Lezione 24: Equilibrio termico e calore

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 24: Equilibrio termico e calore"

Transcript

1 Lzion 4 - pag. Lzion 4: Equilibrio trmico calor 4.. Antich spigazioni: il calorico Abbiamo visto ch, mttndo in contatto un corpo caldo con uno frddo, si avvia un procsso ch ha trmin quando i du corpi raggiungono la situazion di quilibrio trmico, in cui l loro tmpratur sono uguali. Durant qusto procsso avvin uno scambio tra i du corpi: ma ch cosa, sattamnt, vin scambiato? Una toria in voga fino ai primi dll Ottocnto sostnva trattarsi di calorico, ovvro un fluido dall proprità sorprndnti: prima tra tutt qulla di ssr impondrabil, cioè privo di pso. Infatti quando un corpo si raffrdda il suo pso non diminuisc! La tmpratura, scondo qusta toria, ra una misura dl livllo raggiunto dal calorico contnuto in un corpo. Pr capir qusto punto convin considrar l analogia con rcipinti ch contngono acqua ( fig.4.) Fig.4. Un analogia con rcipinti ch contngono acqua. Il rcipint A contin più acqua dl rcipint B. Eppur, quando li mttiamo in comunicazion, l acqua passa da B ad A. L acqua non passa dal rcipint ch n contin di più a qullo ch n contin di mno. Piuttosto, passa dal rcipint in cui il livllo è maggior a qullo in cui il livllo è minor. Analogamnt, il calorico non passa dal corpo ch n contin di più a qullo ch n contin di mno, ma da qullo in cui raggiung il livllo più alto (ch cioè si trova a una tmpratura maggior) all altro. Pr scaldar una stanza in una giornata d invrno, ad smpio, funziona bnissimo un radiator pino d acqua calda, mntr a nssuno vrrbb in mnt di scaldarla tnndo accsa la fiamma di un accndino. La spigazion ch potva darvi un sostnitor dll ida di calorico ra qusta: l acqua calda nl radiator è tanta, quindi contin molto più calorico dlla fiamma. uttavia il livllo dl calorico è più alto nlla fiamma, ch infatti scotta molto più dll acqua calda S prndiamo una grossa vit, tnndola bn frma con un paio di pinz, proviamo a limarn la tsta, a lungo con vigor, ci accorgiamo ch dopo un po' la tsta dlla vit scotta. Il problma, pr chi crd alla toria dl calorico, è spigar ch cosa ha prodotto gli aumnti di tmpratura. All inizio dll sprimnto vit lima rano ntramb alla stssa tmpratura, cioè qulla dll'ambint: prciò nssuno di du oggtti può avr cduto calorico all altro. Non solo: si sono riscaldati sia la vit sia la

2 Lzion 4 - pag. lima. Smbra proprio ch il calorico, oltr ad ssr privo di pso, abbia la curiosa proprità di potr ssr prodotto in quantità illimitat smplicmnt sfrgando du oggtti. 4.. La spigazion modrna La toria dl calorico è stata dfinitivamnt abbandonata intorno alla mtà dll Ottocnto. Il procsso ch porta al raggiungimnto dll quilibrio trmico oggi lo spighiamo così: il corpo più caldo cd calor a qullo più frddo, finché l du tmpratur non divntano uguali. S foss soltanto una qustion di nomi, la diffrnza sarbb davvro minima: da calorico a calor. La diffrnza, vicvrsa, è sostanzial: oggi sappiamo ch il calor è uno di modi in cui du corpi possono scambiar nrgia. Prcisamnt: si chiama calor l nrgia in transito da un corpo più caldo ad uno più frddo, quando lo scambio è dovuto soltanto alla diffrnza di tmpratura. L molcol di un corpo più caldo hanno un nrgia di movimnto ch in mdia è suprior risptto a qull di un corpo più frddo. Quando mttiamo in contatto i du corpi, avvngono urti tra l rispttiv molcol. Il risultato di qusti urti è ch l molcol più nrgtich subiscono, in mdia, una diminuzion di nrgia. Vicvrsa qull mno nrgtich subiscono, in mdia, un aumnto di nrgia Calor lavoro, du modi pr scambiar nrgia Ciò ch abbiamo chiamato calor è quindi un modo pr scambiar nrgia tra i corpi. Nlla lzion 4 avvamo introdotto un altra modalità di scambio pr l'nrgia, ch avvamo chiamato lavoro: il corpo A srcita una forza sul corpo B, s ciò è accompagnato da uno spostamnto dl corpo B, allora sul corpo B vin compiuto un lavoro. Abbiamo inoltr visto com qusto lavoro può tradursi in variazioni dll nrgia mccanica (cintica, o potnzial) dl corpo B. Non smpr, prò, il lavoro compiuto su di un corpo si traduc in una variazion dlla sua nrgia mccanica. Pnsat a qusto smpio: il corpo A è una lima, il corpo B un pzzo di mtallo ch dovt limar. A srcita una forza su B (è una forza d attrito), c è anch uno spostamnto dl punto in cui la forza agisc: possiamo dunqu calcolar il lavoro compiuto. uttavia qusto lavoro non provoca una variazion di nrgia mccanica dl pzzo: tutto qul ch accad è ch sso si scalda. Il lavoro compiuto in qusto caso, cioè l nrgia trasfrita a causa di una forza ch sposta il punto in cui è applicata, produc un aumnto dll nrgia cintica mdia dll molcol di cui è composto il pzzo ch stiamo limando. Ottniamo un trasfrimnto di nrgia quivalnt a qullo ch avrmmo avuto ponndo B in contatto con un corpo più caldo.

3 Lzion 4 - pag.3 Dal nostro smpio possiamo quindi ddurr ch lavoro calor sono ntrambi modi pr trasfrir nrgia da un corpo ad un altro Un modllo matmatico pr la tmpratura di quilibrio In qusto ni prossimi paragrafi studirmo in dttaglio il modo in cui vin raggiunto l quilibrio trmico. L obittivo final è qullo di imparar a calcolar quanta nrgia vin scambiata da un corpo quando la sua tmpratura cambia. Considriamo pr prima cosa la situazion in cui du mass uguali dlla stssa sostanza (pr smpio acqua), inizialmnt a tmpratur divrs, vngono mscolat insim. Sia la tmpratura dll acqua frdda, qulla dll acqua calda, la tmpratura di quilibrio. Poichè stiamo parlando di du mass uguali, è facil immaginar qual sarà la tmpratura di quilibrio: smplicmnt la mdia aritmtica dll du. Gli sprimnti confrmano qusta ipotsi: davvro la tmpratura di quilibrio è L'sprimnto è facil da far: basta una bilancia digital da cucina, ch di solito ha la snsibilità di g. Si può anch usar un rcipint graduato, ma la sua snsibilità è infrior. Prndiamo, in du contnitori divrsi, 50 g d acqua in ciascuno. L acqua nl primo contnitor la lasciamo alla tmpratura ambint, qulla nl scondo la scaldiamo su un fornllo. Un attimo prima di mscolar, si misurano l rispttiv tmpratur, poi si mscola vlocmnt, si misura la tmpratura di quilibrio. Provat a far l'sprimnto: il risultato è vicino a qullo prvisto dal modllo dlla mdia aritmtica? Prché abbiamo dtto ch bisogna ssr vloci nl mscolar misurar la tmpratura di quilibrio? 4.5. Complichiamo il modllo Considriamo ora la situazion in cui mscoliamo du mass d acqua divrs m m, rispttivamnt a tmpratura. Crtamnt anch in qusto caso la tmpratura di quilibrio dovrà ssr comprsa tra, ma non starà a mtà strada tra l du, com accadva nl caso prcdnt. Al contrario, la tmpratura di quilibrio sarà più vicina a qulla dll du ch corrisond alla massa d acqua più grand. Un smplic modllo matmatico ch traduc qusta ida è qullo di mdia psata. I psi ch usiamo pr calcolar la mdia sono naturalmnt l mass m m : qusto significa ch s la massa dll acqua a tmpratura è il doppio di qulla a tmpratura, allora sarà du volt più vicina a ch a. La formula è prciò:

4 Lzion 4 - pag.4 m m m m Possiamo mttr alla prova il modllo con un sprimnto simil al prcdnt. Qusta volta, prò, lavorariamo con 400 g di acqua frdda, solo 00 g di acqua calda. Un attimo prima di mscolar, misuriamo l rispttiv tmpratur, poi mscoliamo, misuriamo la tmpratura di quilibrio Il modllo pr sostanz divrs Com ultimo passo, considriamo qullo ch accad s mttiamo in contatto trmico du sostanz divrs. Pr smpio, un blocco di mtallo caldo (di massa m tmpratura ) ch vin immrso in acqua frdda (di massa m tmpratura ). Anch in qusto caso si trattrà di calcolar una mdia psata tra, ma i psi non dipndranno solo dalla massa, bnsì anch dal tipo di sostanza ch si trova a qulla tmpratura. Introduciamo allora un nuovo "pso", ch indichiamo con il simbolo c ch si chiama calor spcifico. Più avanti capirmo mglio il significato fisico di qusta grandzza, pr ora è important capir ch il calor spcifico assum un valor carattristico a sconda dlla sostanza considrata. Il frro, ad smpio, ha un valor di calor spcifico ch è circa un dcimo di qullo dll acqua: qusto vuol dir ch la tmpratura di quilibrio tra mass uguali di frro di acqua, è dici volt più vicina a qulla dll acqua ch a qulla dl frro. Fatt qust prcisazioni, cco dunqu il modllo matmatico ch dscriv la situazion ch stiamo considrando: 4.7. Un bilancio trmico In qusto paragrafo vogliamo trasformar l quazion ch abbiamo appna ricavato in un altra quivalnt, nlla qual siano sparati i trmini ch riguardano la prima sostanza, nl nostro smpio il mtallo, da qulli ch riguardano la sconda sostanza, in qusto caso l acqua.

5 Lzion 4 - pag.5 mc mc moltiplichiamo pr ( ) distribuiamo la moltiplicazion spariamo i trmini con indic da qulli con indic raccogliamo i trmini simili ( ) ( ) La diffrnza rapprsnta la variazion di tmpratura subita dal mtallo, mntr è l opposto dlla variazion di tmpratura subita dall acqua. Abbiamo insomma: mc Δ mcδ Il raggiungimnto dll quilibrio trmico si può dunqu dscrivr così: c è una grandzza, il prodotto c m Δ, il cui bilancio è in parggio. anto una sostanza acquista dlla grandzza c m Δ, altrttanto n prd l altra sostanza Com si calcola l nrgia trmica La grandzza c m Δ è naturalmnt l nrgia ch vin scambiata nll intrazion tra il corpo caldo il corpo frddo. Quando un corpo di massa m, fatto di un matrial il cui calor spcifico è c, subisc una variazion di tmpratura Δ, la sua variazion di nrgia è: E c m Δ 4.9. Ch cosa è davvro il calor spcifico Siamo adsso in grado di spigar con prcision il significato dl calor spcifico c. S risolviamo risptto a c l ultima quazion troviamo: E c m Δ N dduciamo ch: J il calor spcifico c di una sostanza si misura in, rapprsnta la quantità di kg C nrgia immagazzinata da un kg di qulla sostanza quando aumnta la sua tmpratura aumnta di C.

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Appunti dall lzioni Nicola Vanllo 27 dicmbr 2018 2 Capitolo 1 Variabili Alatori Discrt 1.1 Variabil alatoria di Brnoulli Una variabil alatoria di Brnoulli, può assumr du valori, dnominati

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

I CAMBIAMENTI DI STATO

I CAMBIAMENTI DI STATO I CAMBIAMENTI DI STATO Il passaggio a uno stato in cui l molcol hanno maggior librtà di movimnto richid nrgia prché occorr vincr l forz attrattiv ch tngono vicin l molcol Ni passaggi ad uno stato in cui

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010)

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010) Inggnria di Sistmi Elttrici_3c (ultima modifica /03/00) Enrgia Forz lttrostatich P F + + Il lavoro richisto nl vuoto pr portar una carica lntamnt, (prché possano ritnrsi trascurabili sia l nrgia cintica

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2 + ELETTOMAGNETISMO APPLICATO ALL'INGEGNEIA ELETTICA ED ENEGETICA_B (ultima modifica 7/0/07) Enrgia Forz lttrostatich F Una carica positiva posta in un punto P a distanza da una carica positiva fissa ch

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO :

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO : Dir quali razioni sono possibili quali no. Nl caso siano possibili indicar l intrazion rsponsabil nl caso non lo siano, spigar prché. a) π π ν il π ha una massa infrion al π b) Λ p π ν violazion dl numro

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

Esempi domande. PIL nominale nell'anno t *100 PIL reale nell'anno t. Dalla definizione di deflatore discende che è vera anche la d)

Esempi domande. PIL nominale nell'anno t *100 PIL reale nell'anno t. Dalla definizione di deflatore discende che è vera anche la d) Esmpi domand A) S il cofficint di risrva obbligatoria è dl 5% allora il moltiplicator montario a) è pari a b) è pari a 3 c) è pari a 4 d) è pari a 5 ) nssuna l prcdnti RISOSTA: nlla formulazion più smplic

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

Applicazioni dell integrazione matematica

Applicazioni dell integrazione matematica Applicazioni dll intgrazion matmatica calcolo dlla biodisponibilità di un farmaco Prof. Carlo Albrini Indic Indic 1 Elnco dll figur 1 1 Prliminari 1 Intrprtazion matmatica dl problma 3 Elnco dll figur

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

ESERCIZI SULLA CONVEZIONE

ESERCIZI SULLA CONVEZIONE Giorgia Mrli matr. 97 Lzion dl 4//0 ora 0:0-:0 ESECIZI SULLA CONVEZIONE Esrcizio n Considriamo un tubo d acciaio analizziamo lo scambio trmico complto, ossia qullo ch avvin sia all intrno sia all strno

Dettagli

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015 L soluzioni dlla prova scritta di Matmatica dl Fbbraio 5. Sia data la funzion a. Trova il dominio di f f b. Scrivi, splicitamnt pr stso non sono sufficinti disgnini, quali sono gli intrvalli in cui f è

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.

Dettagli

ESERCIZI AGGIUNTIVI - MODELLO OA - DA

ESERCIZI AGGIUNTIVI - MODELLO OA - DA ESERCIZIO n. 1 ESERCIZI AGGIUNTIVI - MODELLO OA - DA Considrat un conomia carattrizzata dall sgunti quazioni: DA: OA: 15 M 2 ˆ.5( ) Suppont ch l conomia si trovi, al tmpo, in una situazion di quilibrio

Dettagli

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga L tranformazioni canonic nlla mccanica quantistica P. Jordan a Gottinga (ricvuto il 27 april 926) Vin data una dimostrazion d una congttura avanzata da Born, Hisnbrg dall autor, c la trasformazion canonica

Dettagli

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 7/8 GENNAIO 8 CORREZIONE SE AVETE FATTO IL COMPITO A SOSTITUITE a ; COMPITO B a ; COMPITO C a 5; COMPITO D a 4; Esrcizio,

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Economia applicata, Corso di Laurea in Ing. Gestionale, II canale, A.A Prof. R. Sestini

Economia applicata, Corso di Laurea in Ing. Gestionale, II canale, A.A Prof. R. Sestini Economia applicata, Corso di Laura in Ing. Gstional, II canal, A.A. 08-09 Prof. R. Sstini SCHEMA dll LEZIONI dlla UNDICESIMA DODICESIMA SETTIMANA L OLIGOPOLIO Sin qui abbiamo illustrato situazioni polari,

Dettagli

Forza d interesse e scindibilità. Benedetto Matarazzo

Forza d interesse e scindibilità. Benedetto Matarazzo orza d intrss scindibilità Bndtto Matarazzo Corso di Matmatica inanziaria Rgimi finanziari Oprazioni finanziari Intrss Sconto Equivalnz finanziari Rgim dll intrss smplic Rgim dll intrss composto Rgim dll

Dettagli

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui 1 1. Una ftta di silicio è drogata con una concntrazion N A = 10 16 atm/cm 3 di atomi accttori, si valuti la concntrazion di portatori maggioritari minoritari alla tmpratura T = 300K. Alla tmpratura di

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

ANALISI DATI PROVE INVALSI 2017

ANALISI DATI PROVE INVALSI 2017 Ministro dll'istruzion, dll'univrsità dlla Ricrca UFFICIO SCOLASTICO REGIONALE PER LA SICILIA DIREZIONE DIDATTICA STATALE I CIRCOLO IA MAZZIERE 90018 TERMINI IMERESE TEL 091 8113191 -TEL 091 8112958 -TEL

Dettagli

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI TORMA I RIUZION GLI INTGRALI IN U IMNSIONI S è misurabil f : è limitata continua, valgono l sgunti proprità: s A è un dominio normal risptto all ass, cioè,, con continu A a b pr ogni a, b, allora la funzion

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

Astronomia Lezione 21/10/2011

Astronomia Lezione 21/10/2011 Astronomia Lzion 1/10/011 Docnt: Alssandro Mlchiorri.mail:alssandro.mlchiorri@roma1.infn.it Slids: obron.roma1.infn.it/alssandro/ Libri di tsto: - An introduction to modrn astrophysics B. W. Carroll, D.

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 6

Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 6 Algoritmi Struttur Dati II: Part B Anno Accadmico 2004-2005 Docnt: Ugo Vaccaro Lzion 6 Nlla lzion scorsa abbiamo introdotto una tcnica basata sulla PL pr il progtto di algoritmi di approssimazion. Essnzialmnt,

Dettagli

REGRESSIONE LOGISTICA

REGRESSIONE LOGISTICA 0//04 METODI E TECNICHE DELLA RICERCA IN PSICOLOGIA CLINICA E LABORATORIO AA 04/05 PROF. V.P. SENESE Sconda Univrsità di Napoli (SUN) Facoltà di Psicologia Dipartimnto di Psicologia METODI E TECNICHE DELLA

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Problema 3: CAPACITA ELETTRICA E CONDENSATORI

Problema 3: CAPACITA ELETTRICA E CONDENSATORI Problma 3: CAPACITA ELETTRICA E CONDENSATORI Prmssa Il problma composto da qusiti di carattr torico da una succssiva part applicativa costituisc un validissimo smpio di quilibrio tra l divrs signz ch convrgono

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

ANALISI DATI PROVE INVALSI 2018

ANALISI DATI PROVE INVALSI 2018 Carattristich dll prov Ministro dll'istruzion, dll'univrsità dlla Ricrca UFFICIO SCOLASTICO REGIONALE PER LA SICILIA DIREZIONE DIDATTICA STATALE I CIRCOLO VIA MAZZIERE 90018 TERMINI IMERESE TEL 091 8113191

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

ESERCITAZIONE N. 4 - MODELLO OA - DA

ESERCITAZIONE N. 4 - MODELLO OA - DA ESERCIZIO N.1 ESERCITAZIONE N. 4 - ODELLO - In una conomia ch si trova in un inizial quilibrio di lungo priodo, la banca cntral dcid di ricorrr ad una politica montaria spansiva. Si dscrivano gli fftti

Dettagli

Soluzioni delle Esercitazioni XI 10-14/12/2018. A. Funzioni di 2 variabili Insiemi di esistenza

Soluzioni delle Esercitazioni XI 10-14/12/2018. A. Funzioni di 2 variabili Insiemi di esistenza Soluzioni dll Esrcitazioni XI 0-4//08 A. Funzioni di variabili Insimi di sistnza Si tratta di porr la (o l) condizioni pr cui risulta dfinita la funzion f.. La funzion è f(, ) = ln( +). L unica condizion

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA

ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA Esrcizio n 1 a) Dscrivt l fftto sul rddito sul tasso di cambio di una politica fiscal spansiva, in rgim di cambi flssibili. Spigat gli fftti conomici di

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

I Bonus di Fisica Nucleare e Subnucleare 1 - AA 2018/2019

I Bonus di Fisica Nucleare e Subnucleare 1 - AA 2018/2019 I Bonus di Fisica uclar Subnuclar 1 - AA 018/019 17 April 019 OME E COGOME: CAALE: 1 Un acclrator di lttroni positroni di 10 GV di nrgia ciascuno, i cui impulsi sono dirtti lungo l ass z nl sistma di rifrimnto

Dettagli

Generazione di distribuzioni di probabilità arbitrarie

Generazione di distribuzioni di probabilità arbitrarie Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA PROVA SCRITTA DEL 1 GIUGNO 1998 Tmpo assgnato: 2 or 30 minuti PRIMO ESERCIZIO [8 punti] Sia A il sottoinsim dll anllo (M (2, R, +, (dov

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 1.15 < a < 1.19 10.03 < b < 10.0 7.13 < c < 7.1 Quali

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

RISOLUZIONI cap (a) La resistenza termica totale dello scambiatore di calore, riferita all'unità di lunghezza, è

RISOLUZIONI cap (a) La resistenza termica totale dello scambiatore di calore, riferita all'unità di lunghezza, è "Trmodinamica trasmission dl calor 3/d" 1 - Yunus A. Çngl RISOLUZIONI cap.19 19.1 (a) La rsistnza trmica total dllo scambiator di calor, rifrita all'unità di lunghzza, è (b) Il cofficint global di scambio

Dettagli

x ( sin x " ha una unica soluzione x " 0. 0,0

x ( sin x  ha una unica soluzione x  0. 0,0 PROBLEMA ESAME DI STATO CORSO DI ORDINAMENTO ANNO 8-9 ) L ara richista è la diffrnza dll ara dl sttor circolar qulla dl triangolo AOB, cioè S r ( r sin " r & ( sin ) Posto r= si ha S$ % " & ( sin$ % '.

Dettagli

UMBRIA - RILEVAZIONE ISTAT SULLE FORZE DI LAVORO III TRIMESTRE 2015 FORZE DI LAVORO. P er. in cerca di o ccup. senza ex- C erca no lav.

UMBRIA - RILEVAZIONE ISTAT SULLE FORZE DI LAVORO III TRIMESTRE 2015 FORZE DI LAVORO. P er. in cerca di o ccup. senza ex- C erca no lav. UMBRIA UMBRIA - RILEVAZIONE ISTAT SULLE FORZE DI LAVORO Occup at i III TRIMESTRE 2015 Dalla mtà dl 2014 l occupazion umbra è tornata a crscr tal tndnza è divnuta particolarmnt rilvant nl corso dl scondo

Dettagli

Calore specifico del gas perfetto di Bose

Calore specifico del gas perfetto di Bose Calor spcifico dl gas prftto di Bos L. P. 7 April Il calcolo dl calor spcifico di un gas prftto di Bos prsnta dgli asptti tcnici intrssanti. Dfiniamo la funion polilog g α (), pr α > < mdiant la sri g

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100 Mrcato dl lavoro Popolazion civil Forza lavoro (FL) Inattivi (bambini, pnsionati, casalinghi, studnti) Occupati () Disoccupati (U) Tasso di partcipazion alla forza lavoro (Forza lavoro/popolazion civil)

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

Il calore specifico dei solidi

Il calore specifico dei solidi Il calor spcifico di solidi PREREQUISITI Pr affrontar la prova di laboratorio lo studnt dv sapr... Ch cos è la tpratura co la si isura Qual è il punto fisso rlativo all bollnt Il conctto di calor la sua

Dettagli

Moneta e Finanza Internazionale. Teoria delle aspettative

Moneta e Finanza Internazionale. Teoria delle aspettative Monta Finanza Intrnazional Toria dll aspttativ L aspttativ adattiv x t : Aspttativa dl valor ch la variabil x assumrà in t Aspttativ strapolativ: il valor attso è funzion di valori storici x t = x t-1

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

QUADRATI 60X60. ARTICOLO DESCRIZIONE SP (mm) MISURA (cm) 5 60x60 Non illuminato / 5 60x led da 0,06W. 5 60x60 Non illuminato Radio integrata

QUADRATI 60X60. ARTICOLO DESCRIZIONE SP (mm) MISURA (cm) 5 60x60 Non illuminato / 5 60x led da 0,06W. 5 60x60 Non illuminato Radio integrata Antprima Gli spcchi sono complmnti d arrdo molto importanti, in una casa così com in un ufficio o in un ngozio. Uno spcchio ha una funzion dcorativo-ornamntal fondamntal poiché, com pzzo d arrdo, può arricchir

Dettagli

ELETTROSTATICA. NB: in tutti gli esercizi che seguono, anziché la. costante k 0 si utilizza. 1 4πε

ELETTROSTATICA. NB: in tutti gli esercizi che seguono, anziché la. costante k 0 si utilizza. 1 4πε ELETTOSTATICA NB: in tutti gli srcizi ch sguono, anziché la costant k si utilizza 4πε ) In ciascun vrtic di un triangolo quilatro il cui lato è lungo 5 cm, è posta una carica puntiform q +,7 µc. Dtrminar

Dettagli

ESERCITAZIONE N.3 MODELLO IS/LM IN ECONOMIA APERTA

ESERCITAZIONE N.3 MODELLO IS/LM IN ECONOMIA APERTA ESERCITAZIONE N.3 MODELLO /LM IN ECONOMIA APERTA ESERCIZIO 1 Pr stimolar l attività conomica il govrno di un conomia aprta oprant in rgim di cambi flssibili dcid di procdr ad una riduzion dll impost. a)

Dettagli

IV-3 Derivate delle funzioni di più variabili

IV-3 Derivate delle funzioni di più variabili DERIVATE PARZIALI IV-3 Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma di Schwarz 8 6 Soluzioni dgli srcizi

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014 L soluzioni dlla prova scritta di Matmatica dl 7 Fbbraio 4. Sia data la unzion a. Trova il dominio di b. Scrivi, splicitamnt pr stso non sono suicinti disnini, quali sono li intrvalli in cui è positiva

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2 LIITI Limit inito in un punto Limit ininito in un punto 3 Limit inito all ininito 4 Limit ininito all ininito 5 Limiti da dstra da sinistra Nota bn 6 Esmpi di ripilogo Nota bn 7 Limit pr ccsso pr ditto

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011 1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/rchitttura Corrzion prova scritta 9 sttmbr 011 1. Dati i tnsori: { L = 3x y +3 y z +4 z x M = 3 x x + x z +5 y y d il vttor v =

Dettagli

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali Complmnti sull applicazioni dlla trasformata di ourir alla risoluzion di prolmi pr quazioni a drivat parziali Marco Bramanti March, 00 Nll applicazioni all quazioni a drivat parziali, spsso una funzion

Dettagli

ELEMENTI DI CALCOLO DIFFERENZIALE. PARTE II

ELEMENTI DI CALCOLO DIFFERENZIALE. PARTE II ELEMENTI DI CALCOLO DIFFERENZIALE. PARTE II FAUSTO FERRARI Matrial propdutico all lzioni di Analisi Matmatica pr i corsi di Laura in Inggnria Chimica pr l Ambint il Trritorio dll Univrsità di Bologna.

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001 Univrsità dgli Studi di Brgamo Facoltà di nggnria Corso di lttrotcnica Scritto dl 5 giugno Soluzion a cura di: Balada Marco srcizio. La prima cosa da far è analizzar il circuito trovar l possibili smplificazioni,

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

Approfondimenti. Rinaldo Rui. ultima revisione: 6 settembre Secondo Principio della Termodinamica

Approfondimenti. Rinaldo Rui. ultima revisione: 6 settembre Secondo Principio della Termodinamica Approfondimnti Rinaldo Rui ultima rvision: 6 sttmbr 2019 3 Scondo Principio dlla rmodinamica 3.5 Lzion #13 3.5.2 Enrgia Intrna d Entropia di Sistmi Idrostatici Abbiamo sinora visto ch un sistma idrostatico

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Sssion straordinaria 2017 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Tsto valvol anch pr la corrispondnt

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

Teoria microscopica della conduzione elettrica. Indice

Teoria microscopica della conduzione elettrica. Indice Toria microscopica dlla conduzion lttrica Indic 1. Un modllo microscopico dlla conduzion lttrica 1.1 Modllo classico dlla conduzion 1. Intrprtazion classica di v m di 1.3 Difficoltà dll intrprtazion classica.

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

1. UNA PARTE DI DENTE MANCANTE IN CUI E' ANCORA PRESENTE LA RADICE DEL DENTE. IN TAL CASO LA PROTESI PRENDE IL NOME DI CORONA.

1. UNA PARTE DI DENTE MANCANTE IN CUI E' ANCORA PRESENTE LA RADICE DEL DENTE. IN TAL CASO LA PROTESI PRENDE IL NOME DI CORONA. PROTESI - www.stuopaololonar.it LA PROTESI SI PREFIGGE DI SOSTITUIRE: 1. UNA PARTE DI DENTE MANCANTE IN CUIE' ANCORA PRESENTE LA RADICE DEL DENTE. IN TAL CASO LA PROTESI PRENDE IL NOME DICORONA. 2. SOSTITUIRE

Dettagli

Laboratorio di Calcolo B 79

Laboratorio di Calcolo B 79 Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli