Integrali multipli - Esercizi svolti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Integrali multipli - Esercizi svolti"

Transcript

1 Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y) R x +y, x +4y 4}.. Si calcoli l integrale Σ x +4z dσ, dove Σ è la superficie di equazioni parametriche x = u Σ : y = v z = u +v con (u,v) = {(u,v) R u +v v, v oppure u }. 3. Si consideri il solido di R 3 S = {(x,y,z) R 3 x +z 9, x +z 9 y }. (a) Calcolare il volume di S; (b) calcolare l area della superficie totale di S. 4. Sia E = {(x,y,z) R 3 x +y, z 9+xy}. Calcolare l area della superficie frontiera di E. 5. Calcolare l area della superficie ottenuta con una rotazione completa della curva { x = sintcost γ : t π y = 4sint attorno all asse y.

2 Integrali di linea e di flusso - Teoremi di Green, Gauss, Stokes 6. Calcolare l integrale di linea del campo F = (y z,z+x,x+y) lungo γ(t) = (cost, sint, sint), con t [,π]. 7. Dato il campo F = (y, x) e la curva γ = γ γ, dove { x = cos γ : 3 t y = sin 3 t t [, π ] e γ è l arco di circonferenza di equazione x +y = situato nel primo quadrante, si calcoli il lavoro di F lungo γ percorsa in verso antiorario. Si utilizzi il risultato ottenuto per calcolare l area della regione C delimitata da γ. 8. Utilizzando il teorema di Green, calcolare l area della regione T R delimitata dal sostegno della curva chiusa γ = γ γ γ 3, dove γ : { x = cos 3 t y = sin 3 t t [, π ] e γ è l arco di ellisse x + y 4 = contenuto nel primo quadrante e γ 3 è semicirconferenza di ( ) centro, 3 e raggio contenuta nel primo quadrante. 9. Dato il campo vettoriale F = ( ( x)(+y ) ) +x,y, si calcoli la circuitazione di F lungo il bordodel triangolo di vertici (,), (,)(,) percorso in verso antiorario.. Determinare il flusso del campo F = (,z,y) attraverso la calotta x = u v σ : y = u u, v. z = v. Dato il campo F = ( z,x,y), si calcoli il lavoro di F lungo la curva γ intersezione del piano z = y con il paraboloide di equazione z = x +y, precorsa in modo che la sua proiezione γ sul piano (x, y) risulti percorsa in verso antiorario.

3 . Dato il campo vettoriale F = (z,x,y), si calcoli il flusso di rot( F) attraverso la porzione di superficie S, di equazione z = xy che si proietta nel dominio D = {(x,y) R x +y } (con n, versore normale, orientato verso l alto) si direttamente, sia applicando il teorema di Stokes. 3. Si calcoli il flusso del campo F = (z,x y,y z) uscente dalla superficie del solido S = {(x,y,z) R 3 x +y z +x +y }. 4. Calcolare il flusso del campo F = (,z, y 3 ) attraverso la superficie S = {(x,y,z) R 3 x = 3y +z, x 3} orientata in modo che la normale formi un angolo ottuso con il semiasse x positivo.

4 SOLUZIONI Integrali di superficie. Parametrizziamo la superficie Σ nel modo seguente x = u Σ y = v z = u v con (u,v) = {(u,v) R u +v, u +4v 4}. Il vettore normale N è dato da i j k N = u = ( u,v,) v e dunque I = f(u,v,u v ) N(u,v) dudv = u dudv = 4 u dudv dove = {x, y }. y x Se indichiamo inoltre con possiamo scrivere Passando a coordinate polari ellittiche E = {(u,v) R u +4v 4, u, v } E = {(u,v) R u +v, u, v } I = 4 u dudv 4 u dudv. E E { u = ρcosθ v = ρsinθ ρ, θ π

5 otteniamo che u dudv = π E. Analogamente, utilizzando le coordinate polari otteniamo che E u dudv = π 6. Concludiamo che I = 4 π 4 π 6 = 7π 4.. Il dominio è rappresentato nella figura seguente: v u Dalla parametrizzazione x = u Σ : y = v z = u +v (u,v) ricaviamo il vettore normale i j k N = u = ( u, v,). v Quindi I = = = u +4u +4(u +v ) +4v dudv = dv v v v v udu+ (v v )dv =. dv v v ududv = udu = 3. Il solido S si ottiene mediante una rotazione completa di D attorno all asse y.

6 y z 3 x D 9 (a) Per calcolare il volume V integriamo per strati paralleli al piano xz: ( ) V = dxdydz = dxdz dy = (Area(S y )dy, S S y dove S y è la corona circolare di raggi e y z S y y +9 x Quindil areadis y èdatadaπ(y+9 ) = π(y+8)esostituendonellaformulaprecedente V = π (y +8)dy = 3π. 8 (b) L area della superficie totale è la somma dell area A della base inferiore più l area A della superficie interna del cilindro più l area A 3 della superficie laterale della porzione di paraboloide y = x +z 9. La base superiore è una corona circolare di raggi e 3 e dunque A = 9π π = 8π.

7 Il cilindro interno ha raggio e lunghezza 8, e quindi A = π 8 = 6π. Per quanto riguarda il paraboloide, se poniamo f(x,z) = x +z 9, abbiamo A 3 = +fx +fz dxdz = +4x +4z dxdz, D D dove D = {(x,z) R x +z 9}. Passando a coordinate polari si ottiene A 3 = π 6 ( ), e quindi l area superficie totale di S risulta essere 4π + π 6 ( ). Equivalentemente, la superficie del paraboloide si può ottenere dalla rotazione della curva γ : { x = t y = t 9 t 3, attorno all asse y e dunque, applicando il teorema di Guldino x 3 γ A 3 = l γ π x B = l γ π = π x = π t +4t l dt = π γ γ 6 ( ). 4. Il cerchio di base ha area π. La superficie laterale del cilindro ha equazione parametrica x = cosu S : y = sinu (u,v) = {(u,v) R u π, v 9+cosusinu} z = v da cui otteniamo N(u,v) = (cosu,sinu,) e dunque Area(S) = = π N(u,v) dudv = du 9+cosusinu cos u+sin ududv = dv = 8π. La calotta superioredi E haequazione cartesiana z = f(x,y) = 9+xy ela suaproiezione sul piano xy è l insieme C = {(x,y) R x +y }. Quindi la sua area è data da Area = +fx +f y dxdy = +x +y dxdy = C C π = dθ +ρ ρdρ = π 3 (3 ).

8 L area totale della superficie è 9π + π 3 (3 ). 5. Applicando il teorema di Guldino Area = l γ πx B = l γ π = π = 4π π π l γ γ x = π sintcost γ (t) dt = γ x = sintcost(+cos t)dt = 4π.

9 Integrali di linea e di flusso - Teoremi di Green, Gauss, Stokes 6. Dalla definizione si ha F(P)dP = γ = = π π ( sint sint, sint+cost,cost+ sint) ( sint, cost, cost)dt = (4 cos t+4sintcost)dt = 4 π. 7. Per la proprietà di additività degli integrali di linea abbiamo F(P)dP = F(P)dP + F(P)dP. γ γ γ γ y x Quindi F(P)dP = γ = = = 3 4 π π π π (sin 3 t, cos 3 t) ( 3cos tsint,3sin tcos)dt+ ( 3cos tsin 4 t 3sin tcos 4 t)dt (sint) dt π = 5 6 π. Applicando il teorema di Green: 5 6 γ π = F(P)dP = γ e dunque Area(C) = 5 3 π. C π dt = 3 π (sint, cost) ( sint,cost)dt = sin tcos tdt π = ( F x F ) dxdy = ( )dxdy = Area(C) y C

10 8. Parametrizziamo le tre curve nel modo seguente: γ : γ : γ 3 : { x = cos 3 t y = sin 3 t [, π t ] { x = cost t [, π y = sint ] { x = cost y = 3 + cost t [ π, π ] Posto F = (,x), dal teorema di Green risulta: ( F Area(T) = dxdy = T T x F ) dxdy = F(P)dP = y γ π = F(P)dP = (,cos 3 t) ( 3cos tsint,3sin tcost)dt+ γ γ γ 3 π π + (,cost) ( sint,cost)dt (, ) cost ( sint, ) cost dt = = 3 π ( cos t)cos 4 tdt+ π cos tdt π cos tdt = 9 3 π. 9. Applicando il teorema di Green: ( F F(P)dP = γ T x F ) y(x ) dxdy = y T +x dxdy = x+ y(x ) (x ) = dx +x dy = +x ( x) dx = x) 3 = 4 +x dx = 4 x (x 3)dx+4 x + dx+8 dx x + = = 4log+π.

11 . Il flusso di F attraverso σ è dato da F n = F(σ(u,v)) N(u,v)dudv, dove = {(u,v) R u, v } σ e Quindi σ F n = N = σ u σ v = i j k 4uv = 4u v (, 4uv, 4u v). (,u,v) (, 4uv, 4u v)dudv = = ( 4uv 4u v)dudv = 4 =. du (uv 3 +u 3 v)dv =. Calcolo diretto: la curva γ ha equazione cartesiana: { { z = x +y x +y y = z = y z = y ( ) x + y = 4 z = y da cui si ricavano le equazioni parametriche x = cost γ : y = + sint z = + sint t [,π]. z N γ γ y x Quindi F(P) dp = γ = π π ( sint, cost, + sint ) ( 4 sint+ 4 sin t 4 cos t+ 4 cost+ 4 sintcost ( sint, cost, ) cost ) dt = π. dt

12 Applicando il Teorema di Stokes: la curva γ racchiude la superficie Σ = {(x,y,z) R 3 z = y, x +y z} che si proietta nel piano z = sul cerchio C = {(x,y) R x + y y }. Il vettore normale a Σ è N = (,,). Quindi F(P) dp = rot( F) n = (,,) (,,)dxdy = γ Σ C = dxdy = Area(C) = π C.. Calcolo diretto: dalle equazioni parametriche di S: x = u y = v z = uv (u,v) = {(u,v) R u +v } ricaviamo i j k N = v = ( v, u,). u Poiché N k =, l orientazione è corretta. Inoltre rot( F) = (,,), da cui rot( F) n = (,,) ( v, u,)dudv = S = π dθ ( ρsinθ +ρcosθ)ρdρ = π. Col Teorema di Stokes: parametrizziamo il bordo di S nel modo seguente: x = cost S : y = sint t [,π]. z = costsint = sint Quindi S rot( F) n = S F(P) dp = π ( ) sint,cost,sint ( sint,cost,cost)dt = π. 3. La proiezione di S sul piano (x,y) è D = {(x,y) R x +y }.

13 z x D y Applicando il teorema di Gauss: Φ S ( F) = = F n = div( F)dxdydz = (x +y )dxdydz = S S S +x +y π dxdy (x +y )dz = dθ ρ (+ρ ρ)ρdρ = π D x +y Dalle equazioni parametriche di S x = 3u +v S : y = u z = v (u,v) = {(u,v) R 3u +v 3} ricaviamo i j k N = 6u = (, 6u, v). v

14 z y 3 x Poiché N i = >, il vettore N forma un angolo acuto con il semiasse positivo delle x. Come vettore normale ad S bisogna considerare (, 6u, v). Quindi Φ S ( F) = (,v, u 3 ) (,6u,v)dudv e passando a coordinate polari ellittiche (,v, u 3 ) (,6u,v)dudv = π. 3

Integrali superficiali eteoremi digaussestokes/ Esercizi proposti

Integrali superficiali eteoremi digaussestokes/ Esercizi proposti SRolando, 4 Integrali superficiali eteoremi digaussestokes/ Esercizi proposti L asterisco contrassegna gli esercizi più difficili Data la parametrizzazione σ (u, v) =(u + v, log u, log v), (u, v) [, ]

Dettagli

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici Superfici e integrali di superficie 1. Scrivere una parametrizzazione per le seguenti superfici (a) Il grafico della funzione f(x, y) = x 2 y 3 (b) La superficie laterale di un cilindro di raggio R e altezza

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #. Sia P l insieme di tutti i parallelepipedi che giacciono nel primo ottante con tre facce sui piani coordinati e un

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 4

Analisi Vettoriale A.A Soluzioni del Foglio 4 Analisi Vettoriale A.A. 26-27 - Soluzioni del Foglio 4 Esercizio 4.1. Sia Σ la superficie cartesiana z = 1 x y, (x, y) = {x 2 + y 2 1}, determinare in ogni punto di Σ il versore normale diretto nel verso

Dettagli

Esercizi sull integrazione II

Esercizi sull integrazione II ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.28-29 - Prof. G.Cupini Esercizi sull integrazione II (Grazie agli studenti

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Esercizio 1 Sia f : [a, b] IR 2 una funzione di classe C 1 su [a, b]. consideri

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #8. Sia f : R 2 R la funzione definita da 2 y 2 per (, y) (, ) f(, y) 2 + y 2 per (, y) (, ). (a) Stabilire se f è continua

Dettagli

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #7. Sia f : R R la funzione definita da a) Determinare i massimi e minimi di f. b) Mostrare che f è limitata. fx, y) xy

Dettagli

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27 Analisi Matematica 2 Superfici e integrali superficiali Superfici e integrali superficiali 1 / 27 Superficie Sia D un dominio connesso di R 2 (per def. un dominio connesso é la chiusura di un aperto connesso).

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 29 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

Teoremi di Stokes, della divergenza e di Gauss Green.

Teoremi di Stokes, della divergenza e di Gauss Green. Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,

Dettagli

Teoremi Gauss e Stokes / Alcuni esercizi svolti (1)

Teoremi Gauss e Stokes / Alcuni esercizi svolti (1) M.Guida, S.Rolando, 14 1 Teoremi Gauss e Stokes / Alcuni esercizi svolti (1) ESERCIZIO. R 3 definito da Usando il teorema di Stokes, calcolare il flusso del rotore del campo vettoriale F : R 3 F(x, y,

Dettagli

Integrali di superficie

Integrali di superficie Integrali di superficie Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Integrali curvilinei Analisi Matematica 2 1 / 27 Superfici in forma parametrica Procediamo

Dettagli

Teoremi Gauss e Stokes / Alcuni esercizi svolti

Teoremi Gauss e Stokes / Alcuni esercizi svolti M.Guida, S.Rolando, 18 1 Teoremi Gauss e Stokes / Alcuni esercizi svolti ESERCIZIO. R 3 definito da Usando il teorema di Stokes, calcolare il flusso del rotore del campo vettoriale F : R 3 F(x, y, z) =

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 15.XII.218 1. NB si ricorda che l equazione del piano passante per un punto

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Secondo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Secondo Parziale, , Versione A Cognome e nome:...matricola:... es.1 es. es.3 es. es.5 somma 6 6 6 6 6 3 Analisi Matematica : Secondo Parziale, 3.5.16, Versione A Cognome e nome:....................................matricola:......... 1. Dimostrare che la forma differenziale

Dettagli

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi)

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi) Analisi Matematica 3 Fisica, 8-9, M. Peloso e L. Vesely Prova scritta del 4 luglio 9 Breve svolgimento con alcuni conti omessi. a Dimostrare che l insieme G = { x, y R : x + x + log y = ye x} coincide

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

Esercizi di Analisi Matematica 3. Prima parte

Esercizi di Analisi Matematica 3. Prima parte Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste.

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste. Campi vettoriali. Sia F (x, y = ye x i + (e x cos y j un campo vettoriale. Determinare un potenziale per F, se esiste.. Sia F (x, y = xy i + x j un campo vettoriale. Determinare un potenziale per F, se

Dettagli

Calcolo 2B - Analisi III dicembre 2004

Calcolo 2B - Analisi III dicembre 2004 Calcolo 2B - Analisi III dicembre 2. Verificare esplicitamente il teorema di Stokes in R 2 : dω = ω per la -forma: nella regione piana data da: ω = x 2 + y 2 dx = x, y x 2 + y 2 ª x, y y 2x 2ª 2. Considerato

Dettagli

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E.

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E. ANALISI VETTORIALE Soluzione esonero.1. Esercizio. Assegnato il campo E (x, y, z) = x(y + z ), y(x + z ), z(x + y ) } 1111 calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1),

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale

Es. 1 Es. 2 Es. 3 Es. 4 Totale Es. Es. Es. Es. 4 Totale Analisi e Geometria Seconda prova in itinere Docente: luglio Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) agli esercizi del 27.XI.217 1. (NB si ricorda che l equazione del piano passante per un punto

Dettagli

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3)

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3) anno accademico 007-008 Prima prova di verifica in itinere di ANALISI MATEMATICA II Marzo 008 Compito A (punti ) y = x + xy + y x. (punti 4) y + y x = ln x x y. (punti ) y = y + y ln y. 4 (punti 6) Determinare

Dettagli

Corso di Analisi Matematica 2

Corso di Analisi Matematica 2 Corso di Analisi Matematica 2 in Ingegneria Biomedica Prof A Iannizzotto Prove d esame 2017 Versione del 17 settembre 2017 Appello del 9 gennaio 2017 Tempo: 150 minuti 1 Determinare gli estremi globali

Dettagli

Analisi II. Foglio di esercizi n.4 21/11/2018

Analisi II. Foglio di esercizi n.4 21/11/2018 Analisi II. Foglio di esercizi n.4 21/11/2018 Esercizi sull integrazione rispetto la misura di superficie 1. Consideriamo l astroide γ(ϕ) = r(cos 3 ϕ, sin 3 ϕ) con r > 0 e ϕ [0, 2π]. (a) Tracciare il grafico

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica Dott. Franco Obersnel Lezione : superficie nello spazio; area e integrali superficiali; teorema

Dettagli

Esempi di esercizi d esame A.A. 2006/07 Analisi Matematica 2 Ingegneria Elettronica Proff. G. Vergara Caffarelli e L. Giacomelli

Esempi di esercizi d esame A.A. 2006/07 Analisi Matematica 2 Ingegneria Elettronica Proff. G. Vergara Caffarelli e L. Giacomelli Esempi di esercizi d esame A.A. 6/7 Analisi Matematica Ingegneria Elettronica Proff. G. Vergara Caffarelli e L. Giacomelli versione preliminare, si prega di segnalare eventuali errori *) Determinare e

Dettagli

ESERCIZI SULLE CURVE

ESERCIZI SULLE CURVE ESERCIZI SULLE CURVE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli studi

Dettagli

TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL 2/9/2011

TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL 2/9/2011 TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL /9/11 Esercizio 1 a. Dopo aver scritto l equazione parametrica C(t) della curva di equazione cartesiana y = x x, si calcolino i vettori T(t), N(t) e

Dettagli

PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI. x x 2 + y 2 dxdy, tan(x + y) x + y. (x y) log (x + y) dxdy,

PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI. x x 2 + y 2 dxdy, tan(x + y) x + y. (x y) log (x + y) dxdy, PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI VALENTINA CASARINO Esercizi per il corso di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli

Dettagli

Roberto Capone Esercizi di Analisi Matematica 2 Superfici e Integrali superficiali. Superfici

Roberto Capone Esercizi di Analisi Matematica 2 Superfici e Integrali superficiali. Superfici uperfici i calcoli la matrice jacobiana delle seguenti funzioni: f(x, y) = e x+y i + cos (x + y)j f(x, y, z) = (x + y + 3z 3 )i + (x + sin3y + e z )j i calcoli la divergenza dei seguenti campi vettoriali

Dettagli

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Scritta di Analisi Matematica III - 28/2/2 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio 1. 1a. Teorema: (di ini) Sia Φ : A R n R R dove A è aperto.

Dettagli

Analisi Matematica 2 5 febbraio Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es.

Analisi Matematica 2 5 febbraio Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es. Analisi Matematica 2 5 febbraio 2013 Nome, Cognome, Matricola: Cognome del Docente: Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es. 7 1 Esercizio 1.

Dettagli

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Secondo Parziale, 1.6.17, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es. es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 3 9cr. 5 5 5 5

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Analisi Matematica III (Fisica) 07 Gennaio 2016

Analisi Matematica III (Fisica) 07 Gennaio 2016 Analisi Matematica III (Fisica 7 Gennaio 16 1. (1 punti Calcolare l area della sezione del cilindro x + y 4 determinata dal piano di equazione z x + y. (Possibilmente in due modi differenti Ci sono vari

Dettagli

Integrali multipli e di superficie

Integrali multipli e di superficie Integrali multipli e di superficie Integrali doppi Enunciamo e dimostriamo un paio di risultati concernenti gli integrali doppi. Proposizione 1 Sia A R 2 di misura nulla e f : A R limitata. Allora f R(A)

Dettagli

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Primo compito. Si consideri la regione stokiana E di R 3 definita dalle disuguaglianze: { + y 2 a 2 0 z tan α)x b) dove

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9/6/ A ) ata la funzione f(x, y) x y log( + x + y ), a) stabilire dove risulta derivabile parzialmente nel suo

Dettagli

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Scritto Generale, 7.9.16, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 3 9cr. 5 5 5 5 5 /3

Dettagli

Le soluzioni del foglio 3

Le soluzioni del foglio 3 Le soluzioni del foglio 3 1. Esercizio Consideriamo la famiglia di elicoidi, vedi Figura 1, x = u cos(v), y = u sin(v), z = kv, u 1, v π Quella proposta nell esercizio corrisponde alla scelta k = 1 Matrice

Dettagli

Corso di Analisi Matematica 2

Corso di Analisi Matematica 2 Corso di Analisi Matematica 2 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2017 Versione del 3 luglio 2017 Appello del 9 gennaio 2017 Tempo: 150 minuti 1. Determinare gli estremi globali

Dettagli

1 Integrali curvilinei

1 Integrali curvilinei Integrali curvilinei Richiamo: + x dx x + x + x log ) + + x. Exercise Verificare la formula precedente. Exercise Calcolare a + b x dx, con a, b qualsiasi. Exercise 3 Calcolare la lunghezza dell arco di

Dettagli

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:... Analisi Matematica 2: Scritto Generale, 21.02.2017 Cognome e nome:....................................matricola:......... es.1 es.2 es.3 es.4 es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 30 6/9cr. 5 5 5 5 5

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei 6 Curve e integrali curvilinei 6.1. Esempi ed esercizi svolti e/o proposti Esempio 6.1.1. Si consideri la curva parametrica ϕ: t [0,2π] ϕ(t) = (acos(t),asin(t),bt) R 3 dove a e b sono due costanti positive.

Dettagli

Quesito 1. f(x, y) = xy log (x 2 + y 2 ) Quesito 2. Quesito 3. y = 2y3 +x 3. xy 2 y(1) = 1. Quesito 4

Quesito 1. f(x, y) = xy log (x 2 + y 2 ) Quesito 2. Quesito 3. y = 2y3 +x 3. xy 2 y(1) = 1. Quesito 4 Corso di laurea in Ing. Meccanica, a.a. 2002/2003 Prova scritta di Analisi Matematica 2 del 7 gennaio 2003 Determinare gli eventuali estremi relativi della funzione f(x, y) = xy log (x 2 + y 2 ) Calcolare

Dettagli

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Secondo Parziale, 6.6.7, Versione A Cognome e nome:....................................matricola:......... es. es. es.3 es.4 es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 3 9cr. 5 5 5 5

Dettagli

2. Discutere la convergenza puntuale e la convergenza uniforme della serie di Fourier di f(x);

2. Discutere la convergenza puntuale e la convergenza uniforme della serie di Fourier di f(x); ANALISI MATEMATICA II Prova di esame del 6 Giugno 1 ore 11, Cognome e Nome (in stampatello): Corso di Laurea: Matricola: Docente: Versione A Avvertenza. Gli studenti immatricolati nell A.A. 1/11 (codice

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 07/08 Codocente: Dott. Salvatore Fragapane Lezione - 09/03/08, dalle 6.00 alle 8.00 in aula 6 Es. Studiare

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π.

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π. Soluzioni degli esercizi proposti nella sessione estiva 2-2 Terni Perugia ) Sia F = (2x, y, z) e V il volume delimitato dalle superfici: la semisfera S := z = 9 x 2 y 2 ed il disco S 2 di equazione z =,

Dettagli

Analisi Matematica 3

Analisi Matematica 3 Testi delle prove d esame del corso di Analisi Matematica 3 presso la Facoltà di Ingegneria Bruno Rubino L Aquila, 2006 Indice 1 Curve 3 2 Superfici 4 3 Teorema di Gauss-Green e formula dell area 4 4 Campi

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 7 gennaio 00 (Cognome) (Nome) (Numero di matricola) Esercizio Si consideri la successione

Dettagli

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Secondo compitino ( ) Svolgimento della Versione B

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Secondo compitino ( ) Svolgimento della Versione B Analisi Matematica (Fisica), 2008-2009, M. Peloso e L. Vesely Secondo compitino (20.01.2009) Svolgimento della Versione B 1. (a) Dimostrare che l insieme G = { (x, y) R 2 : x 2 e 2y e 2y + (x 1)e x y =

Dettagli

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009)

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) 1. Sia S = { } (x, y, z) : x 2 + y 2 = 4, 0 z 3 + x. Scrivere le equazioni parametriche di una superficie regolare che abbia S come sostegno. 2. Enunciare

Dettagli

(1) Determinare l integrale generale dell equazione

(1) Determinare l integrale generale dell equazione FONDAMENTI DI ANALISI MATEMATICA (9 cfu Commissione F. Albertini, V. Casarino, M. Motta Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 3 settembre 8 Quarto appello Avvertenza: Nella

Dettagli

( ) 3 ESERCIZI. Calcolare il valore dei seguenti integrali curvilinei: 1) xyds. dove γ è il contorno del quadrato x y a.

( ) 3 ESERCIZI. Calcolare il valore dei seguenti integrali curvilinei: 1) xyds. dove γ è il contorno del quadrato x y a. ESERCIZI Calcolare il valore dei seguenti integrali curvilinei: ) ds ) 3) dove è il contorno del quadrato a + + + = con a > 0 [0] 4 ds dove è il segmento della retta che congiunge i punti O(0,0) ed A(,)

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Esercizi 17.XI.2017 1. Verificare che le curve definite dalle seguenti parametrizzazioni sono regolari, o regolari

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

Analisi 4 - SOLUZIONI (15/07/2015)

Analisi 4 - SOLUZIONI (15/07/2015) Corso di Laurea in Matematica Analisi 4 - SOLUZIONI (5/7/5) Docente: Claudia Anedda ) Calcolare l area della superficie totale della regione di spazio limitata, interna al paraboloide di equazione x +y

Dettagli

Analisi Matematica III 16 Gennaio (x 1) 2 + y2

Analisi Matematica III 16 Gennaio (x 1) 2 + y2 Analisi Matematica III 6 Gennaio 7. ( punti) Calcolare il seguente integrale triplo ( e z + y(x ) + dove = {(x, y, z) R 3 : (x ) + y 4 + z }. y + (x ) + y 4 + z ) dxdz, Il dominio di integrazione è un

Dettagli

Corso di Analisi Matematica 2. Corso di Laurea in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015

Corso di Analisi Matematica 2. Corso di Laurea in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015 Corso di Analisi Matematica 2 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015 Appello del 21 novembre 2014 Tempo: 150 minuti 1. Enunciare la definizione di forma differenziale esatta

Dettagli

Prove d Esame A.A. 2012/2013

Prove d Esame A.A. 2012/2013 Complementi di Analisi Polo di Savona Complementi di Analisi Matematica Prove d Esame A.A. 2012/2013 1- PrCam.TEX [] Complementi di Analisi Polo di Savona Prima Prova parziale 23/11/2011 Prima Prova parziale

Dettagli

Calcolare l area di una superficie. 2. Calcolare l area della porzione del piano 3x + 2y + z = 7 all interno al cilindro x 2 + y 2 = 1.

Calcolare l area di una superficie. 2. Calcolare l area della porzione del piano 3x + 2y + z = 7 all interno al cilindro x 2 + y 2 = 1. Calcolare l area di una superficie. Calcolare l area della porzione del piano x + 2y + z = 5 sopra il cono z = 3(x 2 + y 2 ). 2. Calcolare l area della porzione del piano 3x + 2y + z = 7 all interno al

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 15

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 15 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 15 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito A del -6-9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

INTEGRALI TRIPLI Esercizi svolti

INTEGRALI TRIPLI Esercizi svolti INTEGRLI TRIPLI Esercizi svolti. Calcolare i seguenti integrali tripli: (a xye xz dx dy dz, [, ] [, ] [, ]; (b x dx dy dz, {(x, y, z : x, y, z, x + y + z }; (c (x + y + z dx dy dz, {(x, y, z : x, x y x

Dettagli

Analisi Matematica 3 (Fisica e Astronomia) Esercizi di autoverifica sull integrazione di campi vettoriali

Analisi Matematica 3 (Fisica e Astronomia) Esercizi di autoverifica sull integrazione di campi vettoriali Analisi Matematica (Fisica e Astronomia) Esercizi di autoverifica sull integrazione di campi vettoriali Università di Padova - Lauree in Fisica ed Astronomia - A.A. 8/9 martedì novembre 8 Istruzioni generali.

Dettagli

ANALISI MATEMATICA II 6 luglio 2010 Versione A

ANALISI MATEMATICA II 6 luglio 2010 Versione A ANALISI MATEMATICA II 6 luglio 2 Versione A Nome Cognome: Matricola Codice corso Docente: Corso di Laurea: Analisi II 75 cr. Analisi D Analisi II V.O. Analisi C es. 23 es. 245 es 24 es. es. 3 pinti b c

Dettagli

Syllabus per la seconda prova intermedia e per le prove scritte di esame. Esercizi di preparazione.

Syllabus per la seconda prova intermedia e per le prove scritte di esame. Esercizi di preparazione. Università di Trento - Corsi di Laurea in Ingegneria Civile e in Ingegneria Ambientale Analisi matematica 2 - a.a. 2013-14 - Prof. Gabriele Anzellotti Syllabus per la seconda prova intermedia e per le

Dettagli

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t ANALISI VETTORIALE Soluzione esercizi 1 gennaio 211 6.1. Esercizio. Sia Γ la curva regolare a tratti di rappresentazione parametrica x = t 2, y = t, t [, 1] e x = t, y = t 2, t [1, 2] calcolare la lunghezza,

Dettagli

ANALISI MATEMATICA 2 Prova scritta 02/07/2012. log(x 2 + 3y 2 ) ) [15 pt] Data la funzione f : dom f R 2 R, f(x, y) = 1 4. [1 pt] calcolare f:

ANALISI MATEMATICA 2 Prova scritta 02/07/2012. log(x 2 + 3y 2 ) ) [15 pt] Data la funzione f : dom f R 2 R, f(x, y) = 1 4. [1 pt] calcolare f: ANALISI MATEMATICA Prova scritta /7/1 COGNOME e Nome firma 1. [15 pt] Data la funzione f : dom f R R, fx, y) 1 4 logx + 3y ) ) [1 pt] calcolare f: [ pt] Disegnare l insieme dei punti stazionari di f [

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012 Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9 settembre A) Data la funzione f(x, y) = { xy x se (x, y) (, ) se (x, y) = (, ), i) stabilire se risulta continua

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2016/2017

Prove scritte dell esame di Analisi Matematica II a.a. 2016/2017 Prove scritte dell esame di Analisi Matematica II a.a. 6/7 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 5 giugno 7. Assegnati ( l insieme E {(x,

Dettagli

Ω : 0 z x 2 y 2 + 5, x 2 + y 2 1. Soluzione: Tenuto conto che. 1 + f 2 x + f 2 y dx dy. riesce, servendosi delle coordinate polari,

Ω : 0 z x 2 y 2 + 5, x 2 + y 2 1. Soluzione: Tenuto conto che. 1 + f 2 x + f 2 y dx dy. riesce, servendosi delle coordinate polari, ANALISI VETTORIALE Soluzione scritto 19 settembre 11 4.1. Esercizio. Assegnata la superficie cartesiana S : z = x y + 5, x + y 1 calcolare l area di S calcolare il volume di Tenuto conto che Ω : z x y

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log Analisi Matematica II Corso di Ingegneria Gestionale Compito del -6-4 Esercizio. punti Data la funzione { x y log +, fx, y = x +y 4 x, y,, x, y =, i dire in quali punti del dominio è continua; ii dire

Dettagli

Analisi Matematica 2: Scritto Generale, , Fuori corso. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Fuori corso. Cognome e nome:...matricola:... Analisi Matematica 2: Scritto Generale, 26.11.216, Fuori corso Cognome e nome:....................................matricola:......... es.1 es.2 es. es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 6/9cr. 5 5 5 5

Dettagli

Provadiprova 2 - aggiornamento 7 giugno 2013

Provadiprova 2 - aggiornamento 7 giugno 2013 Università di Trento - Corso di Laurea in Ingegneria Civile e Ambientale Analisi matematica 2 - a.a. 2012-13 - Prof. Gabriele Anzellotti Provadiprova 2 - aggiornamento 7 giugno 2013 La seconda provetta

Dettagli

Analisi Matematica 2 3 febbraio Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es.

Analisi Matematica 2 3 febbraio Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es. Analisi Matematica 2 3 febbraio 204 Nome, Cognome, Matricola: Cognome del Docente: Risposte. (Giusta = 3, non data = 0, sbagliata = ) Esercizio. Se il raggio di convergenza della serie di potenze a n (x

Dettagli

Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Matematica a.a. 2013/2014. Silvano Delladio

Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Matematica a.a. 2013/2014. Silvano Delladio Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Matematica a.a. 2013/2014 Silvano Delladio September 8, 2014 Chapter 1 Integrali multipli 1.1 Sia B R 3 la palla di raggio 2 centrata

Dettagli

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19 ANALISI MATEMATICA - INGEGNERIA MECCANICA E ENERGETICA A.A. 8-9 PROVA SCRITTA EL 8//9 Scrivere nome cognome e numero di matricola in stampatello su tutti i fogli da consegnare. Consegnare solo la bella

Dettagli

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Parziale di Analisi Matematica III - 7//4 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio. a. Ricordiamo inanzitutto la seguente: efinizione: Si

Dettagli

Cambi di variabile. 1 2 y ; x 2 + y 2, (x,y) :x 2 + y 2 1, (x 1) 2 + (y 1) ; y x su {(x,y) : x 2 + y 2 4, 1 x}.

Cambi di variabile. 1 2 y ; x 2 + y 2, (x,y) :x 2 + y 2 1, (x 1) 2 + (y 1) ; y x su {(x,y) : x 2 + y 2 4, 1 x}. Analisi Matematica II, Anno Accademico 06-07. Ingegneria Edile ed Architettura Vincenzo M. Tortorelli FOGLIO DI EERCIZI n. CAMBI DI VARIABILE NEGLI INTEGRALI: CALCOLO DI INTEGRALI IN COORDINATE CURVILINEE

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 1 giugno 4 (Cognome (Nome (Numero di matricola Esercizio 1 Si consideri la successione

Dettagli

TEOREMA DI GREEN ( ) D ; C è il contorno orientato del dominio D considerato

TEOREMA DI GREEN ( ) D ; C è il contorno orientato del dominio D considerato Le formule f d dy = f (, y ) dy TEOEMA I GEEN [] f d dy = f (, y ) d [] note come formule di Green sono due relazioni semplici ma molto importanti fra gli integrali estesi ad un dominio piano e gli integrali

Dettagli

Integrali tripli / Esercizi svolti

Integrali tripli / Esercizi svolti M.Guida, S.Rolando, Integrali tripli / Esercizi svolti ESERCIZIO. Rappresentare graficamente l insieme (x, y) R :y x, x + y e calcolare l integrale e x+y dxdy. Posto V (x, y, z) R :(x, y), z, calcolare

Dettagli

ISTITUZIONI DI MATEMATICHE II

ISTITUZIONI DI MATEMATICHE II ISTITUZIONI DI MATEMATIHE II SEONDO ESONERO Esercizio 1. Data la funzione f(x, y) = (x + y )(1 y) i) se ne studi il segno. ii) Si trovino i punti critici di f e se ne studi le natura. iii) Sia D = {(x,

Dettagli

; y x su {(x, y) : x 2 + y 2 4, 1 x}.

; y x su {(x, y) : x 2 + y 2 4, 1 x}. Analisi Matematica II, Anno Accademico 07-08. Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. CAMBI DI VARIABILE NEGLI INTEGRALI: CALCOLO DI INTEGRALI IN COORDINATE CURVILINEE

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014 Prove scritte dell esame di Analisi Matematica II a.a. 3/4 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 9 giugno 4. (8 punti) Risolvere il problema

Dettagli

Corso di Analisi Matematica 2

Corso di Analisi Matematica 2 Corso di Analisi Matematica 2 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2017 Versione del 22 giugno 2017 Appello del 9 gennaio 2017 Tempo: 150 minuti 1. Determinare gli estremi globali

Dettagli

Esercizi svolti e assegnati su integrali doppi e tripli

Esercizi svolti e assegnati su integrali doppi e tripli Esercizi svolti e assegnati su integrali doppi e tripli Esercizio. ove Calcolare R = R xy x + y + x + y dxdy } x, y R : x, y, x x + y x Svolgimento. Passo : per disegnare R, studiamo C : x + y x =, C :

Dettagli

2.9 Esercizi e prove d esame

2.9 Esercizi e prove d esame 65 R. Tauraso - Analisi Matematica II.9 Esercizi e prove d esame Esercizio.. Calcolare la lunghezza dell arco di catenaria data dal grafico della funzione f e + e, con, ]. L arco si parametrizza ponendo

Dettagli