Esercizi sullo studio di funzione
|
|
|
- Adriana Bianchi
- 10 anni fa
- Visualizzazioni
Transcript
1 Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar gli vntuali punti di intrszion dlla curva con gli assi coordinati ) Studiar il sgno dlla funzion 4) Ricrcar vntuali asintoti dlla curva 5) Studiar gli zri il sgno dlla drivata prima in modo da studiar la crscnza la dcrscnza dlla curva i suoi massimi minimi rlativi In qusta prima part analizzrmo soltanto i primi tr punti: 1) Dtrminar l insim di sistnza (o campo di sistnza o dominio) significa trovar quali valori dlla variabil indipndnt si ha un valor dlla variabil dipndnt y dtrminato Pr dtrminar l insim di sistnza di una funzion è util ricordar ch l oazioni di somma, diffrnza prodotto sono smpr possibili, mntr la division è smpr possibil purché il divisor sia divrso da zro Sgu ch: Una funzion polinomial ha com insim di sistnza l insim di numri rali Una funzion polinomial fratta ha com insim di sistnza tutti i numri rali trann qulli ch, vntualmnt, annullano il dnominator ) Dtrminar gli vntuali punti di intrszion dlla curva con gli assi coordinati significa trovar l coordinat di punti in cui, vntualmnt, la funzion intrsca l ass l coordinat di punti in cui, vntualmnt, la funzion intrsca l ass y Pr trovar l coordinat di punti in cui la funzion intrsca l ass y si vd cosa succd quando si pon 0 nlla funzion Pr trovar l coordinat di punti in cui la funzion intrsca l ass si vd cosa succd quando si pon 0 nlla funzion ) Studiar il sgno dlla funzion significa dtrminar quali valori di la funzion è positiva quali valori è ngativa Esrcizio 1 Dtrminar il campo di sistnza, l intrszioni con gli assi coordinati studiar il sgno dll sgunti funzioni: 1) ) ) ( 6)( ) ( 8)( 4) 1
2 4) ) 9 6) 7) ) Soluzion 1) La funzion è (1) Scomponiamo il polinomio in modo da ottnr una forma più facil da trattar in crti casi Prndndo i fattori a du a du mttndo in vidnza avrmo: ( ) ( ) ( )( 1) ( )( 1)( 1) quindi la funzion di partnza può ssr scritta anch nlla forma quivalnt () ( )( 1)( 1) CAMPO DI ESISTENZA: la funzion è polinomial quindi ogni valor dlla variabil indipndnt si ha un valor dlla variabil dipndnt y dtrminato Sgu ch C E (, ) INTERSEZIONI CON GLI ASSI CARTESIANI o Pr trovar l coordinat di punti in cui la funzion intrsca l ass y si vd cosa succd quando si pon 0 nlla funzion In qusto caso avrmo 0 quindi la funzion intrsca l ass y nl punto di coordinat ( 0,)
3 o Pr trovar l coordinat di punti in cui la funzion intrsca l ass si vd cosa succd quando si pon 0 nlla funzion In qusto caso, considrando la funzion nlla forma (), avrmo 0 ( )( 1)( 1) quindi la funzion intrsca l ass ni tr punti di coordinat ( 1, 0 ); (1, 0 ); (, 0 ) SEGNO DELLA FUNZIONE Pr studiar il sgno dlla funzion ci convin considrar la forma () Avrmo > 0 1 > 1 > 0 > > 1 > < < 1 < 1 > 1< < ) La funzion è Il polinomio è già scomposto Avrmo quindi: CAMPO DI ESISTENZA: la funzion è polinomial fratta un valor dlla variabil dipndnt y dtrminato ogni valor dlla variabil indipndnt sclusi qulli ch annullano il dnominator, ossia scluso 0 Sgu ch C E (,0) (0, ) INTERSEZIONI CON GLI ASSI CARTESIANI o Pr trovar l coordinat di punti in cui la funzion intrsca l ass y si vd cosa succd quando si pon 0 nlla funzion, ma siccom il valor 0 non appartin al campo di sistnza non lo possiamo considrar Sgu ch la funzion non intrsca l ass y
4 o Pr trovar l coordinat di punti in cui la funzion intrsca l ass si vd cosa succd quando si pon 0 nlla funzion In qusto caso avrmo 0 0 Ma siccom il numrator non si annulla mai ché è smpr positivo sgu ch la funzion non intrsca nmmno l ass SEGNO DELLA FUNZIONE Studiamo il sgno dlla funzion > 0 > 0 ogni > 0 0 > 0 < 0 ) La funzion è Il polinomio è già scomposto Avrmo quindi: ( 6)( ) ( 8)( 4) CAMPO DI ESISTENZA: la funzion è polinomial fratta un valor dlla variabil dipndnt y dtrminato ogni valor dlla variabil indipndnt sclusi qulli ch annullano il dnominator, ch sono Sgu ch C E (,0) (0,4) (4,8) (8, ) INTERSEZIONI CON GLI ASSI CARTESIANI o Pr trovar l coordinat di punti in cui la funzion intrsca l ass y si vd cosa succd quando si pon 0 nlla funzion, ma siccom il valor 0 non appartin al campo di sistnza non lo possiamo considrar Sgu ch la funzion non intrsca l ass y 4
5 o Pr trovar l coordinat di punti in cui la funzion intrsca l ass si vd cosa succd quando si pon 0 nlla funzion In qusto caso avrmo 0 ( 6)( ) 6 0 ( 8)( 4) quindi la funzion intrsca l ass ni du punti di coordinat (, 0 ) ( 6, 0 ) SEGNO DELLA FUNZIONE Studiamo il sgno dlla funzion 6 > 0 > 0 > 0 8 > 0 4 > 0 > 6 > > 0 > 8 > < < < 0 4 < < 6 < < 4 > 8 6 < < 8 4) La funzion è (1) Scomponiamo il polinomio in modo da ottnr una forma più facil da trattar in crti casi Avrmo: - Numrator: quindi 6 ± ± 0 6 ± , 1, 1, { ( ) - Dnominator: 4 ( )( ) Quindi la funzion di partnza può ssr scritta anch nlla forma quivalnt 5
6 () ( ) ( )( ) CAMPO DI ESISTENZA: la funzion è polinomial fratta un valor dlla variabil dipndnt y dtrminato ogni valor dlla variabil indipndnt sclusi qulli ch annullano il dnominator, ch sono Sgu ch C E (, ) (,) (, ) INTERSEZIONI CON GLI ASSI CARTESIANI o Pr trovar l coordinat di punti in cui la funzion intrsca l ass y si vd cosa succd quando si pon 0 nlla funzion In qusto caso avrmo (0 ) 0 (0 )(0 ) quindi la funzion intrsca l ass y nl punto di coordinat ( 0, 9/ 4) o Pr trovar l coordinat di punti in cui la funzion intrsca l ass si vd cosa succd quando si pon 0 nlla funzion In qusto caso, considrando la funzion nlla forma (), avrmo ( ) 0 0 ( )( ) quindi la funzion intrsca l ass nl punto di coordinat (, 0 ) SEGNO DELLA FUNZIONE Pr studiar il sgno dlla funzion ci convin considrar la forma () Avrmo ( ) > 0 ogni > 0 > > 0 > < 1 < < < < > 6
7 5) La funzion è (1) 9 Scomponiamo il polinomio in modo da ottnr una forma più facil da trattar in crti casi Avrmo ( ) 9 ( )( ) ( )( ) ( )( ) Quindi la funzion di partnza può ssr scritta anch nlla forma quivalnt () ( )( ) ( )( ) CAMPO DI ESISTENZA: la funzion è polinomial fratta un valor dlla variabil dipndnt y dtrminato ogni valor dlla variabil indipndnt sclusi qulli ch annullano il dnominator, ch sono Sgu ch C E (, ) (,) (, ) INTERSEZIONI CON GLI ASSI CARTESIANI o Pr trovar l coordinat di punti in cui la funzion intrsca l ass y si vd cosa succd quando si pon 0 nlla funzion In qusto caso avrmo quindi la funzion intrsca l ass y nl punto di coordinat ( 0,0) ossia nll origin o Pr trovar l coordinat di punti in cui la funzion intrsca l ass si vd cosa succd quando si pon 0 nlla funzion In qusto caso, considrando la funzion nlla forma (), avrmo 0 0 ( )( ) 0 ( )( ) 7
8 quindi la funzion intrsca l ass ni tr punti di coordinat ( 0, 0 ); (, 0); (, 0 ) SEGNO DELLA FUNZIONE Pr studiar il sgno dlla funzion ci convin considrar la forma () Avrmo > 0 > 0 > 0 > 0 > 0 > 0 > 0 > > > < < < 0 < < < < 0 > < < 6) La funzion è (1) 15 Scomponiamo il polinomio in modo da ottnr una forma più facil da trattar in crti casi Avrmo: - Numrator: 15 1, ± , ± 40 1, ± quindi ( ( 5 )( ( 5 ) 15 - Dnominator: non può ssr scomposto in quanto è un polinomio smpr positivo Quindi la funzion di partnza può ssr scritta anch nlla forma quivalnt ( ( 5 )( ( 5 ) () y CAMPO DI ESISTENZA: la funzion è polinomial fratta un valor dlla variabil dipndnt y dtrminato ogni valor dlla variabil indipndnt sclusi qulli ch annullano il dnominator, ma siccom il dnominator è smpr positivo sgu ch 8
9 C E (, ) INTERSEZIONI CON GLI ASSI CARTESIANI o Pr trovar l coordinat di punti in cui la funzion intrsca l ass y si vd cosa succd quando si pon 0 nlla funzion In qusto caso avrmo quindi la funzion intrsca l ass y nl punto di coordinat ( 0,5) o Pr trovar l coordinat di punti in cui la funzion intrsca l ass si vd cosa succd quando si pon 0 nlla funzion In qusto caso, considrando la funzion nlla forma (), avrmo 0 ( ( 5 )( ( 5 ) quindi la funzion intrsca l ass ni punti di coordinat ( 5, 0 );( 5, 0 ) SEGNO DELLA FUNZIONE Pr studiar il sgno dlla funzion ci convin considrar la forma () Avrmo ( ( 5 ) ( ( 5 ) > 0 > 0 > 0 > 5 > 5 ogni valor di 5 5 < 5 > 5 5 < < 5 7) La funzion è (1) 15 9 Scomponiamo il polinomio in modo da ottnr una forma più facil da trattar in crti casi Avrmo: - Numrator: ± 4 4 ( 15) ± 64 ± , 1, 1, 9
10 quindi ( 5)( ) 15 - Dnominator: 9 ( )( ) Quindi la funzion di partnza può ssr scritta anch nlla forma quivalnt () ( 5)( ) ( )( ) A qusto punto occorr star attnti! In toria è possibil smplificar il fattor in quanto compar sia al numrator ch al dnominator Non si può tuttavia far prima ch vnga discusso il campo di sistnza, ossia prima di avr scluso il valor CAMPO DI ESISTENZA: la funzion è polinomial fratta un valor dlla variabil dipndnt y dtrminato ogni valor dlla variabil indipndnt sclusi qulli ch annullano il dnominator, quindi C E (, ) (,) (, ) A qusto punto è possibil smplificar Ottrrmo così la funzion nlla forma quivalnt () 5 INTERSEZIONI CON GLI ASSI CARTESIANI o Pr trovar l coordinat di punti in cui la funzion intrsca l ass y si vd cosa succd quando si pon 0 nlla funzion In qusto caso avrmo 0 quindi la funzion intrsca l ass y nl punto di coordinat ( 0,5/) o Pr trovar l coordinat di punti in cui la funzion intrsca l ass si vd cosa succd quando si pon 0 nlla funzion In qusto caso, considrando la funzion nlla forma (), avrmo quindi la funzion intrsca l ass ni punti di coordinat ( 5, 0 )
11 SEGNO DELLA FUNZIONE Pr studiar il sgno dlla funzion ci convin considrar la forma () Avrmo 5 > 0 > 0 > 5 > 5 < 5 > 5 < < 8) La funzion è (1) Scomponiamo il polinomio in modo da ottnr una forma più facil da trattar in crti casi Avrmo: - Numrator: - Dnominator: 9 ( )( ) ± 9 4 ( ) 9 9 ( ) 1, 1, ± < 0 quindi il polinomio al dnominator non è scomponibil d è anch smpr positivo in quanto il cofficint di è positivo Quindi la funzion di partnza può ssr scritta anch nlla forma quivalnt () ( )( ) ( ) CAMPO DI ESISTENZA: la funzion è polinomial fratta un valor dlla variabil dipndnt y dtrminato ogni valor dlla variabil indipndnt sclusi qulli ch annullano il dnominator, siccom il dnominator non si annulla mai si ha C E (, ) INTERSEZIONI CON GLI ASSI CARTESIANI o Pr trovar l coordinat di punti in cui la funzion intrsca l ass y si vd cosa succd quando si pon 0 nlla funzion In qusto caso avrmo 11
12 quindi la funzion intrsca l ass y nl punto di coordinat (0,1) o Pr trovar l coordinat di punti in cui la funzion intrsca l ass si vd cosa succd quando si pon 0 nlla funzion In qusto caso, considrando la funzion nlla forma (), avrmo ( ( )( ) ) quindi la funzion intrsca l ass ni punti di coordinat (, 0 ); (,0) SEGNO DELLA FUNZIONE Pr studiar il sgno dlla funzion ci convin considrar la forma () Avrmo > 0 > > 0 > ( ) > 0 ogni valor di < < < > 1
Ulteriori esercizi svolti
Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli
PROGRAMMA DI RIPASSO ESTIVO
ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO
Studio di funzione. R.Argiolas
Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti
ESERCIZI PARTE I SOLUZIONI
UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion
Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.
Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l
Funzioni lineari e affini. Funzioni lineari e affini /2
Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.
Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).
Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit
Appunti sulle disequazioni frazionarie
ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una
CONOSCENZE. 1. La derivata di una funzione y = f (x)
ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)
ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI
ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor
Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.
APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi
Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti
Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior
SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:
CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}
ESERCIZI SULLA DEMODULAZIONE INCOERENTE
Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili
1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8
UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi
Opuscolo sui sistemi. Totogoal
Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla
LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.
LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta
Tecniche per la ricerca delle primitive delle funzioni continue
Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva
1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8
UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma
Esercizi di Matematica. Funzioni e loro proprietà
www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO
Unità didattica: Grafici deducibili
Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni
Studio di funzione. Pertanto nello studio di tali funzioni si esamino:
Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono
SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI
PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..
Aspettative, produzione e politica economica
Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt
la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.
1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero
Esercizi sullo studio completo di una funzione
Esercizi sullo studio completo di una funzione. Disegnare il grafico delle funzioni date, utilizzando ogni informazione utile che si può ricavare dalla funzione e dalle sue derivate prima e seconda. a.
Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1
Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati
COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città
COMUNE DI BOLOGNA Dipartimnto Economia Promozion dlla Città Allgato C all Avviso pubblico pr la prsntazion di progtti di sviluppo alla Agnda Digital di Bologna Modllo di dichiarazion sul posssso di rquisiti
LA NOSTRA AVVENTURA NEL CREARE UN LIBRO
LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.
0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:
0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,
0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y
INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).
Istogrammi ad intervalli
Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori
La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla
Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono
Studio di una funzione. Schema esemplificativo
Studio di una funzione Schema esemplificativo Generalità Studiare una funzione significa determinarne le proprietà ovvero Il dominio. Il segno. Gli intervalli in cui cresce o decresce. Minimi e massimi
LE FUNZIONI E LE LORO PROPRIETÀ
LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale
