzioni Esecuzione multi-ciclo delle istruzioni lw/sw. Esecuzione multi-ciclo delle istruzioni di salto. nalisi della CPU multi-ciclo. 23/30 CPU + UC a ciclo singolo LUs LUop I 24/

13 Decodifica e lettura dei registri, beq 16 bit Ext 32 bit segno *4 LUout PC PC+4 Memoria Istruzioni II I op rs rt Offset 6 bit 5 bit 5 bit 16 bit #eg read 1 #eg read 2 #eg write Unità Controllo = Clk 1) Leggo l istruzione e genero i segnali di controllo opportuni. 2) Leggo il contenuto dei registri. 3) Pre-Calcolo l indirizzo di salto Segnali di controllo = f(codop) <$s1> <$s2> = Clk 25/30 Fase di calcolo (beq) zero LUop #eg read 1 #eg read 2 #eg write <$s1> <$s2> LUOut <$s1>-<$s2> PC+4+Offset Clk 26/

14 CPU multi-ciclo: i salti PC Offset 00 PCrite PCriteCond 4 PC+4 PCSource PC+4+offset <$s1>-<$s2> Mux sceglie tramite PCSource tra: PCrite, e PC Source sono coordinati Indirizzo ottenuto sommando 4. PCriteCond e PCSource sono coordinati. Indirizzo ottenuto dall LU (beq). Indirizzo ottenuto dal campo offset dell I (jump). 27/30 Sommario I problemi della UC a singolo ciclo di clock Principi ispiratori di una CPU multi-ciclo. Le fasi di fetch e decodifica. Esecuzione multi-ciclo delle istruzioni Esecuzione multi-ciclo delle istruzioni lw/sw. Esecuzione multi-ciclo delle istruzioni di salto. nalisi della CPU multi-ciclo. 28/

15 Confronto delle 2 CPU Due Memorie. Si possono compattare a patto di creare 2 registri. 1 registro istruzione (I) ed un registro dati (MD). 3 LU. Si può utilizzare una unica LU se viene utilizzata in 3 fasi diverse. Fase 1: + 4. Fase 2 Offset + rs (pre-calcolo l indirizzo di salto). Fase 3. Operazione di tipo. 29/30 Sommario I problemi della UC a singolo ciclo di clock Principi ispiratori di una CPU multi-ciclo. Le fasi di fetch e decodifica. Esecuzione multi-ciclo delle istruzioni Esecuzione multi-ciclo delle istruzioni lw/sw. Esecuzione multi-ciclo delle istruzioni di salto. nalisi della CPU multi-ciclo. 30/

Una CPU multi-ciclo. Sommario

Una CPU multi-ciclo. Sommario Una CPU multi-ciclo Prof. lberto orghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano iferimento sul Patterson: Sezioni 5.5 e 5.6 1/30 http:\\homes.dsi.unimi.it\

Dettagli

Una CPU multi-ciclo. Sommario

Una CPU multi-ciclo. Sommario Una CPU multi-ciclo Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano 1/3 http:\\homes.dsi.unimi.it\ borghese Sommario I problemi della

Dettagli

Architettura degli elaboratori - II Le architetture multi-ciclo

Architettura degli elaboratori - II Le architetture multi-ciclo Architettura degli elaboratori - II Le architetture multi-ciclo Prof. Alberto Borghese Dipartimento di Informatica alberto.borghese@unimi.it Università degli Studi di Milano 1/41 Sommario Principi ispiratori

Dettagli

CPU a ciclo multiplo

CPU a ciclo multiplo Architettura degli Elaboratori e delle Reti Lezione CPU a ciclo multiplo Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L /9 Sommario! I problemi

Dettagli

Architettura della CPU multi-ciclo

Architettura della CPU multi-ciclo Architettura della CPU multi-ciclo Architettura degli Elaboratori e delle Reti, Turno I Alberto Borghese Università degli Studi di Milano Dipartimento di Scienze dell Informazione email: borghese@dsi.unimi.it

Dettagli

CPU a ciclo multiplo

CPU a ciclo multiplo Architettura degli Elaboratori e delle Reti Lezione CPU a ciclo multiplo Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 1/8 Sommario! I problemi

Dettagli

CPU a singolo ciclo. Lezione 18. Sommario. Architettura degli Elaboratori e delle Reti

CPU a singolo ciclo. Lezione 18. Sommario. Architettura degli Elaboratori e delle Reti Architettura degli Elaboratori e delle Reti Lezione 18 CPU a singolo ciclo Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 18 1/2 Sommario!

Dettagli

CPU a singolo ciclo. Lezione 18. Sommario. Architettura degli Elaboratori e delle Reti. Proff. A. Borghese, F. Pedersini

CPU a singolo ciclo. Lezione 18. Sommario. Architettura degli Elaboratori e delle Reti. Proff. A. Borghese, F. Pedersini Architettura degli Elaboratori e delle Reti Lezione 8 CPU a singolo ciclo Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 8 /33 Sommario! La

Dettagli

Architettura degli elaboratori CPU a ciclo singolo

Architettura degli elaboratori CPU a ciclo singolo Architettura degli elaboratori CPU a ciclo singolo Prof. Alberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano iferimento sul Patterson: capitolo 4.2, 4.4,

Dettagli

Progetto CPU a singolo ciclo

Progetto CPU a singolo ciclo Architettura degli Elaboratori e delle Reti Progetto CPU a singolo ciclo Proff. A. Borghese, F. Pedersini Dipartimento di Informatica Università degli Studi di Milano 1/50 Sommario! La CPU! Sintesi di

Dettagli

L unità di controllo di CPU multi-ciclo. Sommario

L unità di controllo di CPU multi-ciclo. Sommario L unità di controllo di CPU multi-ciclo Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento sul Patterson: Sezione C3 1/24

Dettagli

L unità di controllo di CPU multi-ciclo

L unità di controllo di CPU multi-ciclo L unità di controllo di CPU multi-ciclo Prof. Alberto Borghese Dipartimento di Scienze dell Informazione alberto.borghese@unimi.it Università degli Studi di Milano Riferimento sul Patterson: Sezione D3

Dettagli

La CPU a singolo ciclo

La CPU a singolo ciclo La CPU a singolo ciclo Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento sul Patterson: capitolo 5 (fino a 5.4) /46 Sommario

Dettagli

L'architettura del processore MIPS

L'architettura del processore MIPS L'architettura del processore MIPS Piano della lezione Ripasso di formati istruzione e registri MIPS Passi di esecuzione delle istruzioni: Formato R (istruzioni aritmetico-logiche) Istruzioni di caricamento

Dettagli

L unità di controllo di CPU a singolo ciclo

L unità di controllo di CPU a singolo ciclo L unità di controllo di CPU a singolo ciclo Prof. Alberto Borghese Dipartimento di Informatica alberto.borghese@unimi.it Università degli Studi di Milano Riferimento sul Patterson: capitolo 4.2, 4.4, D,

Dettagli

Progetto CPU a singolo ciclo

Progetto CPU a singolo ciclo Architettura degli Elaboratori e delle Reti Progetto CPU a singolo ciclo Proff. A. Borghese, F. Pedersini Dipartimento di Informatica Università degli Studi di Milano 1/60 Sommario v La CPU v Sintesi di

Dettagli

L unità di controllo di CPU a singolo ciclo

L unità di controllo di CPU a singolo ciclo L unità di controllo di CPU a singolo ciclo Prof. Alberto Borghese Dipartimento di Informatica alberto.borghese@unimi.it Università degli Studi di Milano Riferimento sul Patterson: capitolo 4.2, 4.4, D1,

Dettagli

Stall on load e Hazard sul controllo. Sommario

Stall on load e Hazard sul controllo. Sommario Stall on load e Hazard sul controllo Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento al Patterson: 4.7, 4.8 1/31 Sommario

Dettagli

La CPU a singolo ciclo

La CPU a singolo ciclo La CPU a singolo ciclo Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento sul Patterson: capitolo 5 (fino a 5.4) 1/44 Sommario

Dettagli

Architettura degli elaboratori CPU a ciclo singolo

Architettura degli elaboratori CPU a ciclo singolo Architettura degli elaboratori CPU a ciclo singolo Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimento sul Patterson: capitolo

Dettagli

Stall on load e Hazard sul controllo

Stall on load e Hazard sul controllo Stall on load e Hazard sul controllo Prof. N.Alberto Borghese Dipartimento di Informatica alberto.borghese@unimi.it Università degli Studi di Milano Riferimento al Patterson: 4.7, 4.8 1/38 Sommario Identificazione

Dettagli

Richiami sull architettura del processore MIPS a 32 bit

Richiami sull architettura del processore MIPS a 32 bit Caratteristiche principali dell architettura del processore MIPS Richiami sull architettura del processore MIPS a 32 bit Architetture Avanzate dei Calcolatori Valeria Cardellini E un architettura RISC

Dettagli

Stall on load e Hazard sul controllo

Stall on load e Hazard sul controllo Stall on load e Hazard sul controllo Prof. N.Alberto Borghese Dipartimento di Informatica alberto.borghese@unimi.it Università degli Studi di Milano Riferimento al Patterson: 4.7, 4.8 1/38 Sommario Identificazione

Dettagli

La pipeline. Sommario

La pipeline. Sommario La pipeline Prof. Alberto Borghese Dipartimento di Scienze dell Informazione alberto.borghese@unimi.it Università degli Studi di Milano Riferimento al Patterson edizione 5: 4.5 e 4.6 1/28 http:\\borghese.di.unimi.it\

Dettagli

L unità di controllo di CPU a singolo ciclo. Sommario

L unità di controllo di CPU a singolo ciclo. Sommario L unità di controllo di CPU a singolo ciclo Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento sul Patterson: capitolo 4.2,

Dettagli

Richiami sull architettura del processore MIPS a 32 bit

Richiami sull architettura del processore MIPS a 32 bit Richiami sull architettura del processore MIPS a 32 bit Architetture Avanzate dei Calcolatori Valeria Cardellini Caratteristiche principali dell architettura del processore MIPS E un architettura RISC

Dettagli

CPU a ciclo multiplo: l unità di controllo

CPU a ciclo multiplo: l unità di controllo Architettura degli Elaboratori e delle Reti Lezione 2 CPU a ciclo multiplo: l unità di controllo Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano

Dettagli

La pipeline. Sommario

La pipeline. Sommario La pipeline Prof. Alberto Borghese Dipartimento di Scienze dell Informazione alberto.borghese@unimi.it Università degli Studi di Milano Riferimento al Patterson edizione 5: 4.5 e 4.6 1/31 http:\\borghese.di.unimi.it\

Dettagli

CPU pipeline hazards

CPU pipeline hazards Architettura degli Elaboratori e delle Reti Lezione 23 CPU pipeline hazards Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 23 /24 Sommario!

Dettagli

CPU a singolo ciclo: l unità di controllo, esecuzione istruzioni tipo J

CPU a singolo ciclo: l unità di controllo, esecuzione istruzioni tipo J Architettura degli Elaboratori e delle Reti Lezione 9 CPU a singolo ciclo: l unità di controllo, esecuzione istruzioni tipo J Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione

Dettagli

Architettura degli Elaboratori Lez. 8 CPU MIPS a 1 colpo di clock. Prof. Andrea Sterbini

Architettura degli Elaboratori Lez. 8 CPU MIPS a 1 colpo di clock. Prof. Andrea Sterbini Architettura degli Elaboratori Lez. 8 CPU MIPS a 1 colpo di clock Prof. Andrea Sterbini sterbini@di.uniroma1.it Argomenti Progetto della CPU MIPS a 1 colpo di clock - Istruzioni da implementare - Unità

Dettagli

CPU a singolo ciclo: l unità di controllo, istruzioni tipo J

CPU a singolo ciclo: l unità di controllo, istruzioni tipo J Architettura degli Elaboratori e delle Reti Lezione 9 CPU a singolo ciclo: l unità di controllo, istruzioni tipo J Pro. A. Borghese, F. Pedersini Dipartimento di Scienze dell Inormazione Università degli

Dettagli

Progettazione dell unità di elaborazioni dati e prestazioni. Il processore: unità di elaborazione. I passi per progettare un processore

Progettazione dell unità di elaborazioni dati e prestazioni. Il processore: unità di elaborazione. I passi per progettare un processore Il processore: unità di elaborazione Architetture dei Calcolatori (lettere A-I) Progettazione dell unità di elaborazioni dati e prestazioni Le prestazioni di un calcolatore sono determinate da: Numero

Dettagli

Il processore: unità di elaborazione

Il processore: unità di elaborazione Il processore: unità di elaborazione Architetture dei Calcolatori (lettere A-I) Progettazione dell unità di elaborazioni dati e prestazioni Le prestazioni di un calcolatore sono determinate da: Numero

Dettagli

Esercitazione del 05/05/ Soluzioni

Esercitazione del 05/05/ Soluzioni Esercitazione del 05/05/2005 - Soluzioni Una CPU a ciclo singolo richiede un ciclo di clock di durata sufficiente a permettere la stabilizzazione del circuito nel caso dell istruzione più complicata (con

Dettagli

Unità di controllo della pipeline

Unità di controllo della pipeline Unità di controllo della pipeline Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento al Patterson: 6.3 /5 Sommario La CPU

Dettagli

Linguaggio macchina e register file

Linguaggio macchina e register file Linguaggio macchina e register file Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimento sul Patterson: capitolo 4.2, 4.4,

Dettagli

Esercitazione del 04/05/2006 Soluzioni

Esercitazione del 04/05/2006 Soluzioni Esercitazione del 04/05/2006 Soluzioni 1. CPU singolo ciclo vs CPU multi ciclo. Una CPU a ciclo singolo richiede un ciclo di clock di durata sufficiente a permettere la stabilizzazione del circuito nel

Dettagli

Architettura dei calcolatori e sistemi operativi. Il processore Capitolo 4 P&H

Architettura dei calcolatori e sistemi operativi. Il processore Capitolo 4 P&H Architettura dei calcolatori e sistemi operativi Il processore Capitolo 4 P&H 4. 11. 2015 Sommario Instruction Set di riferimento per il processore Esecuzione delle istruzioni Struttura del processore

Dettagli

Architettura del processore MIPS

Architettura del processore MIPS Architettura del processore IPS Prof. Cristina Silvano Dipartimento di Elettronica e Informazione Politecnico di ilano email: : silvano@elet elet.polimi.itit Sommario Instruction Set semplificato Esecuzione

Dettagli

Pipeline criticità e forwarding

Pipeline criticità e forwarding 1 Pipeline criticità e forwarding Prof. Alberto Borghese Dipartimento di Informatica alberto.borghese@unimi.it Università degli Studi di Milano Riferimento al Patterson: 4.5, 4.6 1/42 Sommario La CPU con

Dettagli

Elementi base per la realizzazione dell unità di calcolo

Elementi base per la realizzazione dell unità di calcolo Elementi base per la realizzazione dell unità di calcolo Memoria istruzioni elemento di stato dove le istruzioni vengono memorizzate e recuperate tramite un indirizzo. ind. istruzione Memoria istruzioni

Dettagli

Processore. Memoria I/O. Control (Parte di controllo) Datapath (Parte operativa)

Processore. Memoria I/O. Control (Parte di controllo) Datapath (Parte operativa) Processore Memoria Control (Parte di controllo) Datapath (Parte operativa) I/O Memoria La dimensione del Register File è piccola registri usati per memorizzare singole variabili di tipo semplice purtroppo

Dettagli

Progetto CPU (ciclo singolo)

Progetto CPU (ciclo singolo) Progetto CPU (ciclo singolo) Salvatore Orlando Arch. Elab. - S. Orlando 1 Processore: Datapath & Control Possiamo finalmente vedere il progetto di un processore MIPS-like semplificato Semplificato in modo

Dettagli

Progetto CPU (ciclo singolo) Salvatore Orlando

Progetto CPU (ciclo singolo) Salvatore Orlando Progetto CPU (ciclo singolo) Salvatore Orlando Arch. Elab. - S. Orlando 1 Processore: Datapath & Control Possiamo finalmente vedere il progetto di un processore MIPS-like semplificato Semplificato in modo

Dettagli

Processore. Memoria I/O. Control (Parte di controllo) Datapath (Parte operativa)

Processore. Memoria I/O. Control (Parte di controllo) Datapath (Parte operativa) Processore Memoria Control (Parte di controllo) Datapath (Parte operativa) I/O Parte di Controllo La Parte Controllo (Control) della CPU è un circuito sequenziale istruzioni eseguite in più cicli di clock

Dettagli

Esercitazione del 30/04/ Soluzioni

Esercitazione del 30/04/ Soluzioni Esercitazione del 30/04/2009 - Soluzioni 1. LA CPU multi-ciclo Una CPU a ciclo singolo richiede un ciclo di clock di durata sufficiente a permettere la stabilizzazione del circuito nel caso dell istruzione

Dettagli

Hazard sul controllo. Sommario

Hazard sul controllo. Sommario Hazard sul controllo Prof. Alberto Borghese Dipartimento di Scienze dell Informazione alberto.borghese@unimi.it Università degli Studi di Milano Riferimento al Patterson: 4.7, 4.8 1/30 Sommario Riorganizzazione

Dettagli

Architettura degli Elaboratori Lez. 10 Esercizi su CPU MIPS a 1 ciclo di clock. Prof. Andrea Sterbini

Architettura degli Elaboratori Lez. 10 Esercizi su CPU MIPS a 1 ciclo di clock. Prof. Andrea Sterbini Architettura degli Elaboratori Lez. 10 Esercizi su CPU MIPS a 1 ciclo di clock Prof. Andrea Sterbini sterbini@di.uniroma1.it Argomenti Argomenti della lezione - Esercizi sulla CPU MIPS a 1 colpo di clock

Dettagli

Stall on load. Sommario

Stall on load. Sommario Stall on load Prof. N.Alberto Borghese Dipartimento di Informatica alberto.borghese@unimi.it Università degli Studi di Milano Riferimento al Patterson: 4.7, 4.8 1/24 Sommario Identificazione delle criticità

Dettagli

Processore: Datapath & Control. Progetto CPU (ciclo singolo) Rivediamo i formati delle istruzioni. ISA di un MIPS-lite

Processore: Datapath & Control. Progetto CPU (ciclo singolo) Rivediamo i formati delle istruzioni. ISA di un MIPS-lite Processore: Datapath & Control Possiamo finalmente vedere il progetto di un processore MIPS-like semplificato Progetto CPU (ciclo singolo) Semplificato in modo tale da eseguire solo: istruzioni di memory-reference:

Dettagli

Il Processore: l Unità di Controllo Principale Barbara Masucci

Il Processore: l Unità di Controllo Principale Barbara Masucci Architettura degli Elaboratori Il Processore: l Unità di Controllo Principale Barbara Masucci Punto della situazione Ø Abbiamo visto come costruire l Unità di Controllo della ALU per il processore MIPS

Dettagli

La pipeline. Sommario

La pipeline. Sommario La pipeline Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento al Patterson: 4.5 e 4.6 1/28 http:\\homes.dsi.unimi.it\ borghese

Dettagli

Processore. Memoria I/O. Control (Parte di controllo) Datapath (Parte operativa)

Processore. Memoria I/O. Control (Parte di controllo) Datapath (Parte operativa) Processore Memoria Control (Parte di controllo) Datapath (Parte operativa) I/O Memoria La dimensione del Register File è piccola registri usati per memorizzare singole variabili di tipo semplice purtroppo

Dettagli

La pipeline. Sommario

La pipeline. Sommario La pipeline Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento al Patterson: 4.5 e 4.6 1/27 http:\\homes.dsi.unimi.it\ borghese

Dettagli

Gestione delle eccezioni (CPU multiciclo) La CPU pipeline

Gestione delle eccezioni (CPU multiciclo) La CPU pipeline Architettura degli Elaboratori e delle Reti Lezione 22 Gestione delle eccezioni (CPU multiciclo) La CPU pipeline A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi

Dettagli

CPU multiciclo eccezioni CPU pipeline

CPU multiciclo eccezioni CPU pipeline Architettura degli Elaboratori e delle Reti Lezione 22 CPU multiciclo eccezioni CPU pipeline Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano

Dettagli

Sommario. Gestione delle criticità sui dati nella pipeline. CPU con pipeline. Criticità nei dati. Hazard nei dati: soluzione tramite compilatore

Sommario. Gestione delle criticità sui dati nella pipeline. CPU con pipeline. Criticità nei dati. Hazard nei dati: soluzione tramite compilatore Gestione delle criticità sui dati nella pipeline Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Sommario di tipo R. di lw. Università degli Studi di Milano 1/33

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici Tecniche Pipeline: Elementi di base Massimiliano Giacomin 1 Esecuzione delle istruzioni MIPS con multiciclo: rivisitazione - esame dell istruzione lw (la più complessa) - in rosso

Dettagli

Esercitazione del 30/04/ Soluzioni

Esercitazione del 30/04/ Soluzioni Esercitazione del 30/04/2010 - Soluzioni Una CPU a ciclo singolo come pure una CPU multi ciclo eseguono una sola istruzione alla volta. Durante l esecuzione parte dell hardware della CPU rimane inutilizzato

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori Progetto CPU (multiciclo) slide a cura di Salvatore Orlando e Marta Simeoni Problemi con progetto a singolo ciclo Problemi del singolo ciclo! Ciclo di clock lungo! Istruzioni potenzialmente più veloci

Dettagli

Hazard sul controllo. Sommario

Hazard sul controllo. Sommario Hazard sul controllo Prof. Alberto Borghese Dipartimento di Scienze dell Informazione alberto.borghese@unimi.it Università degli Studi di Milano Riferimento al Patterson: 4.7, 4.8 1/22 Sommario Riorganizzazione

Dettagli

Architettura dei calcolatori e sistemi operativi. Il processore pipeline Capitolo 4 P&H

Architettura dei calcolatori e sistemi operativi. Il processore pipeline Capitolo 4 P&H Architettura dei calcolatori e sistemi operativi Il processore pipeline Capitolo 4 P&H 4. 11. 2015 Pipelining Tecnica per migliorare le prestazioni basata sulla sovrapposizione dell esecuzione di più istruzioni

Dettagli

Un quadro della situazione. Lezione 15 Il Set di Istruzioni (2) Le operazioni e gli operandi. Dove siamo nel corso. Cosa abbiamo fatto

Un quadro della situazione. Lezione 15 Il Set di Istruzioni (2) Le operazioni e gli operandi. Dove siamo nel corso. Cosa abbiamo fatto Un quadro della situazione Lezione 15 Il Set di Istruzioni (2) Vittorio Scarano Architettura Corso di Laurea in Informatica Università degli Studi di Salerno Input/Output Sistema di Interconnessione Registri

Dettagli

Il processore: unità di controllo

Il processore: unità di controllo Il processore: unità di lo Architetture dei Calcolatori (lettere A-I) L unità di lo L unità di lo è responsabile della generazione dei segnali di lo che vengono inviati all unità di elaborazione Alcune

Dettagli

Il set istruzioni di MIPS Modalità di indirizzamento. Proff. A. Borghese, F. Pedersini

Il set istruzioni di MIPS Modalità di indirizzamento. Proff. A. Borghese, F. Pedersini Architettura degli Elaboratori e delle Reti Il set istruzioni di MIPS Modalità di indirizzamento Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano

Dettagli

Architettura degli Elaboratori B. Introduzione al corso. Componenti di un calcolatore convenzionale. (ciclo singolo) Progetto CPU. Contenuti del corso

Architettura degli Elaboratori B. Introduzione al corso. Componenti di un calcolatore convenzionale. (ciclo singolo) Progetto CPU. Contenuti del corso Architettura degli Elaboratori B Introduzione al corso Salvatore Orlando Arch. Elab. - S. Orlando 1 Contenuti del corso Progetto della CPU CPU in grado di eseguire un sottoinsieme di istruzioni MIPS in

Dettagli

Fetch Decode Execute Program Counter controllare esegue prossima

Fetch Decode Execute Program Counter controllare esegue prossima Stored Program Istruzioni sono stringhe di bit Programmi: sequenze di istruzioni Programmi (come i dati) memorizzati in memoria La CPU legge le istruzioni dalla memoria (come i dati) Ciclo macchina (ciclo

Dettagli

Architettura degli Elaboratori B Introduzione al corso

Architettura degli Elaboratori B Introduzione al corso Architettura degli Elaboratori B Introduzione al corso Salvatore Orlando Arch. Elab. - S. Orlando 1 Componenti di un calcolatore convenzionale Studieremo il progetto e le prestazioni delle varie componenti

Dettagli

CALCOLATORI ELETTRONICI 30 agosto 2010

CALCOLATORI ELETTRONICI 30 agosto 2010 CALCOLATORI ELETTRONICI 30 agosto 2010 NOME: COGNOME: MATR: Scrivere chiaramente in caratteri maiuscoli a stampa 1. Si implementi per mezzo di porte logiche di AND, OR e NOT la funzione combinatoria (a

Dettagli

CPU pipeline 3 criticità di dati e di controllo

CPU pipeline 3 criticità di dati e di controllo Architettura degli Elaboratori e delle Reti Lezione 24 CPU pipeline 3 criticità di dati e di controllo Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi

Dettagli

Architettura degli elaboratori - II Introduzione

Architettura degli elaboratori - II Introduzione Architettura degli elaboratori - II Introduzione Prof. Alberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimento sul Patterson: capitolo 4.2, 4.4, D1,

Dettagli

Calcolatori Elettronici B a.a. 2004/2005

Calcolatori Elettronici B a.a. 2004/2005 Calcolatori Elettronici B a.a. 2004/2005 Tecniche di Controllo: Esercizi Massimiliano Giacomin Calcolo CPI e Prestazioni nei sistemi a singolo ciclo e multiciclo ) Calcolo prestazioni nei sistemi a singolo

Dettagli

CALCOLATORI ELETTRONICI 29 giugno 2015

CALCOLATORI ELETTRONICI 29 giugno 2015 CALCOLATORI ELETTRONICI 29 giugno 2015 NOME: COGNOME: MATR: Scrivere nome, cognome e matricola chiaramente in caratteri maiuscoli a stampa 1. Relativamente al confronto tra le implementazioni del processore

Dettagli

Calcolo durata ciclo. Prestazioni Singolo Ciclo. Prestazioni singolo ciclo. Durata Ciclo Variabile

Calcolo durata ciclo. Prestazioni Singolo Ciclo. Prestazioni singolo ciclo. Durata Ciclo Variabile Prestazioni Singolo Ciclo Assumiamo i seguenti ritardi: Unita di memoria: 2 nanosecondi e adders: 2 nanosecondi Banco di istri: 1 nanosecondo per gli altri: insignificante Quale e la durata del ciclo?

Dettagli

Lezione 29 Il processore: unità di controllo (2)

Lezione 29 Il processore: unità di controllo (2) Lezione 29 Il processore: unità di lo (2) Vittorio Scarano Architettura Corso di Laurea in Informatica Università degli Studi di Salerno Organizzazione della lezione 2 Un riepilogo: ruolo della unità di

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici CPU multiciclo Massimiliano Giacomin SVANTAGGI DEL PROCESSORE A SINGOLO CICLO Tutte le istruzioni lunghe un ciclo di clock T clock determinato dall istruzione più lenta Istruzioni

Dettagli

Le etichette nei programmi. Istruzioni di branch: beq. Istruzioni di branch: bne. Istruzioni di jump: j

Le etichette nei programmi. Istruzioni di branch: beq. Istruzioni di branch: bne. Istruzioni di jump: j L insieme delle istruzioni (2) Architetture dei Calcolatori (lettere A-I) Istruzioni per operazioni logiche: shift Shift (traslazione) dei bit di una parola a destra o sinistra sll (shift left logical):

Dettagli

Le memorie Cache. Sommario

Le memorie Cache. Sommario Le memorie Cache Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento Patterson: 5.2, 5.3 1/30 Sommario Circuito di lettura

Dettagli

CALCOLATORI ELETTRONICI 27 giugno 2017

CALCOLATORI ELETTRONICI 27 giugno 2017 CALCOLATORI ELETTRONICI 27 giugno 2017 NOME: COGNOME: MATR: Scrivere nome, cognome e matricola chiaramente in caratteri maiuscoli a stampa 1 Di seguito è riportato lo schema di una ALU a 32 bit in grado

Dettagli

Esercitazione del 10/05/ Soluzioni

Esercitazione del 10/05/ Soluzioni Esercitazione del 10/05/2007 - Soluzioni Una CPU a ciclo singolo come pure una CPU multi ciclo eseguono una sola istruzione alla volta. Durante l esecuzione parte dell hardware della CPU rimane inutilizzato

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori Architettura degli Elaboratori Linguaggio macchina e assembler (caso di studio: processore MIPS) slide a cura di Salvatore Orlando, Marta Simeoni, Andrea Torsello Architettura degli Elaboratori 1 1 Istruzioni

Dettagli

CALCOLATORI ELETTRONICI 9 settembre 2011

CALCOLATORI ELETTRONICI 9 settembre 2011 CALCOLATORI ELETTRONICI 9 settembre 2011 NOME: COGNOME: MATR: Scrivere chiaramente in caratteri maiuscoli a stampa 1. Si implementi per mezzo di porte logiche AND, OR e NOT la funzione combinatoria (a

Dettagli

Un quadro della situazione. Cosa abbiamo fatto. Lezione 30 Valutazione delle Prestazioni. Dove stiamo andando.. Perché:

Un quadro della situazione. Cosa abbiamo fatto. Lezione 30 Valutazione delle Prestazioni. Dove stiamo andando.. Perché: Un quadro della situazione Lezione 3 Valutazione delle Prestazioni Vittorio Scarano rchitettura Corso di Laurea in Informatica Università degli Studi di Salerno Input/Output Sistema di Interconnessione

Dettagli

Lezione 17 Il Set di Istruzioni (3)

Lezione 17 Il Set di Istruzioni (3) Lezione 17 Il Set di Istruzioni (3) Vittorio Scarano Architettura Corso di Laurea in Informatica Università degli Studi di Salerno Organizzazione della lezione Un richiamo su: Operazioni aritmetiche (add

Dettagli

L architettura del calcolatore (Seconda parte)

L architettura del calcolatore (Seconda parte) L architettura del calcolatore (Seconda parte) Percorso di Preparazione agli Studi di Ingegneria Università degli Studi di Brescia Docente: Massimiliano Giacomin ORGANIZZAZIONE DEL CALCOLATORE: RICHIAMI

Dettagli

Architettura degli elaboratori - II Introduzione

Architettura degli elaboratori - II Introduzione Architettura degli elaboratori - II Introduzione Prof. Alberto Borghese Dipartimento di Informatica alberto.borghese@unimi.it Università degli Studi di Milano Riferimento sul Patterson 5th edition: capitolo

Dettagli

Istruzioni di trasferimento dati

Istruzioni di trasferimento dati Istruzioni di trasferimento dati Leggere dalla memoria su registro: lw (load word) Scrivere da registro alla memoria: sw (store word) Esempio: Codice C: A[8] += h A è un array di numeri interi Codice Assembler:

Dettagli

CALCOLATORI ELETTRONICI 14 giugno 2010

CALCOLATORI ELETTRONICI 14 giugno 2010 CALCOLATORI ELETTRONICI 14 giugno 2010 NOME: COGNOME: MATR: Scrivere chiaramente in caratteri maiuscoli a stampa 1. Si implementi per mezzo di porte logiche di AND, OR e NOT la funzione combinatoria (a

Dettagli

Università degli Studi di Cassino

Università degli Studi di Cassino Corso di Realizzazione del Data path Data path a ciclo singolo Anno Accademico 27/28 Francesco Tortorella (si ringrazia il prof. M. De Santo per parte del materiale presente in queste slides) Realizzazione

Dettagli

Calcolatori Elettronici B a.a. 2007/2008

Calcolatori Elettronici B a.a. 2007/2008 Calcolatori Elettronici B a.a. 27/28 Tecniche Pipeline: Elementi di base assimiliano Giacomin Reg[IR[2-6]] = DR Dal processore multiciclo DR= em[aluout] em[aluout] =B Reg[IR[5-]] =ALUout CASO IPS lw sw

Dettagli

Calcolatori Elettronici B a.a. 2006/2007

Calcolatori Elettronici B a.a. 2006/2007 Calcolatori Elettronici B a.a. 26/27 Tecniche di Controllo: Esercizi Massimiliano Giacomin Due tipologie di esercizi Calcolo delle prestazioni nei sistemi a singolo ciclo e multiciclo (e confronto) Implementazione

Dettagli

Un processore sequenziale

Un processore sequenziale n processore sequenziale truttura della in ingresso nità Operativa ( datapath ) in uscita clock comandi condizioni struzione nità di di omandi 2 struzioni add rd, rs, rt struzioni di tipo eg[rd] = eg[rs]+eg[rt]

Dettagli

La ALU. Prof. Alberto Borghese Dipartimento di Scienze dell Informazione Università degli Studi di Milano

La ALU. Prof. Alberto Borghese Dipartimento di Scienze dell Informazione Università degli Studi di Milano La ALU Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento sul Patterson: sezione C.5 1/38 Sommario ALU ad 1 bit ALU a 3

Dettagli

ISA e linguaggio macchina

ISA e linguaggio macchina ISA e linguaggio macchina Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimento sul Patterson: capitolo 4.2, 4.4, D1, D2. 1/55

Dettagli