1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi"

Transcript

1 In ogni esercizio c è la data del giorno in cui l ho proposto. 1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi Se X è un insieme indichiamo con Sym(X) l insieme delle biiezioni X X. Si tratta di un gruppo con l operazione di composizione. Mostriamo che se X, Y sono insiemi equipotenti allora Sym(X) = Sym(Y ). Sia f : X Y una biiezione. L applicazione θ : Sym(X) Sym(Y ) che manda ϕ in f ϕ f 1 è un isomorfismo di gruppi. Infatti: 1. θ è ben definita. In altre parole, se ϕ Sym(X) allora θ(ϕ) Sym(Y ). Infatti θ(ϕ) = f ϕ f 1 ha Y come dominio e come codominio (per come è definita) e θ(ϕ) Sym(Y ): in altre parole, θ(ϕ) è biiettiva. Infatti f, ϕ, f 1 sono biiettive, quindi θ(ϕ) = f ϕ f 1, composizione di funzioni biiettive, è biiettiva. 2. θ è un omomorfismo di gruppi. In altre parole, se g, h Sym(X) allora θ(g h) = θ(g) θ(h). Infatti θ(g h) = f (g h) f 1 = (f g f 1 ) (f h f 1 ) = θ(g) θ(h). 3. θ è iniettiva. Siccome θ è un omomorfismo, si tratta di dimostrare che ker(θ) = {1}. Supponiamo che θ(ϕ) = 1 = id Y e mostriamo che ϕ = 1 = id X. Abbiamo f ϕ f 1 = θ(ϕ) = 1 = id Y da cui componendo entrambi i membri a sinistra con f 1 e a destra con f abbiamo ϕ = f 1 f = 1 = id X. 4. θ è suriettiva. Infatti dato g Sym(Y ) si ha f 1 g f Sym(X) e θ(f 1 g f) = f (f 1 g f) f 1 = g. 2 xy e yx sono coniugati Sia G un gruppo e siano x, y G. Mostriamo che xy e yx sono coniugati in G. In altre parole, mostriamo che esiste g G tale che g(xy)g 1 = yx. Scegliamo g = x 1. Allora (x 1 )(xy)(x 1 ) 1 = x 1 xyx = yx. 3 G non è unione di due sottogruppi propri Sia G un gruppo e siano H, K G con H e K propri, cioè H, K G. Mostriamo che H K G. Supponiamo quindi per assurdo che H K = G. Siccome H, K G esistono due elementi h, k G con la proprietà che h G K e k G H. Siccome G = H K si deve allora avere, per definizione di unione, che h H e k K. Ora consideriamo l elemento hk G. Siccome G = H K 1

2 si deve avere, per definizione di unione, che hk H oppure hk K. Ma se hk H allora siccome h H, h 1 H e H h 1 (hk) = k, assurdo, e se hk K allora siccome k K, k 1 K e K (hk)k 1 = h, assurdo. 4 Se g 2 = 1 per ogni g G allora G è abeliano Supponiamo che g 2 = 1 per ogni g G. Mostriamo che G è abeliano. In altre parole, dobbiamo mostrare che dati x, y G due elementi qualunque si ha xy = yx. Per ipotesi x 2 = 1, y 2 = 1 e anche (xy) 2 = 1. Quest ultima relazione dice che xyxy = 1, quindi moltiplicando a sinistra per x e ricordando che x 2 = 1 abbiamo yxy = x; ora moltiplicando a sinistra per y e ricordando che y 2 = 1 abbiamo xy = yx. 5 Se G è abeliano ogni sottogruppo di G è normale Sia G un gruppo abeliano e sia H G. Mostriamo che H è normale in G. In altre parole dobbiamo dimostrare che se g G e h H allora ghg 1 H. Ma siccome G è abeliano g e h commutano e quindi ghg 1 = hgg 1 = h H. 6 Il centralizzante di (123) in A 5 Ricordo il seguente fatto noto. Lemma 1. Siano A, B due sottogruppi normali di un gruppo G con le seguenti proprietà: A B = {1} e AB = G. Allora G = A B. Sia σ = (123). Vogliamo trovare C A5 ((123)). Troviamo dapprima il centralizzante di (123) in S 5. I coniugati di (123) in S 5 sono i 3-cicli, quindi sono 2 (5 3) = 20, per cui CS5 (σ) = 5!/20 = 6. Ora, (123), (45) C S5 (σ) e commutano (sono cicli disgiunti). Siano A = (123) e B = (45). Sia G = (123), (45). A, B G. Per mostrare questo basta mostrare che i normalizzanti N G (A), N G (B) sono uguali a G. Per mostrare questo basta mostrare che N G (A), N G (B) contengono i due generatori di G che conosciamo, (123) e (45) (infatti se G è generato da un insieme X e H G contiene X allora H, essendo un sottogruppo, contiene anche X = G). In altre parole dobbiamo mostrare che (123)A(123) 1 = A, (45)A(45) 1 = A, (123)B(123) 1 = B, (45)B(45) 1 = B. Di nuovo, per mostrare ognuna di queste uguaglianze basta limitarsi ai generatori (il coniugio preserva i prodotti), in altre parole 2

3 dobbiamo mostrare che (123)(123)(123) 1 A, (123)(45)(123) 1 B, (45)(123)(45) 1 A e (45)(45)(45) 1 B. Questo segue dal fatto che (123), (45) commutano tra loro e con se stessi. A, B hanno intersezione {1}, infatti A B è un sottogruppo di A e di B, quindi per il teorema di Lagrange A B divide A = 3 e B = 2, quindi A B = 1, cioè A B = {1}. AB = G. Infatti siccome (123) e (45) commutano, G = (123), (45) = (123) (45) = AB. Usando il lemma troviamo che C 6 = C3 C 2 = (123) (45) = (123), (45) per cui (123), (45) è un sottogruppo di C S5 (σ) di ordine 6, e C S5 (σ) ha ordine 6, da cui C S5 (σ) = (123), (45) = {1, (123)(45), (132), (45), (123), (132)(45)} = Ne segue che = (123)(45) = C 6. C A5 (σ) = C S5 (σ) A 5 = {1, (123)(45), (132), (45), (123), (132)(45)} A 5 = = {1, (123), (132)}. In particolare (123) ha 5!/6 = 20 coniugati in S 5 e (5!/2)/3 = 20 coniugati in A 5. In altre parole, tutti i 3-cicli sono coniugati in A 5. 7 Il centralizzante di (12345) in S 5, S 6, A 5, A 6 Sia σ = (12345). σ ha 4! coniugati in S 5 e 6 4! coniugati in S 6. Ne segue che C S5 (σ) = 5!/4! = 5, C S6 (σ) = 6!/6 4! = 5. D altra parte (12345) è contenuto in C S5 (σ) e C S6 (σ) quindi C S5 (σ) = σ e C S6 (σ) = σ. Inoltre siccome σ è costituito di permutazioni pari (perché σ è pari, essendo un ciclo di lunghezza dispari), si ha C A5 (σ) = C S5 (σ) A 5 = σ e C A6 (σ) = C S6 (σ) A 6 = σ. Ne segue che (12345) ha 5!/5 = 4! coniugati in S 5 e 6!/5 = 6! 4 coniugati in S 6, ma ha (5!/2)/5 = 4!/2 coniugati in A 5 e (6!/2)/5 = 6! 2 coniugati in A 6. Quindi in A 5 e in A 6 ci sono due classi di coniugio di 5-cicli. 3

4 8 Il centralizzante di (123)(456) in S 6, A 6 Il numero di elementi con la stessa struttura ciclica di σ = (123)(456) è 2 (6 3) = 6!/(3! 3) (si sceglie una partizione di {1, 2, 3, 4, 5, 6} in due sottoinsiemi di tre elementi in 1 2( 6 3) modi, e per ognuna si costruiscono quattro elementi di struttura ciclica (3, 3)). Sia C := C S6 (σ). Segue che C = 6!/(6!/(3! 3)) = 3! 3 = 18. Ora, naturalmente (123) e (456) appartengono a C, per cui (123)(456) C. Chiamiamo A = (123) e B = (456). Abbiamo AB = A B / A B = A B = 9 (per la cronaca usando il lemma 1 otteniamo che addirittura AB = A, B = A B). Quindi abbiamo trovato nove elementi in C, che ha ordine 18. Per concludere ci serve trovare un elemento di ordine 2 in C (il motivo sarà chiaro poi). Un idea per un elemento di ordine 2 che centralizza (123)(456) è la seguente: possiamo scambiare i due fattori (tanto commutano!). In altre parole detto t = (14)(25)(36) si ha tσt 1 = (t(1) t(2) t(3)) (t(4) t(5) t(6)) = (456)(123) = (123)(456) = σ. Per cui t C. Ne segue che A, B, t C. D altra parte A, B, t è diviso da A, B = 9 e da t = 2 e quindi è diviso da 9 2 = 18. Siccome C ha ordine 18 segue che C = (123), (456), (14)(25)(36). Ora osserviamo che C non è contenuto in A 6, infatti C contiene (14)(25)(36) che è una permutazione dispari. Siccome A 6 S 6 si ha CA 6 S 6 e naturalmente A 6 CA 6, e d altra parte A 6 CA 6 (da A 6 = CA 6 seguirebbe che C A 6 ). Abbiamo quindi 2 = S 6 : A 6 = S 6 : CA 6 CA 6 : A 6 e CA 6 : A 6 1, quindi CA 6 : A 6 = 2 in altre parole CA 6 = S 6. Segue dai teoremi di isomorfismo che C 2 = S6 /A 6 = CA 6 /A 6 = C/C A 6 da cui C A 6 = 1 2 C = 9. Siccome (123), (456) sono permutazioni pari (essendo cicli di lunghezza dispari) C A 6 contiene (123), (456), che ha ordine 9, segue che C A 6 = (123), (456). In particolare (123)(456) ha (6!/2)/9 coniugati in A 6, e quindi tutti i coniugati di (123)(456) in S 6 sono a esso coniugati anche in A 6. 9 Trovare un azione fedele transitiva di S 4 su sei punti Ricordo che un azione di un gruppo G si dice fedele se il suo nucleo è {1}. Osserviamo che S 4 agisce {1, 2, 3, 4} nel modo ovvio (la permutazione σ S 4 manda l elemento i {1, 2, 3, 4} in σ(i)), e questa azione è transitiva e fedele, ma è un azione su quattro punti. Ce ne serve una su sei. Ci sono due modi per farlo (esattamente due modi!). 1. I 4-cicli sono tutti coniugati in S 4, e sono sei: (1234), (1243), (1324), (1342), (1423), (1432). Sia Ω l insieme dei 4-cicli di S 4. Allora Ω = 6. Il 4

5 fatto che un coniugato di un 4-ciclo è ancora un 4-ciclo dice che S 4 agisce su Ω per coniugio: S 4 Ω Ω, (σ, ω) σωσ 1. Il fatto che i 4-cicli in S 4 sono tutti coniugati dice che tale azione è transitiva. Ci resta da dimostrare che è fedele. Per farlo troviamo il nucleo. Come sappiamo, il nucleo è l intersezione degli stabilizzatori, cioè, in questo caso, dei centralizzanti degli elementi di Ω. D altra parte sappiamo (lo abbiamo visto) che se σ è un 4-ciclo in S 4 allora C S4 (σ) = σ, per cui il nucleo dell azione è l intersezione ω Ω ω. Tale intersezione è {1} perché è contenuta (per esempio) in (1234) (1243), cioè in {1, (1234), (13)(24), (1432)} {1, (1243), (14)(23), (1342)} = {1}. 2. Ci sono ( 4 2) = 6 sottoinsiemi di {1, 2, 3, 4} di due elementi, essi sono {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. Sia Ω l insieme dei sottoinsiemi di {1, 2, 3, 4} di due elementi. Allora Ω = 6. S 4 agisce su Ω nel modo seguente: S 4 Ω Ω, (σ, {a, b}) {σ(a), σ(b)}. Questa azione è transitiva. Per questo basta mostrare che l orbita di {1, 2} è tutto Ω. Preso {a, b} Ω dobbiamo trovare una permutazione σ S 4 tale che σ({1, 2}) = {a, b}, e per questo basta che σ(1) = a e σ(2) = b. Scriviamo {1, 2, 3, 4} = {a, b, c, d} e definiamo σ tramite le assegnazioni σ(1) = a, σ(2) = b, σ(3) = c e σ(4) = d. Mostriamo che l azione è fedele, cioè che il nucleo è banale, cioè {1}. Lo stabilizzatore di {1, 2} è H = {σ S 4 : {σ(1), σ(2)} = {1, 2}} = {1, (12), (34), (12)(34)}. Lo stabilizzatore di {2, 3} è L = {σ S 4 : {σ(2), σ(3)} = {2, 3}} = {1, (23), (14), (14)(23)}. Ne segue che il nucleo è contenuto in H L = {1} e quindi l azione è fedele. Un altro modo di farlo era il seguente. Il nucleo dell azione è un sottogruppo normale di S 4 contenuto in H (il nucleo è l intersezione degli stabilizzatori, quindi è contenuto in tutti gli stabilizzatori, in particolare in H). Ma ricordando che i sottogruppi normali di S 4 sono {1}, K, A 4 e S 4, dove K è il gruppo di Klein (quello che consiste dell identità e dei prodotti di due scambi disgiunti) otteniamo che il nucleo dell azione è {1} (infatti K, A 4 e S 4 non sono contenuti in H). 10 A n è generato dai quadrati Sia n 1 un intero e sia Q := {x 2 : x S n }. Mostriamo che Q = A n. Osserviamo che ogni elemento di A n è un prodotto di un numero pari di scambi, 5

6 quindi è un prodotto di cose del tipo (ij)(kl) dove (ij) e (kl) sono scambi distinti (non necessariamente disgiunti!). Quindi per mostrare che Q = A n basta mostrare che ogni elemento del tipo (ij)(kl), con (ij), (kl) scambi distinti (non necessariamente disgiunti) appartiene a Q. Ci sono due possibilità. (ij) e (kl) sono disgiunti. Allora (ikjl) 2 = (ij)(kl) e quindi (ij)(kl) Q. (ij) e (kl) non sono disgiunti. Possiamo per esempio assumere che i = k e j l (essendo (kl) = (lk)). Si ha (ij)(kl) = (ij)(il) = (ilj) = (ijl) 2 e quindi (ij)(kl) Q. 6

Svolgimento del compitino di Algebra 2 del 17/11/2014 (Tema A). 1. (a) Provare che G/Z(G) è isomorfo a un sottogruppo del gruppo degli

Svolgimento del compitino di Algebra 2 del 17/11/2014 (Tema A). 1. (a) Provare che G/Z(G) è isomorfo a un sottogruppo del gruppo degli Svolgimento del compitino di Algebra 2 del 17/11/2014 (Tema A). 1. (a) Provare che G/Z(G) è isomorfo a un sottogruppo del gruppo degli automorfismi di G. (b) Provare che se G/Z(G) è ciclico allora G è

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione

Dettagli

ESERCIZI PROPOSTI. Capitolo 5 MCD(15,5) = 15 5 =3. un unico sottogruppo di ordine d, cioè x 20/d = C d. , x 20/10 = x 2 = C 10. , x 20/4 = x 5 = C 4

ESERCIZI PROPOSTI. Capitolo 5 MCD(15,5) = 15 5 =3. un unico sottogruppo di ordine d, cioè x 20/d = C d. , x 20/10 = x 2 = C 10. , x 20/4 = x 5 = C 4 ESERCIZI PROPOSTI Capitolo 5 511 Determinare il periodo dell elemento x 320 del gruppo ciclico C 15 = x x 15 =1 Indicare tutti i generatori del sottogruppo x 320 Soluzione Dividiamo 320 per 15 Si ha 320

Dettagli

Lezione 7. Relazione di coniugio. Equazione delle classi. { x} C( x) { } { }

Lezione 7. Relazione di coniugio. Equazione delle classi. { x} C( x) { } { } Lezione 7 Prerequisiti: Lezioni 2, 5. Centro di un gruppo. Struttura ciclica di una permutazione. Riferimenti ai testi: [H] Sezione 2.; [PC] Sezione 5. Relazione di coniugio. Equazione delle classi. Definizione

Dettagli

Presentazione di gruppi

Presentazione di gruppi Presentazione di gruppi Sia G un gruppo e X un suo sottoinsieme non vuoto, indichiamo con Gp(X) = {x ɛ 1 1 x ɛ 2 2... x ɛ n n x i X, ɛ i = ±1} dove gli elementi di questo insieme sono da intendersi come

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente

Dettagli

DIARIO DEL CORSO DI TEORIA DEI GRUPPI. Prima settimana. Lezione di mercoledí 27 febbraio 2013 (un ora)

DIARIO DEL CORSO DI TEORIA DEI GRUPPI. Prima settimana. Lezione di mercoledí 27 febbraio 2013 (un ora) DIARIO DEL CORSO DI TEORIA DEI GRUPPI SANDRO MATTAREI A.A. 2012/13 Prima settimana. Lezione di mercoledí 20 febbraio 2013 (un ora) Monoidi. Gli elementi invertibili di un monoide formano un gruppo. Esempi:

Dettagli

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x. ALGEBRE DI BOOLE Un insieme parzialmente ordinato è una coppia ordinata (X, ) dove X è un insieme non vuoto e " " è una relazione binaria definita su X tale che (a) x X x x (riflessività) (b) x, y, X se

Dettagli

Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1

Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Prof. Lidia Angeleri Anno accademico 2015-2016 1 1 appunti aggiornati in data 14 gennaio 2016 Indice I Gruppi 3

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

SOLUZIONI ESERCIZI DI IGS. b 0 (mod 3) 1 + 2a + b 0 (mod 3)

SOLUZIONI ESERCIZI DI IGS. b 0 (mod 3) 1 + 2a + b 0 (mod 3) SOLUZIONI ESERCIZI DI IGS 1. Il polinomio f(x) è irriducibile su Q per il criterio di Eisenstein (p = 3). 2. Sia f(x) = X 2 +ax +b Z 3 [X]. Poichè f(x) è di secondo grado, è irriducibile se e solo se non

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Appunti su Z n. Alessandro Ghigi. 2 febbraio Operazioni 1. 2 Gruppi 4. 4 Permutazioni 12. Riferimenti bibliografici 19

Appunti su Z n. Alessandro Ghigi. 2 febbraio Operazioni 1. 2 Gruppi 4. 4 Permutazioni 12. Riferimenti bibliografici 19 Appunti su Z n Alessandro Ghigi 2 febbraio 2006 Indice 1 Operazioni 1 2 Gruppi 4 3 La somma su Z n 9 4 Permutazioni 12 5 Il prodotto su Z n 13 Riferimenti bibliografici 19 1 Operazioni Definizione 1 Una

Dettagli

Esercizi di Algebra 2, C.S. in Matematica, a.a

Esercizi di Algebra 2, C.S. in Matematica, a.a 26 Esercizi di Algebra 2, C.S. in Matematica, a.a.2008-09. Parte V. Anelli Nota. Salvo contrario avviso il termine anello sta per anello commutativo con identità. Es. 154. Provare che per ogni intero n

Dettagli

(2) se A A, allora A c A; (3) se {A n } A, allora +

(2) se A A, allora A c A; (3) se {A n } A, allora + 1. Spazi di misura In questo paragrafo accenneremo alla nozione di spazio di misura. Definizione 1. Sia X un insieme non vuoto. Una famiglia A di sottoinsiemi di X è una σ-algebra se : (1) A; (2) se A

Dettagli

0.1 Esercizi calcolo combinatorio

0.1 Esercizi calcolo combinatorio 0.1 Esercizi calcolo combinatorio Esercizio 1. Sia T l insieme dei primi 100 numeri naturali. Calcolare: 1. Il numero di sottoinsiemi A di T che contengono esattamente 8 pari.. Il numero di coppie (A,

Dettagli

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia Corso di Laurea in Matematica Geometria 2 Esercizi di preparazione allo scritto a.a. 2015-16 Esercizio 1. Dimostrare che Topologia 1. d(x, y) = max 1 i n x i y i definisce una distanza su R n. 2. d(x,

Dettagli

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011 Gara Matematica Dipartimento di Matematica Ulisse Dini Viale Morgagni 67/a - 50134 Firenze Soluzioni edizione 011 Esercizio 1. Determinare tutti gli interi positivi non nulli n che sono uguali alla somma

Dettagli

INSIEMI. Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X).

INSIEMI. Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X). INSIEMI Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X). Sia A = {A λ : λ Λ} una famiglia di insiemi. Definiamo: unione A = A λ è l insieme U tale

Dettagli

Presentazioni di gruppi: generatori e relazioni

Presentazioni di gruppi: generatori e relazioni Presentazioni di gruppi: generatori e relazioni Note per il corso di Geometria 4 (relative alla parte dei 6 crediti) Milano, 2011-2012, M.Dedò N.B. Quanto segue si appoggia fortemente al testo [M] consigliato

Dettagli

SOLUZIONI DEGLI ESERCIZI DEL CAPITOLO 2

SOLUZIONI DEGLI ESERCIZI DEL CAPITOLO 2 SOLUZIONI DEGLI ESERCIZI DEL CAPITOLO 2 Esercizio 211 Assumendo nota la struttura dei sottogruppi del gruppo alterno A 4 [cfr [AA] pag 175], determinare un sottogruppo H di A 4, di ordine massimo per cui

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi Dispense del corso di Algebra 1 Soluzioni di alcuni esercizi Esercizio 1.1. 1) Vero; ) Falso; 3) V; 4) F; 5) F; 6) F (infatti: {x x Z,x < 1} {0}); 7) V. Esercizio 1.3. Se A B, allora ogni sottoinsieme

Dettagli

Congruenze e Classi. Gregorio D Agostino. 24 marzo 2017

Congruenze e Classi. Gregorio D Agostino. 24 marzo 2017 Congruenze e Classi Gregorio D Agostino 24 marzo 2017 Equivalenze Equivalenza Un equivalenza è una relazione tra gli elementi di un insieme che gode di tre proprietà: Riflessiva: Ogni elemento è equivalente

Dettagli

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi INSIEMI E RELAZIONI 1. Insiemi e operazioni su di essi Il concetto di insieme è primitivo ed è sinonimo di classe, totalità. Sia A un insieme di elementi qualunque. Per indicare che a è un elemento di

Dettagli

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato.

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato. 1 Numeri reali Definizione 1.1 Un campo ordinato è un campo K munito di una relazione d ordine totale, compatibile con le operazioni di somma e prodotto nel senso seguente: 1. a, b, c K, a b = a + c b

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Prima lezione. Gilberto Bini. 16 Dicembre 2006

Prima lezione. Gilberto Bini. 16 Dicembre 2006 16 Dicembre 2006 Vediamo alcune nozioni di teoria ingenua degli insiemi. Vediamo alcune nozioni di teoria ingenua degli insiemi. Un insieme è una collezione di oggetti di cui possiamo specificare una proprietà

Dettagli

Esercizi per il corso di Algebra II Teoria dei Gruppi

Esercizi per il corso di Algebra II Teoria dei Gruppi Corso di Laurea in Matematica Esercizi per il corso di Algebra II Teoria dei Gruppi Per gli esercizi contrassegnati da una stella ( ), la soluzione, o almeno una risposta, si trova in fondo. 1 Operazioni,

Dettagli

Università Cattolica del Sacro Cuore. Facoltà di Scienze Matematiche, Fisiche e Naturali

Università Cattolica del Sacro Cuore. Facoltà di Scienze Matematiche, Fisiche e Naturali Università Cattolica del Sacro Cuore Sede di Brescia Facoltà di Scienze Matematiche, Fisiche e Naturali CORSO DI ISTITUZIONI DI ALGEBRA SUPERIORE I prof. Clara Franchi Esercizi svolti raccolti da Elena

Dettagli

Permutazioni. 1 Introduzione

Permutazioni. 1 Introduzione Permutazioni 1 Introduzione Una permutazione su un insieme di n elementi (di solito {1, 2,...,n}) è una funzione biiettiva dall insieme in sé. In parole povere, è una regola che a ogni elemento dell insieme,

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso Propedeutico - METS A.A. 2013/2014 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor,

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni

Dettagli

Università degli studi di Verona Corso di laurea in Informatica Prova scritta di Algebra 3 settembre 2002

Università degli studi di Verona Corso di laurea in Informatica Prova scritta di Algebra 3 settembre 2002 Prova scritta di Algebra settembre 2002 1) Si consideri il sottoinsieme del gruppo Q \{0} dei numeri razionali non nulli rispetto alla moltiplicazione: { m X = n } m 0, n Si dimostri che X è un sottosemigruppo;

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Funzioni - Parte I. 1 Denizione di Funzione. Antonio Lazzarini. Prerequisiti : Relazioni. Equazioni di Primo Grado.

Funzioni - Parte I. 1 Denizione di Funzione. Antonio Lazzarini. Prerequisiti : Relazioni. Equazioni di Primo Grado. Funzioni - Parte I Antonio Lazzarini Prerequisiti : Relazioni. Equazioni di Primo Grado. Denizione di Funzione Siano A e B due insiemi qualsiasi. Denizione (Funzione). Una relazione denita in A X B si

Dettagli

Insiemi uguali? biiezione : A B bambino i libro i bambino ii libro ii bambino iii libro iii bambino iv libro iv

Insiemi uguali? biiezione : A B bambino i libro i bambino ii libro ii bambino iii libro iii bambino iv libro iv Insiemi uguali? Vogliamo occuparci del confronto di insiemi, in particolare di insiemi infiniti. Prima di potere parlare di confronto di insiemi è necessario però fare alcune precisazioni a riguardo della

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

L aritmetica degli insiemi infiniti Parte I

L aritmetica degli insiemi infiniti Parte I L aritmetica degli insiemi infiniti Parte I Stefano Baratella Versione L A TEX realizzata in collaborazione con Tullio Garbari 1 Prerequisiti La relazione di equipotenza tra insiemi. Definizione 1. Si

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA 1 Applicazioni tra insiemi Siano A, insiemi. Una corrispondenza tra A e è un qualsiasi sottoinsieme del prodotto cartesiano A ; Se D

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 Esercizio 1. Usando l algoritmo euclideo delle divisioni successive, calcolare massimo comune divisore e identità di Bézout per le seguenti coppie

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

FUNZIONI. }, oppure la

FUNZIONI. }, oppure la FUNZIONI 1. Definizioni e prime proprietà Il concetto di funzione è di uso comune per esprimere la seguente situazione: due grandezze variano l una al variare dell altra secondo una certa legge. Ad esempio,

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo. Capitolo 3 Il campo Z n 31 Introduzione Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo 32 Le classi resto Definizione

Dettagli

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile.

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile. SPAZI TOPOLOGICI La nozione di spazio topologico è più generale di quella di spazio metrizzabile. Definizione 1 Uno spazio topologico (X, τ) è una coppia costituita da un insieme X e da una famiglia τ

Dettagli

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 5 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 10.1,

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 2 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.5, 3.6,

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE

Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE Università degli Studi di Verona Corso di Laurea in Matematica Applicata * * * Prof. Lidia Angeleri Anno accademico 2011/12 Indice

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 1 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.1, 3.2,

Dettagli

Estensioni intere. 3. A[b] C, dove C B è un sottoanello che è un A-modulo finitamente generato

Estensioni intere. 3. A[b] C, dove C B è un sottoanello che è un A-modulo finitamente generato Estensioni intere 1 Estensioni Intere Il comportamento delle estensioni e delle contrazioni di ideali tramite omomorfismi di anelli è piuttosto caotico ed è difficile poter avere risultati a priori. Dei

Dettagli

SPAZI METRICI COMPLETI

SPAZI METRICI COMPLETI Capitolo 1 SPAZI METRICI COMPLETI Sia dato uno spazio metrico (X, d). Definizione 1.1 Una successione {x n } si dice successione di Cauchy se ε > 0 n 0 n, m n 0 = d(x n x m ) < ε (1.1) Esercizio 1.1 Dimostrare

Dettagli

Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Basi e coordinate. Applicazioni lineari. Matrici come applicazioni

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esercizi per il corso Matematica clea Daniele Ritelli anno accademico 008/009 Lezione : Numeri naturali e principio di induzione Esercizi svolti. Provare che + + + n. Provare che + + + n n(n + ) n(n +

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

Appunti di Algebra Superiore

Appunti di Algebra Superiore Prof.ssa Carla Fiori Appunti di Algebra Superiore Laurea Magistrale in Matematica Univertisà di Modena e Reggio Emilia Dipartimento di Matematica Pura e Applicata Questo documento è stato scritto in L

Dettagli

Note per il corso di Teoria dei Gruppi. Sandro Mattarei

Note per il corso di Teoria dei Gruppi. Sandro Mattarei Note per il corso di Teoria dei Gruppi. Sandro Mattarei Queste Note raccolgono scarni appunti su alcuni argomenti per il corso di Teoria dei gruppi alla Facoltà di Scienze MFN dell Università di Trento.

Dettagli

1 Principio di Induzione

1 Principio di Induzione 1 Principio di Induzione Per numeri naturali, nel linguaggio comune, si intendono i numeri interi non negativi 0, 1,, 3, Da un punto di vista insiemistico costruttivo, a partire dall esistenza dell insieme

Dettagli

ALGEBRA 2 GRUPPI ALESSANDRO D ANDREA

ALGEBRA 2 GRUPPI ALESSANDRO D ANDREA ALGEBRA 2 GRUPPI ALESSANDRO D ANDREA INDICE 1. Prime proprietà dei gruppi 2 1.1. La nozione di gruppo 2 1.2. Sottogruppi 4 1.3. Congruenze modulo un sottogruppo e classi laterali 4 1.4. Il Teorema di Lagrange

Dettagli

Lezione 4. Da questa definizione si ha dunque che le similitudini sono particolari trasformazioni affini.

Lezione 4. Da questa definizione si ha dunque che le similitudini sono particolari trasformazioni affini. Lezione 4 Trasformazioni affini tra piani Una affinità f tra due piani P e Q è una trasformazione biunivoca di P in Q che conserva l allineamento. Ciò significa che comunque si scelgano tre punti allineati

Dettagli

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni (1) Verificare che l anello quoziente Z 5 [x]/(x 3 2) possiede divisori dello zero, e determinare tutti i suoi ideali non banali. Soluzione: Il polinomio

Dettagli

1 Soluzione degli esercizi del capitolo 4

1 Soluzione degli esercizi del capitolo 4 "Introduzione alla matematica discreta /ed" - M. G. Bianchi, A. Gillio degli esercizi del capitolo 4 Esercizio 4. (pag. 47) Sia X =,,3,4} e sia R la relazione su X così definita: R = (,),(,),(,),(,),(,4),(3,3),(4,)}.

Dettagli

4. Permutazioni di un insieme finito

4. Permutazioni di un insieme finito 4 Permutazioni di un insieme finito Considerato un insieme finito non vuoto X studieremo l insieme SX) delle permutazioni di X La prima osservazione da fare è che non importa il nome e la natura degli

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi ESERCIZI DI GEOMETRIA 3 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi Esercizio 1. Sia (X, d) uno spazio

Dettagli

G. Pareschi FUNZIONI BOOLEANE. 1. Funzioni booleane

G. Pareschi FUNZIONI BOOLEANE. 1. Funzioni booleane G. Pareschi FUNZIONI BOOLEANE 1. Funzioni booleane In questa sezione ci occuperemo principalmente delle funzioni booleane: data un algebra di Boole B finita o infinita), ed un numero naturale n, si considerano

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

Successioni, massimo e minimo limite e compattezza in R

Successioni, massimo e minimo limite e compattezza in R Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Successioni, massimo e minimo limite e compattezza in R Massimo A. Picardello BOZZA 10.11.2011 21:24 i CAPITOLO 1 Successioni

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Il teorema di Schwarz

Il teorema di Schwarz Il teorema di Schwarz 1. Quante sono le derivate parziali seconde, terze,...? Il procedimento di derivazione parziali applicato ad una funzione f(x, y) di due variabili raddoppia il numero di derivate

Dettagli

ELEMENTI DI TEORIA DEI GRUPPI

ELEMENTI DI TEORIA DEI GRUPPI Capitolo 2 ELEMENTI DI TEORIA DEI GRUPPI Il teorema di Cayley Ricordiamo una definizione: se X è un insieme non vuoto, l insieme S(X) delle biiezioni di X in sé è dotato di struttura di gruppo rispetto

Dettagli

Complementi agli Appunti di Teoria dei Gruppi.

Complementi agli Appunti di Teoria dei Gruppi. INDICE 1 Complementi agli Appunti di Teoria dei Gruppi. Roberto Catenacci Versione del 14 Ottobre 2009 Argomenti selezionati di Teoria dei Gruppi svolti a lezione e nei seminari, non contenuti negli Appunti

Dettagli

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R): . equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale

Dettagli

INCONTRI OLIMPICI Gara a Squadre per Insegnanti. Montecatini Terme, 20 ottobre 2014

INCONTRI OLIMPICI Gara a Squadre per Insegnanti. Montecatini Terme, 20 ottobre 2014 INCONTRI OLIMPICI 014 Gara a Squadre per Insegnanti Montecatini Terme, 0 ottobre 014 Soluzioni scritte da Rosanna Tupitti ed Ercole Suppa Durata: 90 minuti 1. Il numero 006, aumentato della somma delle

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

Lezione 12. Sottogruppi finiti di ordine fissato. I Teoremi di Sylow.

Lezione 12. Sottogruppi finiti di ordine fissato. I Teoremi di Sylow. Lezione 1 Prerequisiti: Lezioni, 7. ruppi di perutazioni. Riferienti ai testi: [Fd] Sezione.1; [H] Sezione.7; [PC] Sezione 5.1 Sottogruppi finiti di ordine fissato. I Teorei di Sylow. Dal Teorea di Lagrange

Dettagli

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni ARITMETICA 1. Scomporre in fattori primi 2500 e 5600. Soluzione: Osserviamo che entrambi i numeri sono multipli di 100 = 2 2 5

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

3/10/ Divisibilità e massimo comun divisore

3/10/ Divisibilità e massimo comun divisore MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine

1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine 1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine In questo tipo di giochi l arena è costituita da due grafi orientati G = (V, E), G = (V, E ). Lo scopo del I giocatore è di mostrare, in un numero

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

NUMERI REALI. x(y + z) = xy + xz. Nel seguito faremo uso delle seguenti notazioni. IR+ 0 = {x IR : 0 x} IR 0 = {x IR : 0 x}

NUMERI REALI. x(y + z) = xy + xz. Nel seguito faremo uso delle seguenti notazioni. IR+ 0 = {x IR : 0 x} IR 0 = {x IR : 0 x} NUMERI REALI In quanto segue non diremo che cosa è un numero reale ma definiremo per via assiomatica l insieme dei numeri reali. Insieme che denotiamo con IR. L insieme dei numeri reali è un campo totalmente

Dettagli

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica.

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Richiami di Matematica 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Insiemi Definizioni di base Dato un insieme A: x A: elemento x appartenente

Dettagli

1 Numeri reali. Esercizi.

1 Numeri reali. Esercizi. Politecnico di Milano. Scuola di Ingegneria Industriale. Corso di Analisi e Geometria 1 (Docente: Federico Lastaria) Settembre 2012 1 Numeri reali. Esercizi. Esercizio 1.1 (Un numero moltiplicato per zero

Dettagli

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli