SOLUZIONI DELLA PRIMA PROVA IN ITINERE DEL CORSO AL NOVEMBRE 2018

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SOLUZIONI DELLA PRIMA PROVA IN ITINERE DEL CORSO AL NOVEMBRE 2018"

Transcript

1 SOLUZIONI DELLA PRIMA PROVA IN ITINERE DEL CORSO AL21 13 NOVEMBRE 218 Si consideri il gruppo G = a x a 8 a 4 = x 2 x 1 ax = a 1. (1) (4 punti) Ogni elemento di G si scrive come una parola con lettere a a 1 x e x 1 e dunque si scriverà nella forma g = a i 1 x j 1 a i 2 x j 2... a i k x j k per un certo k N e certi elementi i 1 j 1... i k j k Z. La prima relazione mi dice che posso considerare gli indici i 1... i k come elementi di Z 8. La seconda relazione mi dice che posso semplificare l espressione di g fino a ridurmi al caso j 1... j k 1}. Infine l ultima relazione implica che (.1) a k x = xa k per ogni k Z 8 e questo mi consente di semplificare l espressione di g fino a ridurmi all espressione in forma canonica g = a k oppure g = a k x con k Z 8. Osserviamo anche che l espressione in forma canonica non si può ulteriormente semplificare perché non contiene x 2 né nessuna sottoparola della forma xa k per qualche k Z 8. (2) (8 punti se ci si accorgeva dell errore 4 altrimenti) QUESTO È FALSO!! Una maniera di vedere questo è la seguente. Il gruppo H ha cardinalità 16 e consiste dei seguenti elementi ( ) ζ A k k = ζ 5k con k Z 8 ( ) ζ A k k X = ζ 5k+4 con k Z 8. Si vede facilmente che l ordine degli elementi di H è uguale a: o(a k 8 ) = mcd8 k} 2 se k = 2 6 o(a k X) = 4 se k = 4 8 se k = Confrontando l ordine degli elementi di H con l ordine degli elementi di G (vedi punto (4)) si scopre che G e H non hanno lo stesso numero di elementi con lo stesso ordine e dunque non sono isomorfi. [NOTA BENE: l esercizio sarebbe stato giusto con la definizione ( ) e πi/4 A = e πi/4.] 1

2 (3) (4 punti) Usando l equazione (.1) e la relazione x 2 = a 4 otteniamo che a k a l = a k+l a k (a l x) = a k+l x (.2) (a k x)a l = a k l x (a k x)(a l x) = a k l x 2 = a k l+4. (.3) (4) (4 punti) Usando le regole di moltiplicazione (.2) l inverso si calcola nel seguente modo (a k ) 1 = a k (a k x) 1 = a k+4 x. Per calcolare l ordine degli elementi della forma a k osserviamo che a è un sottogruppo di G isomorfo a Z 8. Dunque l ordine di a k in G è come l ordine di k in Z 8 e dunque o(a k 8 ) = mcd8 k}. Per calcolare l ordine degli elementi a k x osserviamo che (usando (.2)) (a k x) 3 = (a k x) 2 a k x = a 4+k x 1 (a k x) 4 = (a k x) 3 a k x = a 4+k xa k x = a 8 = 1 il che implica che o(a k x) = 4. (5) (3 punti) Calcoliamo gli automorfismi interni I(a k ) e I(a k x) usando (.3) e (.2) I(a k )(a l ) = (a k )a l a k = a l I(a k )(a l x) = a k a l xa k = a l 2k x. I(a k x)(a l ) = a k+4 xa l a k x = a k+1 xa k+l x = a l I(a k x)(a l x) = a k+4 xa l xa k x = a k l a k x = a 2k l x. (6) (3 punti) Come si vede dalle formule del punto (5) la classe di coniugio di a l è uguale a a l a l } mentre la classe di coniugio di a l x consiste di tutti gli elementi della forma a l x con l ed l che hanno la stessa parità. Ne segue che le classi di coniugio di G sono 1} a a 1} a 2 a 2} a 3 a 3} a 4} a k x : k è pari } a k x : k è dispari }. (7) (5 punti) Il sottogruppo a è ciclico per definizione e consiste degli otto elementi a k con k Z 8. Dunque è isomorfo a Z 8 con isomorfismo dato da Z 8 a k a k. Inoltre a è normale perché contiene le classi di coniugio di tutti i suoi elementi per il punto (6). Il quoziente G/ a ha ordine uguale a G/ a = 16 8 = 2. Siccome 2 è un numero primo allora necessariamente G/ a Z 2. 2

3 (8) (5 punti) Supponiamo che G è isomorfo ad un prodotto semidiretto interno a S per qualche sottogruppo S di G. Allora per il punto (7) abbiamo che S G/ a Z 2 e dunque S è generato da un elemento di ordine 2. Per il punto (4) l unico elemento di ordine 2 di G è a 4. Tuttavia siccome a a 4 allora non può essere che G a a 4 e dunque tale S non esiste. (9) (6 punti) Usando (.2) e (.3) e la relazione (.1) possiamo calcolare i commutatori di G: (.4) [a k a l ] = a k a l a k a l = [a k a l x] = a k a l xa k a l+4 x = a k+l a k l 4 x 2 = a k+l a k l 4 a 4 = a 2k [a k x a l x] = a k xa l xa k+4 xa l+4 x = a k xa l xa k+4 xa l+4 x = a k l x 2 a k+4 a l 4 x 2 = a 2(k l). Dalle formule di sopra si vede che gli unici elementi che commutano con tutti gli altri elementi sono a = 1 e a 4. Dunque il centro di G è uguale a Z(G) = a 4. Il gruppo quoziente G/Z(G) (che esiste perché il centro di un gruppo è sempre normale) ha cardinalità G / Z(G) = 8 e consiste dei seguenti elementi: a k := a k Z(G) e a k x := a k xz(g) per k 3. Notiamo che a k = a k per ogni k 3 a k x = a k x per ogni k 3 a 4 = a 4 Z(G) = a e x 2 = x 2 Z(G) = a da cui deduciamo che G/Z(G) è generato da a e x che hanno ordine rispettivamente 4 e 2. Inoltre dall equazione (.1) abbiamo che xa = xaz(g) = a 1 xz(g) = a 1 x. Dalla proprietà universale delle presentazioni deduciamo che abbiamo un omomorfismo suriettivo D 4 = σ τ σ 4 τ 2 τσ = σ 1 τ G/Z(G) σ a τ x che allora deve essere un isomorfismo perché entrambi i gruppi hanno cardinalità 8. (1) (6 punti) Dalle formule (.4) per i commutatori si vede che il sottogruppo dei commutatori è uguale a [G G] = a 2. Il gruppo quoziente G/[G G] (che esiste perché il sottogruppo dei commutatori è sempre normale) ha cardinalità uguale a G / [G G] = 16/4 = 4 e consiste dei seguenti elementi a k := a k [G G] e a k x := a k x[g G] per k 1. Notiamo che a 2 = a 2 [G G] = a e x 2 = x 2 [G G] = a 4 [G G] = a x a = xa[g G] = a 1 x[g G] = ax[g G] = ax = a x 3

4 da cui deduciamo che abbiamo l isomorfismo Z 2 Z 2 G/[G G] (1 ) a ( 1) x. (11) (8 punti) Osserviamo prima che per ogni s Z 8 e t Z 8 gli elementi a s e a t x generano G (perchè a s genera a per le ipotesi su s) e soddisfano le relazioni (a s ) 8 = a 8s = 1 (a t x) 2 = a t xa t x = a t t x 2 = a 4 = (a s ) 4 (a t x) 1 a s (a t x) = a t+4 xa s a t x = a t+4 a s t x 2 = a t+4 a s t a 4 = (a s ) 1. Dunque per la proprietá universale delle presentazioni per ogni s Z 8 e t Z 8 risulta ben definito un unico automorfismo φ st Aut(G) tale che φ st (a) = a s e φ st (x) = a t x. Mostriamo ora che gli automorfismi di cui sopra sono tutti e soli gli automorfismi di G. Sia φ Aut(G). Osserviamo che φ(a) ha ordine 8 φ(x) ha ordine 4 e che φ(a) e φ(x) generano G perchè un automorfismo manda generatori in generatori e preserva l ordine degli elementi. Dal punto (4) deduciamo che φ(a) = a s con s (Z 8 ) = }. Inoltre φ(x) non può appartenere al sottogruppo φ(a) = a altrimenti φ(a) e φ(x) non sarebbero generatori di G. Dunque sempre dal punto (4) deduciamo che φ(x) = a t x per un certo t Z 8. Deduciamo che φ = φ st perché i due automorfismi assumono gli stessi valori sui generatori a e x di G. (12) (8 punti se ci si accorgeva dell errore 6 altrimenti) I sottogruppi N 1 := a 2 x e N 2 := a 2 a 2 x in realtá coincidono e sono uguali a: N := N 1 = N 2 = a a 2 a 4 a 6 a x a 2 x a 4 x a 6 x}. Il sottogruppo N è normale perché contiene tutte le classi di coniugio dei suoi elementi per il punto (6). I generatori a 2 e x di N soddisfano le relazioni (a 2 ) 4 = a 8 = 1 x 2 = a 4 = (a 2 ) 2 xa 2 x 1 = a 2 xx 1 = (a 2 ) 1 Dunque per la proprietá universale delle presentazioni esiste un omomorfismo suriettivo dal gruppo dei quaternioni Q a N dato da: Q = z w z 4 w 2 = z 2 wzw 1 = z 1 N z a 2 w x e tale omomorfismo deve essere un isomorfismo in quanto entrambi i gruppi hanno cardinalità uguale a 8. Dunque N é isomorfo a Q e non a D 4!! Il sottogruppo N non è caratteristico perchè l automorfismo φ 11 del punto (11) è tale che φ 11 (N) = a 2 ax a 2 x. 4

5 (13) (i) (1 punti) Gli automorfismi di G sono tutti della forma φ st come nel punto (11). La composizione di due tali automorfismi soddisfa (φs1 t 1 φ s2 t 2 )(a) = φ s1 t 1 (a s 2 ) = a s 1s 2 (φ s1 t 1 φ s2 t 2 )(x) = φ s1 t 1 (a t 2 x) = a s 1t 2 a t 1 x = a s 1t 2 +t 1 x. Dunque abbiamo che (.5) φ s1 t 1 φ s2 t 2 = φ s1 s 2 s 1 t 2 +t 1 da cui si deduce che Aut(G) = Z 8 θ (Z 8 ) dove θ : Z 8 Aut(Z 8 ) Z 8 è l identità. (ii) Sappiamo dalla teoria che Inn(G) G/Z(G). Dunque dal punto (9) sappiamo che Inn(G) è isomorfo a D 4 e dunque si può realizzare come il seguente prodotto semidiretto Inn(G) = Z 4 ξ Z 2 dove ξ : Z 2 Aut(Z 4 ) Z 4 manda 1 in 1. (iii) Osserviamo innanzitutto che la cardinalità di Out(G) = Aut(G)/ Inn(G) è uguale a Out(G) = Aut(g) / Inn(G) = 32/8 = 4. Dal punto (5) deduciamo che un automorfismo φ st Aut(G) è interno se e solo se s = 1 1 e t 2 Z 8. Dunque Out(G) consiste dei seguenti 4 elementi ξ := φ 1 Inn(G) = φ ±1k : k è pari} ξ 1 := φ 11 Inn(G) = φ ±1h : h è dispari} ξ 1 := φ 32 Inn(G) = φ ±3k : k è pari} ξ 11 := φ 31 Inn(G) = φ ±3h : h è dispari}. Ora è facile vedere usando (.5) che ξ è l elemento neutro ξ 1 e ξ 1 hanno ordine due e che ξ 1 ξ 1 = ξ 11 = ξ 1 ξ 1. Questo implica che esiste un isomorfismo Z 2 Z 2 Out(G) (a b) ξ ab. 5

1 COMPITINO DI ALGEBRA 1 7 novembre 2018 Soluzioni

1 COMPITINO DI ALGEBRA 1 7 novembre 2018 Soluzioni 1 COMPITINO DI ALGEBRA 1 7 novembre 2018 Soluzioni 1. Sia G il sottogruppo di S 6 generato dalle permutazioni 1, 2, 3 e 1, 42, 53, 6. a Descrivere G come prodotto semidiretto di gruppi abeliani. b Per

Dettagli

Facoltà di Scienze MFN- Corso di laurea in Matematica ALGEBRA 2 - G.M. Piacentini Cattaneo- I. Damiani - ESERCIZI DI RIPASSO SUI GRUPPI

Facoltà di Scienze MFN- Corso di laurea in Matematica ALGEBRA 2 - G.M. Piacentini Cattaneo- I. Damiani - ESERCIZI DI RIPASSO SUI GRUPPI Facoltà di Scienze MFN- Corso di laurea in Matematica ALGEBRA 2 - G.M. Piacentini Cattaneo- I. Damiani - ESERCIZI DI RIPASSO SUI GRUPPI SOLUZIONI (1) Siano G e G gruppi, e G = 47, G = 40. Può esistere

Dettagli

1. Il gruppo dei quaternioni Sia Q = Q 8 il gruppo dei quaternioni. Ricordiamo che si tratta del sottogruppo di GL(2, C) generato dalle matrici

1. Il gruppo dei quaternioni Sia Q = Q 8 il gruppo dei quaternioni. Ricordiamo che si tratta del sottogruppo di GL(2, C) generato dalle matrici Lo scopo di questa breve nota è fornire una dimostrazione del fatto che il gruppo degli automorfismi del gruppo dei quaternioni Q 8 è isomorfo a S 4 La dimostrazione è basata sullo studio del gruppo di

Dettagli

ESERCIZI DI ALGEBRA 1 GRUPPI Permutazioni

ESERCIZI DI ALGEBRA 1 GRUPPI Permutazioni ESERCIZI DI ALGEBRA 1 GRUPPI 8-1-2003 Permutazioni 1 Siano g = ( 1 5 2 6 )( 3 4 7 ) e h = ( 1 5 )( 2 3 7 6 ) due permutazioni su 7 elementi. Calcolare la permutazione h g 1. 2 Siano α = ( 2 3 ) e β = (

Dettagli

Svolgimento del compitino di Algebra 2 del 17/11/2014 (Tema A). 1. (a) Provare che G/Z(G) è isomorfo a un sottogruppo del gruppo degli

Svolgimento del compitino di Algebra 2 del 17/11/2014 (Tema A). 1. (a) Provare che G/Z(G) è isomorfo a un sottogruppo del gruppo degli Svolgimento del compitino di Algebra 2 del 17/11/2014 (Tema A). 1. (a) Provare che G/Z(G) è isomorfo a un sottogruppo del gruppo degli automorfismi di G. (b) Provare che se G/Z(G) è ciclico allora G è

Dettagli

Capitolo 1: Teoria dei gruppi:

Capitolo 1: Teoria dei gruppi: Capitolo 1: Teoria dei gruppi: Definizione (Gruppo): È un insieme G munito di un operazione binaria, ossia f: G G G f(a, b) = a b che rispetti le seguenti proprietà: 1- Associativa: (a b) c = a (b c) a,

Dettagli

Facoltà di Scienze MFN- Corso di laurea in Matematica ALGEBRA 2 - G.M. Piacentini Cattaneo -

Facoltà di Scienze MFN- Corso di laurea in Matematica ALGEBRA 2 - G.M. Piacentini Cattaneo - Facoltà di Scienze MFN- Corso di laurea in Matematica ALGEBRA 2 - G.M. Piacentini Cattaneo - ANCORA GRUPPI (1) In GL(2, C) si consideri il sottogruppo H generato dalle due matrici ( ) ( ) 0 i 0 1, i 0

Dettagli

SOLUZIONI DELL ESAME SCRITTO DEL 22/01/2018

SOLUZIONI DELL ESAME SCRITTO DEL 22/01/2018 SOLUZIONI DELL ESAME SCRITTO DEL 22/01/2018 Esercizio 1. Si consideri il polinomio f X) = X 5 5 Q [X] e sia E il suo campo di spezzamento su Q. 1) Mostrare che E è un estensione di Galois di Q. Determinare

Dettagli

Scuola Normale Superiore Ammissione al IV anno del corso ordinario Prova scritta di Algebra e Geometria per matematici

Scuola Normale Superiore Ammissione al IV anno del corso ordinario Prova scritta di Algebra e Geometria per matematici Scuola Normale Superiore Ammissione al IV anno del corso ordinario Prova scritta di Algebra e Geometria per matematici 27 agosto 2010 Esercizio 1. Siano n e d due interi positivi, e sia φ(x) C[x] un polinomio

Dettagli

1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi

1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi In ogni esercizio c è la data del giorno in cui l ho proposto. 1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi Se X è un insieme indichiamo con Sym(X) l insieme delle biiezioni X X. Si tratta

Dettagli

Se con e indichiamo l elemento neutro di in G, e deve appartenere ad H.

Se con e indichiamo l elemento neutro di in G, e deve appartenere ad H. Abbiamo visto a lezione che una sottoalgebra B di un algebra A è identificabile con l immagine di un omomorfismo iniettivo a valori in A. Una sottoalgebra B di A è in particolare un sottoinsieme non vuoto

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2017/2018 Docente: Alberto Canonaco Richiami su insiemi e funzioni: composizione di funzioni e associatività della composizione; immagine attraverso una funzione di un sottoinsieme

Dettagli

Soluzione 1.3. L equazione delle classi è. Ord (G) Ord (C (a)) Ord (G) = Ord (S 3 ) Ord (C (id)) + Ord (S 3 ) Ord (C ((1, 2))) + Ord (S 3 )

Soluzione 1.3. L equazione delle classi è. Ord (G) Ord (C (a)) Ord (G) = Ord (S 3 ) Ord (C (id)) + Ord (S 3 ) Ord (C ((1, 2))) + Ord (S 3 ) Università degli studi di Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2003/2004 AL2 - Algebra 2, gruppi anelli e campi Soluzioni 31 ottobre 2004 1 Gruppo Simmetrico 1. Per ogni divisore p, primo,

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione

Dettagli

SVOLGIMENTO DEL COMPITO DI ALGEBRA 2 DEL 12/11/2013 (PRIMO COMPITINO).

SVOLGIMENTO DEL COMPITO DI ALGEBRA 2 DEL 12/11/2013 (PRIMO COMPITINO). SVOLGIMENTO DEL COMPITO DI ALGEBRA 2 DEL 12/11/2013 PRIMO COMPITINO. Nel seguito verrà svolto il Tema A e in ogni esercizio sarà specificata l eventuale differenza col Tema B. Tale differenza è in ogni

Dettagli

SOLUZIONI DELL ESAME DI ALGEBRA 3, 27/01/2014

SOLUZIONI DELL ESAME DI ALGEBRA 3, 27/01/2014 SOLUZIONI DELL ESAME DI ALGEBRA, 7/01/014 Esercizio 1. Si calcoli il gruppo di Galois G f su Q del polinomio f (X) = X 4 + 10X + 0 Q [X]. Prima soluzione: Notiamo per cominciare che f (X) Q [X] è irriducibile

Dettagli

ESAME DI ALGEBRA 3, 24/02/2014

ESAME DI ALGEBRA 3, 24/02/2014 ESAME DI ALGEBRA 3, 24/02/204 Esercizio. Si consideri il polinomio f X := X 4 8X + 2 Q [X]. Si mostri che f X Q [X] è irriducibile. 2 Si determini il gruppo di Galois del campo di spezzamento di f X su

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente

Dettagli

COMPITO DI ALGEBRA 1 18 giugno 2019

COMPITO DI ALGEBRA 1 18 giugno 2019 COMPITO DI ALGEBRA 1 18 giugno 2019 1. (a) Sia G un gruppo di ordine 8 11 19. Dimostrare che G contiene un sottogruppo normale di ordine 11 19. (b) Determinare il mimimo intero n per cui S n contiene un

Dettagli

ALGEBRA /2009 Prof. Fabio Gavarini. Sessione estiva anticipata prova scritta del 23 Giugno 2009

ALGEBRA /2009 Prof. Fabio Gavarini. Sessione estiva anticipata prova scritta del 23 Giugno 2009 ALGEBRA 1 2008/2009 Prof. Fabio Gavarini Sessione estiva anticipata prova scritta del 23 Giugno 2009 Svolgimento completo N.B.: lo svolgimento qui presentato è molto lungo... Questo non vuol dire che lo

Dettagli

Sol. Sia P = (x, y) un punto che soddisfa l equazione Y 2 = X 3 + ax + b. Ricordiamo che per definizione P = (x, y) è un punto regolare di E se

Sol. Sia P = (x, y) un punto che soddisfa l equazione Y 2 = X 3 + ax + b. Ricordiamo che per definizione P = (x, y) è un punto regolare di E se Teoria Elementare dei Numeri. Soluzioni Esercizi 5. Curve ellittiche. 1. Sia E una curva su R di equazione Y 2 = X 3 + ax + b. Verificare che è una curva regolare di R 2 (senza punti singolari) se e solo

Dettagli

IL GRUPPO SO(3) , b a a R 2φ g R 1. a 2 + b 2 e i2φ N. Valendo a 2 + b 2 = 1, abbiamo dunque tr(r 2φ g R 1. Se diagonalizziamo R 2φ g R 1.

IL GRUPPO SO(3) , b a a R 2φ g R 1. a 2 + b 2 e i2φ N. Valendo a 2 + b 2 = 1, abbiamo dunque tr(r 2φ g R 1. Se diagonalizziamo R 2φ g R 1. IL GRUPPO SO3). Semplicità di SO3) Usando l omomorfismo suriettivo ρ : SU2) SO3) che abbiamo già descritto, possiamo dimostrare che SO3) è un gruppo semplice. In effetti, per far questo ci basta mostrare

Dettagli

ESAME DI ALGEBRA 3, 22/02/2017. COGNOME e Nome... MATRICOLA...

ESAME DI ALGEBRA 3, 22/02/2017. COGNOME e Nome... MATRICOLA... ESAME DI ALGEBRA 3, /0/017 COGNOME e Nome... MATRICOLA... Esercizio 1. Sia K il campo di spezzamento di (X 7 11)(X + 7) Q[X]. i. Mostrare che Q K è una estensione finita di Galois. Determinarne il grado.

Dettagli

SOLUZIONI DELLA SECONDA PROVA IN ITINERE DEL CORSO AL GENNAIO (1) (3 punti) Si consideri il sottoinsieme dei numeri complessi

SOLUZIONI DELLA SECONDA PROVA IN ITINERE DEL CORSO AL GENNAIO (1) (3 punti) Si consideri il sottoinsieme dei numeri complessi SOLUZIONI DELLA SECONDA PROVA IN ITINERE DEL CORSO AL210 15 GENNAIO 2019 (0.1) (1) (3 punti) Si consideri il sottoinsieme dei numeri complessi Q( 3) := {a + b 3 : a, b Q} C Dimostrare che Q( 3) è un campo.

Dettagli

TEST DI VERIFICA DI ALGEBRA Novembre 2007 generalità su gruppi e anelli Testo con soluzioni...

TEST DI VERIFICA DI ALGEBRA Novembre 2007 generalità su gruppi e anelli Testo con soluzioni... TEST DI VERIFICA DI ALGEBRA 2 13 Novembre 2007 generalità su gruppi e anelli Testo con soluzioni....................................................................... N.B.: il simbolo contrassegna gli

Dettagli

SOLUZIONI DEL COMPITINO DEL 16/11/2017

SOLUZIONI DEL COMPITINO DEL 16/11/2017 SOLUIONI DEL COMPITINO DEL 16/11/2017 Esercizio 1. Si consideri il polinomio f (X) = X 3 9 Q [X] e sia E C il suo campo di spezzamento. (1) Determinare il grado di [E : Q]. Esibire una base di E come Q-spazio

Dettagli

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9 Prova scritta di Algebra 9 settembre 2016 1. Si risolva il seguente sistema di congruenze lineari x 5 mod 7 11x 1 mod 13 x 3 mod 9 Si determini la sua minima soluzione positiva. 2. In S 9 sia α = (4, 9)(9,

Dettagli

Esercitazione n. 8 e 9

Esercitazione n. 8 e 9 Esercitazione n. 8 e 9 20/10/2016 Argomenti. Esercizi sugli omomorfismi di gruppo. Esercizio 1. Siano G un gruppo e a, b G tali che valga ab = ba. Se a = r < e b = s < e (r, s) = 1, si provi che a, b è

Dettagli

Prova scritta di Algebra 7 luglio 2016

Prova scritta di Algebra 7 luglio 2016 Prova scritta di Algebra 7 luglio 2016 1. Si consideri la mappa φ : Z Z/18Z la mappa definita da x [7x + 3] 18. a) Si determinino le immagini tramite φ degli interi 0 e 1 e si dica se φ è un omomorfismo

Dettagli

ANELLI EUCLIDEI E ANELLI A IDEALI PRINCIPALI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI EUCLIDEI E ANELLI A IDEALI PRINCIPALI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI EUCLIDEI E ANELLI A IDEALI PRINCIPALI N.B.: il simbolo contrassegna gli esercizi relativamente più complessi. 1 Sia A un anello commutativo unitario. Dimostrare che A è un campo A ha

Dettagli

Algebra e Logica Matematica. Gruppi, classi di resto. Ingegneria Informatica Foglio 2. Esercizio 2.1. Calcolare il MCD e il mcm delle coppie seguenti:

Algebra e Logica Matematica. Gruppi, classi di resto. Ingegneria Informatica Foglio 2. Esercizio 2.1. Calcolare il MCD e il mcm delle coppie seguenti: Università di Bergamo Anno accademico 20162017 Ingegneria Informatica Foglio 2 Algebra e Logica Matematica Gruppi, classi di resto Esercizio 2.1. Calcolare il MCD e il mcm delle coppie seguenti: 1) (12,

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Azioni di gruppi. dispense provvisorie del corso di Algebra Alessio Del Vigna - Giovanni Gaiffi

Azioni di gruppi. dispense provvisorie del corso di Algebra Alessio Del Vigna - Giovanni Gaiffi Azioni di gruppi dispense provvisorie del corso di Algebra 1 2010-2011 Alessio Del Vigna - Giovanni Gaiffi 9 novembre 2010 1 Azione di un gruppo su un insieme Dopo aver proposto una serie di risultati

Dettagli

mcd(a, b) = r 1 a + r 2 b,

mcd(a, b) = r 1 a + r 2 b, ESERCIZI SU CAMPO DEI QUOZIENTI, UFD, PID, DOMINI EUCLIDEI ESERCIZIO 1 Sia R un dominio integrale con campo dei quozienti Q(R). Dimostrare che se T è un dominio tale che R T Q(R), allora Q(R) è isomorfo

Dettagli

SOLUZIONI ESERCIZI DI IGS. b 0 (mod 3) 1 + 2a + b 0 (mod 3)

SOLUZIONI ESERCIZI DI IGS. b 0 (mod 3) 1 + 2a + b 0 (mod 3) SOLUZIONI ESERCIZI DI IGS 1. Il polinomio f(x) è irriducibile su Q per il criterio di Eisenstein (p = 3). 2. Sia f(x) = X 2 +ax +b Z 3 [X]. Poichè f(x) è di secondo grado, è irriducibile se e solo se non

Dettagli

Presentazione di gruppi

Presentazione di gruppi Presentazione di gruppi Sia G un gruppo e X un suo sottoinsieme non vuoto, indichiamo con Gp(X) = {x ɛ 1 1 x ɛ 2 2... x ɛ n n x i X, ɛ i = ±1} dove gli elementi di questo insieme sono da intendersi come

Dettagli

Qualche informazione su gruppi e anelli

Qualche informazione su gruppi e anelli Qualche informazione su gruppi e anelli 1. Gruppi e sottogruppi: prime proprietà Cominciamo subito scrivendo la definizione formale di gruppo. Definizione 0.1. Un gruppo G è un insieme non vuoto dotato

Dettagli

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 Esercizio 1. Usando l algoritmo euclideo delle divisioni successive, calcolare massimo comune divisore e identità di Bézout per le seguenti coppie

Dettagli

ALGEBRA C. MALVENUTO

ALGEBRA C. MALVENUTO ALGEBRA CANALE A-L ESAME PRIMA PARTE 27 GENNAIO 2012 C. MALVENUTO Istruzioni. Completare subito la parte inferiore di questa pagina con il proprio nome cognome e firma. Scrivere solamente su questi fogli

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 7.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 7. A.A. 205-206. CORSO DI ALGEBRA. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 7. Esercizio 7.. Determinare l insieme degli omomorfismi da Z 49 a Z 27. Soluzione. La soluzione di questo esercizio

Dettagli

1 Definizione di gruppo

1 Definizione di gruppo Università degli studi di Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2003/2004 AL2 - Algebra 2, gruppi anelli e campi Soluzioni 3 ottobre 2004 1 Definizione di gruppo 1. Determinare quali dei

Dettagli

Geometria e Topologia I 18 maggio

Geometria e Topologia I 18 maggio Geometria e Topologia I 18 maggio 2005 64 17 Mappe affini (17.1) Definizione. Siano X e Y due spazi affini sullo stesso campo K. Una funzione f : X Y si dice affine (anche, mappa affine o trasformazione

Dettagli

ESERCIZI PROPOSTI. Capitolo 5 MCD(15,5) = 15 5 =3. un unico sottogruppo di ordine d, cioè x 20/d = C d. , x 20/10 = x 2 = C 10. , x 20/4 = x 5 = C 4

ESERCIZI PROPOSTI. Capitolo 5 MCD(15,5) = 15 5 =3. un unico sottogruppo di ordine d, cioè x 20/d = C d. , x 20/10 = x 2 = C 10. , x 20/4 = x 5 = C 4 ESERCIZI PROPOSTI Capitolo 5 511 Determinare il periodo dell elemento x 320 del gruppo ciclico C 15 = x x 15 =1 Indicare tutti i generatori del sottogruppo x 320 Soluzione Dividiamo 320 per 15 Si ha 320

Dettagli

Prima prova parziale di Geometria 3

Prima prova parziale di Geometria 3 Prima prova parziale di Geometria 3 17 Aprile 2019 Svolgere i seguenti esercizi argomentando ogni risposta. numero di matricola sui fogli consegnati. Indicare nome e Esercizio 1. Siano p 0,..., p 5 i punti

Dettagli

ALGEBRA (A-L) ( )

ALGEBRA (A-L) ( ) ALGEBRA (A-L) (2014-15) SCHEDA 3 Strutture algebriche 1.STRUTTURE ALGEBRICHE Sia (M, ) un monoide con unità 1 M e sia a M. Le iterazioni della operazione. sono definite da: a 0 = 1 M, a n+1 =a a n. 1.1.Dimostrare

Dettagli

Altri esercizi assegnati negli esoneri degli scorsi anni

Altri esercizi assegnati negli esoneri degli scorsi anni Altri esercizi assegnati negli esoneri degli scorsi anni Esercizi sul principio di induzione 1. Utilizzando il principio di induzione si dimostri che, per ogni numero naturale positivo n, risulta: Esercizi

Dettagli

Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 AL2 - Algebra 2: Gruppi, Anelli e Campi Esercitazione 1 (3 ottobre 2008)

Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 AL2 - Algebra 2: Gruppi, Anelli e Campi Esercitazione 1 (3 ottobre 2008) Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 008/009 AL - Algebra : Gruppi, Anelli e Campi Esercitazione 1 (3 ottobre 008) Esercizio 1. Sia X := {x, y}, dimostrare che il sottogruppo

Dettagli

1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 7 novembre 2018

1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 7 novembre 2018 1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 7 novembre 2018 Cognome e Nome: Matricola: L iniziale del mio cognome è compresa tra A e L. 1. Dire quali dei seguenti sottoinsiemi H G

Dettagli

10. Il gruppo Speciale Lineare SL(V )

10. Il gruppo Speciale Lineare SL(V ) 1 2 3 4 5 6 7 8 9 1 10. Il gruppo Speciale Lineare SL(V ) Siano F un campo e V uno spazio vettoriale di dimensione n su F. Indichiamo con GL(V ) l insieme delle applicazioni lineari biiettive di V in sé.

Dettagli

(a, b) (x, y) = (ax, by). la compatibilità fra le due operazioni è data dalla compatibilità delle operazioni di R e R.

(a, b) (x, y) = (ax, by). la compatibilità fra le due operazioni è data dalla compatibilità delle operazioni di R e R. Università degli studi di Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2004/2005 AL2 - Algebra 2, gruppi anelli e campi Soluzioni 26 Novembre 2004 1 Anelli e Ideali 1. Dati due anelli R e R,

Dettagli

SOLUZIONI DEL COMPITO DEL 24/02/ l unica radice reale di f (X), l insieme delle radici di f (X) è [E : Q] [F : Q]

SOLUZIONI DEL COMPITO DEL 24/02/ l unica radice reale di f (X), l insieme delle radici di f (X) è [E : Q] [F : Q] SOLUIONI DEL COMPITO DEL 24/02/206 Esercizio Sia E il campo di spezzamento del polinomio X 3 6 X] e sia F = ( i, 3 ( Si calcoli il grado EF : ] del campo composto EF (2 Si esibisca una -base di EF (3 Si

Dettagli

2.5 Esercizi. 2.5 Esercizi 41. Poiché per il Lemma 2.3.4, si ha E 1 : F = E 1 : F(α) F(α) : F e F(α) : F = d allora

2.5 Esercizi. 2.5 Esercizi 41. Poiché per il Lemma 2.3.4, si ha E 1 : F = E 1 : F(α) F(α) : F e F(α) : F = d allora 2.5 Esercizi 41 Poiché per il Lemma 2.3.4, si ha E 1 : F = E 1 : F(α) F(α) : F e F(α) : F = d allora {σ: E 1 E 2 σ(a) = ā a F } = A 1 +... + A d = E 1 : F[α] +... + E 1 : F[α] = d E 1 : F[α] = E 1 : F.

Dettagli

Geometria I 2009-mag

Geometria I 2009-mag Geometria I 2009-mag-06 124 17 Mappe affini Cfr: Nacinovich, Cap V, 3 [3]. (17.1) Definizione. Siano X e Y due spazi affini sullo stesso campo K. Una funzione f : X Y si dice affine (anche, mappa affine

Dettagli

Esercitazione ( ) guidata di Algebra 2, 28/10/2014 ( ) con soluzioni o cenni di soluzioni. a 0

Esercitazione ( ) guidata di Algebra 2, 28/10/2014 ( ) con soluzioni o cenni di soluzioni. a 0 Esercitazione ( ) guidata di Algebra 2, 28/10/2014 ( ) con soluzioni o cenni di soluzioni. a 0 1 0 1) Sia H = { a, b R, a 0} e sia T = { b R}. b 1 b 1 a) Provare che H è un sottogruppo di GL 2 (R). b)

Dettagli

Definizione 1 Sia G un gruppo e sia Ω un insieme: si dice azione (o rappresentazione)

Definizione 1 Sia G un gruppo e sia Ω un insieme: si dice azione (o rappresentazione) 1 Azione di Gruppo 1.1 Azione di un gruppo su un insieme. Definizione 1 Sia G un gruppo e sia Ω un insieme: si dice azione (o rappresentazione) di G su Ω un qualunque omomorfismo da G ad S Ω (gruppo simmetrico

Dettagli

CdL in Matematica ALGEBRA 1 prof. Fabio GAVARINI a.a Esame scritto del 18 Giugno 2019 Sessione Estiva, I appello. Testo & Svolgimento

CdL in Matematica ALGEBRA 1 prof. Fabio GAVARINI a.a Esame scritto del 18 Giugno 2019 Sessione Estiva, I appello. Testo & Svolgimento CdL in Matematica ALGEBRA 1 prof. Fabio GAVARINI a.a. 2018 2019 Esame scritto del 18 Giugno 2019 Sessione Estiva, I appello Testo & Svolgimento [1] Sia Q : Q 0, e sia η Q Q la relazione binaria in Q definita

Dettagli

AL210 - Appunti integrativi - 6

AL210 - Appunti integrativi - 6 L210 - ppunti integrativi - 6 Prof. Stefania Gabelli - a.a. 2016-2017 Divisibilità in un dominio Per definire in un anello commutativo unitario una buona teoria della divisibilità, è conveniente assumere

Dettagli

Esercizi 0 Strutture algebriche

Esercizi 0 Strutture algebriche Esercizi 0 Strutture algebriche e Esercizio. Siano f : Q[x] Q[x] : p(x) p(x 2 2x + 1), g : Q[x] Q[x] : p(x) p(x) 2 h : Q[x] Q[x] : p(x) p(x 3). Si determini (g f)(x 3 x 2 ) e (f g h)(x + 3). Esercizio.

Dettagli

AL210 - Appunti integrativi - 3

AL210 - Appunti integrativi - 3 AL210 - Appunti integrativi - 3 Prof. Stefania Gabelli - a.a. 2016-2017 Nello studio delle strutture algebriche, sono interessanti le relazioni che sono compatibili con le operazioni. Vogliamo dimostrare

Dettagli

ESERCIZI SU GRUPPI E POLINOMI (PARTE 1)

ESERCIZI SU GRUPPI E POLINOMI (PARTE 1) ESERCIZI SU GRUPPI E POLINOMI (PARTE 1 MARTINO GARONZI Indice 0.1. Prerequisiti 1 0.2. Notazioni particolari 2 1. Gruppi 3 1.1. Esercizi di struttura 3 1.2. Gruppi ciclici 29 1.3. Gruppi simmetrici e alterni

Dettagli

Esercizi per Geometria II Geometria affine e euclidea

Esercizi per Geometria II Geometria affine e euclidea Esercizi per Geometria II Geometria affine e euclidea Filippo F. Favale 4 marzo 04 Esercizio Si dica, per ciascuno dei seguenti casi, se A ha la struttura di spazio affine o euclideo su V. A R 3 con coordinate

Dettagli

Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE

Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE Università degli Studi di Verona Corso di Laurea in Matematica Applicata * * * Prof. Lidia Angeleri Anno accademico 2009-2010 Indice

Dettagli

1 Polinomio minimo e ampliamenti

1 Polinomio minimo e ampliamenti Università degli studi di Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2004/2005 AL2 - Algebra 2, gruppi anelli e campi Soluzioni 10 dicembre 2004 1 Polinomio minimo e ampliamenti 1. Determinare

Dettagli

Soluzioni del compito di esonero di Algebra

Soluzioni del compito di esonero di Algebra Soluzioni del compito di esonero di Algebra 6 aprile 006 1. Usando il principio di induzione, svolgere uno a scelta fra i due seguenti esercizi. (a) Sia N + := N\{0}. Si consideri l applicazione f : N

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1

Esercizi Di Geometria 1 (BAER) Canale 1 Esercizi Di Geometria 1 (BAER) Canale 1 SETTIMANA 9 (23 29 Novembre 2015) da consegnare Mercoledi 2 Dicembre. Esercizio 1. Sia E = (V,, ) uno spazio metrico finito dimensionale. sottospazio vettoriale

Dettagli

SOLUZIONI DELLA PRIMA PROVA IN ITINERE DEL CORSO GE220

SOLUZIONI DELLA PRIMA PROVA IN ITINERE DEL CORSO GE220 SOLUZIONI DELLA PRIMA PROVA IN ITINERE DEL CORSO GE220 ESERCIZIO 1 (6 punti) Sia X uno spazio topologico. Dimostrare che: (i) (3 punti) X è uno spazio T 1 se e solo se per ogni x X l intersezione di tutti

Dettagli

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004 Algebra Lineare. a.a. 004-05. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/1/004 Esercizio 1. Siano V e W due spazi vettoriali e sia F : V W un isomorfismo (quindi F è lineare e

Dettagli

Analogamente, avremmo ottenuto la stessa relazione d ordine parziale A B se A B a partire da A B se A B = B. Z B, B W.

Analogamente, avremmo ottenuto la stessa relazione d ordine parziale A B se A B a partire da A B se A B = B. Z B, B W. Elementi di Algebra e Logica 2008. 6. Reticoli. 1. Sia X un insieme e sia P(X) l insieme delle parti di X. Indichiamo con e le operazioni di intersezione e di unione fra sottoinsiemi di X. (a) Dimostrare

Dettagli

Proposizione 1 Sia (G, ) un gruppo, g G. delle seguenti possibilità: Allora si ha una. 1. h, k Z g h g k < g > è infinito

Proposizione 1 Sia (G, ) un gruppo, g G. delle seguenti possibilità: Allora si ha una. 1. h, k Z g h g k < g > è infinito Proposizione 1 Sia (G, ) un gruppo, g G. delle seguenti possibilità: Allora si ha una 1. h, k Z g h g k < g > è infinito 2. h, k Z g h = g k < g > è finito. Definizione 2 Sia (G, ) un gruppo, g G. Si dice

Dettagli

ALGEBRA C. MALVENUTO

ALGEBRA C. MALVENUTO ALGEBRA CANALE A-L ESAME SECONDA PARTE SECONDO ESONERO 27 GENNAIO 22 C. MALVENUTO Istruzioni. Completare subito la parte inferiore di questa pagina con il proprio nome, cognome e firma. Scrivere solamente

Dettagli

a p a (p) (a + 1) p = i=0 sono noti come coefficienti binomiali 2 e sono numeri interi (a + 1) p a p + 1 (p) (a + 1) p a + 1 (p)

a p a (p) (a + 1) p = i=0 sono noti come coefficienti binomiali 2 e sono numeri interi (a + 1) p a p + 1 (p) (a + 1) p a + 1 (p) Appunti quarta settimana Iniziamo con un risultato molto importante che ha svariate conseguenze e che3 sarà dimostrato in modi diversi durante il corso: Esercizio 1.[Piccolo teorema di Fermat] Dimostrare

Dettagli

Esercitazione n. 35 (24/02/2016)

Esercitazione n. 35 (24/02/2016) Esercitazione n 35 (24/02/206) Argomenti Morfismo di Frobenius Esercizi vari sugli anelli II Teorema di isomorfismo, applicazioni Anelli di funzioni Esercizio (Morfismo di Frobenius) Sia p un numero primo

Dettagli

Note di algebra. Work in progress Martino Garonzi Versione 3.1 del 09/02/2010

Note di algebra. Work in progress Martino Garonzi Versione 3.1 del 09/02/2010 Note di algebra Work in progress Martino Garonzi Versione 3.1 del 09/02/2010 If I can still be standing on my feet then life isn t so bad. (Sylvester Stallone) Indice Capitolo 1. Gruppi 5 1. Generalità

Dettagli

Matematica Discreta I

Matematica Discreta I Matematica Discreta I 5 Febbraio 8 TEMA A Esercizio Sia data la matrice A M (R) A = (i) Calcolare gli autovalori di A (ii) Determinare una base di R composta di autovettori di A (iii) Diagonalizzare la

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni (1) Verificare che l anello quoziente Z 5 [x]/(x 3 2) possiede divisori dello zero, e determinare tutti i suoi ideali non banali. Soluzione: Il polinomio

Dettagli

p-gruppi di ordine piccolo

p-gruppi di ordine piccolo Alma Mater Studiorum Università di Bologna SCUOLA DI SCIENZE Corso di Laurea in Matematica p-gruppi di ordine piccolo Tesi di Laurea in Algebra Relatore: Chiar.ma Prof. Marta Morigi Correlatore: Chiar.mo

Dettagli

0.1 Coordinate in uno spazio vettoriale

0.1 Coordinate in uno spazio vettoriale 0.. COORDINATE IN UNO SPAZIO VETTORIALE 0. Coordinate in uno spazio vettoriale Sia V uno spazio vettoriale di dimensione finita n costruito sul campo K. D ora in poi, ogni volta che sia fissata una base

Dettagli

Esame di Matematica Discreta Laurea Triennale in Informatica e Comunicazione Digitale Sede di Taranto 28/9/2005

Esame di Matematica Discreta Laurea Triennale in Informatica e Comunicazione Digitale Sede di Taranto 28/9/2005 Sede di Taranto 28/9/2005 1. Dati gli insiemi A = {1, 2, 3, 4, 5} e B = {a, b, c}, determinare tutte le applicazioni surgettive f : A B tali che f(2) = f(3) = a f(x) a per x {2, 3}. 2. Risolvere il sistema

Dettagli

Compito di MD 13 febbraio 2014

Compito di MD 13 febbraio 2014 Compito di MD 13 febbraio 2014 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può scrivere con il lapis. Motivare

Dettagli

ALGEBRA 2 - Primo esonero + Appello straordinario 23 aprile 2013

ALGEBRA 2 - Primo esonero + Appello straordinario 23 aprile 2013 ALGEBRA 2 - Primo esonero + Appello straordinario 23 aprile 2013 1. Sia G = D 5 A 4 il prodotto diretto del gruppo diedrale del pentagono col gruppo alterno su 4 elementi (per intenderci, stiamo parlando

Dettagli

Numero di automorfismi di un gruppo abeliano finito

Numero di automorfismi di un gruppo abeliano finito Numero di automorfismi di un gruppo abeliano finito Giacomo Mezzedimi 8 Ottobre 2014 In questo articolo ci proponiamo di calcolare il numero di automorfismi di un generico gruppo abeliano finito Proposizione

Dettagli

Istituzioni di Logica Matematica

Istituzioni di Logica Matematica Istituzioni di Logica Matematica Sezione 8 del Capitolo 2 Alessandro Andretta Dipartimento di Matematica Università di Torino A. Andretta (Torino) Istituzioni di Logica Matematica AA 2012 2013 1 / 31 Strutture

Dettagli

Prova scritta di Algebra 9 giugno Si risolva il seguente sistema di congruenze lineari x 4 mod 7 11x 2 mod 15 x 3 mod 8

Prova scritta di Algebra 9 giugno Si risolva il seguente sistema di congruenze lineari x 4 mod 7 11x 2 mod 15 x 3 mod 8 Prova scritta di Algebra 9 giugno 2016 1. Si risolva il seguente sistema di congruenze lineari x 4 mod 7 11x 2 mod 15 x 3 mod 8 2. In S 10 sia α = (7, 10(2, 1, 6, 8, 5, 7(6, 2, 8(5, 9(9, 5, 4(1, 9. a Si

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 4 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 5.2, 5.3

Dettagli

AL210 - Appunti integrativi - 7

AL210 - Appunti integrativi - 7 AL210 - Appunti integrativi - 7 Prof. Stefania Gabelli - a.a. 2016-2017 Fattorizzazione in anelli di polinomi Poiché l anello dei polinomi K[X] in una indeterminata X su un campo K è un dominio euclideo,

Dettagli

Corso di Matematica 2 (mod.a) per la Laurea in Matematica - esercizi per casa del 6 ottobre Cognome... Nome... Matricola...

Corso di Matematica 2 (mod.a) per la Laurea in Matematica - esercizi per casa del 6 ottobre Cognome... Nome... Matricola... 6.1.25-M2A-E1 Corso di Matematica 2 (mod.a per la Laurea in Matematica - esercizi per casa del 6 ottobre 25 Lo studente è tenuto a consegnare l elaborato svolto e firmato non più tardi di Lunedì 1 ottobre

Dettagli

DIARIO DEL CORSO DI TEORIA DEI GRUPPI. Prima settimana. Lezione di mercoledí 27 febbraio 2013 (un ora)

DIARIO DEL CORSO DI TEORIA DEI GRUPPI. Prima settimana. Lezione di mercoledí 27 febbraio 2013 (un ora) DIARIO DEL CORSO DI TEORIA DEI GRUPPI SANDRO MATTAREI A.A. 2012/13 Prima settimana. Lezione di mercoledí 20 febbraio 2013 (un ora) Monoidi. Gli elementi invertibili di un monoide formano un gruppo. Esempi:

Dettagli

ALGEBRA 1 Secondo esame scritto soluzioni 18 Luglio x 15 mod 21 44x 20 mod 12 6x mod 15

ALGEBRA 1 Secondo esame scritto soluzioni 18 Luglio x 15 mod 21 44x 20 mod 12 6x mod 15 ALGEBRA 1 Secondo esame scritto soluzioni 18 Luglio 2011 (1) Risolvere il seguente sistema di congruenze lineari: 3x 15 mod 21 44x 20 mod 12 6x 6 1000 mod 15 Soluzione: Richiedere la validità della congruenza

Dettagli

Capitolo 4: Teoria degli anelli:

Capitolo 4: Teoria degli anelli: Capitolo 4: Teoria degli anelli: Definizione (Anello): È un insieme munito di due operazioni che indicheremo con in modo che: 1- è un gruppo abeliano rispetto a 2- è un monoide associativo rispetto al

Dettagli

Aritmetica 2009/10 Compitino 3/11/ x 16 mod 23 3x 2 mod 5

Aritmetica 2009/10 Compitino 3/11/ x 16 mod 23 3x 2 mod 5 Aritmetica 2009/10 Compitino 3/11/2009 1. Trovare le soluzioni intere del sistema 4 x 16 mod 23 3x 2 mod 5 Esempio risoluzione: Cerchiamo di riportarci ad un sistema di congruenze lineari. Calcoliamo l

Dettagli

Introduzione alla teoria dei gruppi, degli anelli e dei campi Compito del 11/01/2010

Introduzione alla teoria dei gruppi, degli anelli e dei campi Compito del 11/01/2010 Compito del 11/01/2010 Esercizio 1. Sia G un gruppo con o(g) = p 3 (con p primo). Sia G il sottogruppo dei commutatori di G e sia Z(G) il centro di G. a. Dimostrare che o G è abeliano o Z(G) = G. (Sugg.

Dettagli

17 LIMITI E COMPOSIZIONE

17 LIMITI E COMPOSIZIONE 17 LIMITI E COMPOSIZIONE L operazione di ite si comporta bene per composizione con funzioni continue. Teorema. Sia gx) = y 0 e sia f continua in y 0. Allora esiste fgx)) = fy 0 ). Questo teorema ci dice

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 10 aprile 01 Esercizio 1 Sia E 3 lo spazio euclideo tridimensionale dotato di un riferimento cartesiano ortonormale di coordinate

Dettagli

COMPITO DI ALGEBRA 29 maggio ax 1 (mod 81) a x 1 (mod 81) a b a, b, c, 0 F 0 c

COMPITO DI ALGEBRA 29 maggio ax 1 (mod 81) a x 1 (mod 81) a b a, b, c, 0 F 0 c 29 maggio 1995 1) Determinare per quali valori del parametro a il sistema è risolubile. ax 1 (mod 81) a x 1 (mod 81) 2) Sia G il gruppo moltiplicativo G = ( ) a b a, b, c, 0 F 0 c 5, ac 0} (i) Determinare

Dettagli

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014 MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 4 APRILE 014 1. Trovare il numero di stringhe di lunghezza n che si possono formare usando le lettere A, B, C, D, E in modo che ogni stringa

Dettagli