22 RMT prova 1 gennaio febbraio
|
|
|
- Carlo Calabrese
- 9 anni fa
- Visualizzazioni
Transcript
1 RMT prova 1 gennaio febbraio Titolo Categorie Tema Origine 1. Numeri sconosciuti 3 4 numerazione 6.I.03. Le giuste somme 3 4 addizione (numeri naturali < 50) SR 3. Le tre case logica 6.I Il gioco del rettangolo sistemare dei «T» su una griglia SI/11.F Una buona mira addizione di termini 3, 4, 6 SI 6. Cifre e ancora cifre numerazione da 1 a 60 SI 7. Bandiere multicolori 5 6 combinazione di colori LU/17.I Pavimento decorativo 5 6 pavimentazione da completare SI 9. Il cuore di Martina 5 6 confronto d aree su quadrettatura PR 10. I disegni del Nonno 6 7 sviluppi di piramide RV/17.I Palline e bastoncini albero binario e potenze di PR 1. La scalinata multipli comuni di e 3 SI 13. La squadra di Enrico combinazione di multipli SI 14. Il villaggio turistico griglia da ricostituire + visione spaziale MI 15. Numeri pari alla lotteria somme di numeri pari SI/1.I La terrazza di Giuseppe figure geometriche e area RV 17. Giocare con Free Cell evoluzione di percentuali SS 18. La cinghia di Luca 9 10 lunghezza di cerchi-approssimazione PR/ La raccolta delle mele 9 10 combinazioni di velocità di lavoro SI
2 6. CIFRE E ANCORA CIFRE (Cat. 4, 5, 6) Giulio ha scritto un diario di 60 pagine. Per numerare le prime 13 pagine (1,, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 13) ha scritto 17 cifre: sei volte la cifra 1, due volte la cifra, due volte la cifra 3 e una sola volta ognuna delle altre cifre 4, 5, 6, 7, 8, 9 e 0. Quante cifre ha scritto Giulio per numerare tutte le pagine del suo diario dalla pagina 1 alla pagina 60? Spiegate come avete trovato il vostro risultato. 7. BANDIERE MULTICOLORI (Cat. 5, 6) Per la festa della scuola, ognuna delle 19 classi disegna una bandiera con quattro strisce orizzontali. Gli alunni di ogni classe devono colorare le strisce seguendo queste regole: - ogni striscia deve essere di un solo colore: rosso, giallo o blu - in ogni bandiera bisogna utilizzare tutti e tre i colori, - non si devono colorare con lo stesso colore due strisce che si toccano. Ogni classe potrà avere una bandiera differente da quelle di tutte le altre classi? Disegnate o descrivete le bandiere che avete trovato.
3 8. PAVIMENTO DECORATIVO (Cat. 5, 6) In una vecchia casa, è stato ritrovato sul pavimento del salone un frammento del vecchio pavimento. Era fatto di quadrati grigi e neri, tutti della stessa misura, disposti in modo da formare delle croci grigie o nere, con delle croci incomplete lungo i bordi. La figura mostra la pianta del salone con il frammento del pavimento che è stato ritrovato. Il nuovo proprietario ha deciso di rifare il pavimento del salone come era all origine. Quando il pavimento sarà rifatto, quanti quadrati grigi e quanti quadrati neri ci saranno? Spiegate come avete fatto per trovare il numero dei quadrati di ciascun colore. 9. IL CUORE DI MARTINA (Cat. 5, 6) Martina ha fatto un disegno a forma di cuore sul suo quaderno. Ha colorato il cuore di rosso e di azzurro la parte rimanente del quadrato. Qual è la parte più grande, quella colorata in rosso o quella colorata in azzurro? Spiegate come avete fatto a trovare la vostra risposta.
4 10. I DISEGNI DEL NONNO (Cat. 6, 7) Luisa ha trovato questi otto disegni in un vecchio quaderno di matematica di suo nonno. a c e f h b d g Li osserva attentamente e nota che ognuno è formato da un quadrato e quattro triangoli isosceli uguali. Luisa si accorge anche che ritagliando questi disegni e piegandoli seguendo i puntini tratteggiati, potrebbe ottenere in alcuni casi una piramide. In altri casi invece non sarebbe possibile, perché due facce sarebbero una sull altra e ne mancherebbe una per completare la piramide. Quali, tra questi otto disegni, non permettono di costruire una piramide? Colorate in rosso le due facce che si ritroverebbero una sull altra nei disegni che non permettono di costruire una piramide. 11. PALLINE E BASTONCINI (Cat. 6, 7) Luca trova in una scatola 100 palline d acciaio e delle calamite a forma di bastoncino. Comincia a costruire un albero con un bastoncino (il tronco) poi continua, livello per livello, secondo la regola seguente: - in cima ad ogni bastoncino fissa una pallina; - su ogni pallina, sistema due bastoncini; - sistema tutti i bastoncini di uno stesso livello, e poi sistema le palline su questi bastoncini, prima di passare al livello successivo. La figura rappresenta l inizio della costruzione, quando manca ancora una pallina affinché il terzo livello sia completo. A un certo punto Luca si ferma perché non ha più palline, mentre gli restano ancora dei bastoncini. In quel momento, quanti bastoncini ha utilizzato Luca per il suo albero? E quanti bastoncini sono rimasti senza pallina? Spiegate il vostro ragionamento.
5 1. LA SCALINATA (Cat. 6, 7, 8) Stefano e la sua amica Elisa percorrono di corsa una lunga scalinata. Stefano la percorre facendo i gradini a tre a tre, mentre Elisa la percorre facendo i gradini a due a due. sinistro destro sinistro destro Stefano Elisa Entrambi iniziano a salire con il piede destro. Stefano arriva sull'ultimo gradino con il piede sinistro, mentre Elisa arriva sull'ultimo gradino con il piede destro. Ci sono 10 gradini sui quali tutti e due hanno posato il piede sinistro. Quanti gradini ha la scalinata? Spiegate come avete trovato la vostra risposta. 13. LA SQUADRA DI ENRICO (Cat. 7, 8, 9, 10) La squadra di calcio di Enrico ha giocato nel campionato di quest anno 4 partite. Per ogni partita vinta ha ottenuto tre punti e per ogni partita pareggiata un punto. Alla fine del campionato ha totalizzato 35 punti. Anche l anno scorso la squadra di Enrico aveva giocato 4 partite, vincendone lo stesso numero di quest anno, ma pareggiandone tre in meno. Per ogni partita vinta però si ottenevano due punti. Alla fine del campionato dell anno scorso, la squadra di Enrico aveva totalizzato 4 punti. Quest anno, quante partite ha vinto, pareggiato o perso la squadra di Enrico? Spiegate come avete trovato le vostre risposte.
6 14. IL VILLAGGIO TURISTICO (Cat. 7, 8, 9, 10) La Figura 1 rappresenta il plastico di un villaggio turistico composto di nove edifici (3 3). La Figura rappresenta lo stesso villaggio, sotto forma di griglia Figura 1 Figura Gli edifici sono alti uno, due o tre piani. Gli edifici allineati lungo una stessa linea orizzontale o verticale sono tutti di altezze diverse. I numeri che vedete all esterno della griglia indicano quanti edifici si vedono da quel punto di vista (attenzione: i più bassi vengono nascosti dai più alti). I numeri all interno della griglia indicano invece l altezza degli edifici. Immaginate ora un villaggio composto da venticinque edifici (5 5) di uno, due, tre, quattro, cinque piani, costruito con le stesse regole, rappresentato dalla griglia che vedete in basso. Il numero di edifici che si possono vedere dai vari punti di vista è scritto all esterno della griglia. È stata scritta anche l altezza dell edificio della prima colonna e della terza riga: Completate la griglia scrivendo in ogni casella l altezza del suo edificio.
7 15. NUMERI PARI ALLA LOTTERIA (Cat. 7, 8, 9, 10) Sette amici, quattro femmine e tre maschi, hanno comprato ciascuno un biglietto della lotteria. Hanno osservato che: - ciascuno di loro ha ricevuto un biglietto su cui è scritto un numero pari diverso da 0; - la somma dei numeri sui biglietti consegnati alle femmine è 50; - la somma dei numeri sui biglietti consegnati ai maschi è 30; - la somma dei tre numeri più grandi è 50; - la somma dei tre numeri più piccoli è 18; Indicate quali possono essere i numeri su ciascun biglietto e precisate se sono stati acquistati da un maschio o da una femmina. Indicate tutte le possibili soluzioni e spiegate il vostro ragionamento. 16. LA TERRAZZA DI GIUSEPPE (Cat. 8, 9, 10) Giuseppe ha una terrazza quadrata di 10 metri di lato. Vuole dipingere di bianco e di grigio il pavimento. Fa uno schizzo a mano libera per il suo progetto tracciando un quadrato che rappresenta la terrazza poi, all interno, quattro segmenti di retta che vanno da ciascuno dei quattro vertici al punto medio di un lato opposto. Colora in grigio quattro parti e lascia le altre cinque in bianco. Giuseppe osserva il suo schizzo fatto a mano libera. Si chiede di quale forma saranno le sue diverse parti e se l area delle parti bianche sarà uguale a quella delle parti grigie. Calcolate l area totale delle parti bianche e quella delle parti grigie, riportando il dettaglio del vostro procedimento e dei vostri calcoli.
8 17. GIOCARE CON FREE CELL (Cat. 8, 9,10) Nel gioco di Free Cell alla fine di ogni partita il software comunica il numero delle partite giocate, di quelle vinte e la percentuale delle vittorie. Antonio ha giocato 1 partite e ne ha vinte 6. La percentuale di vittorie è del 50%. Gioca altre tre partite e le vince. Il computer lo informa che la percentuale delle partite vinte è del 60%. Antonio arriva al 75% giocando altre nove partite e vincendole tutte. Antonio è impaziente di arrivare all 80% e poi al 90% senza perdere una sola partita. Quante partite dovrà ancora giocare, senza mai perdere, per arrivare all 80% e poi al 90%? Spiegate come avete trovato le vostre risposte. 18. LA CINGHIA DI LUCA (Cat. 9, 10) Luca ha trovato in soffitta il meccanismo qui raffigurato: E formato da due ruote collegate da una cinghia di trasmissione non elastica. I raggi delle due ruote misurano rispettivamente 15 cm e 3 cm, mentre l angolo segnato in figura misura 60. Luca vuole sostituire la cinghia che è usurata. Egli ha a disposizione una nuova cinghia lunga 110 cm. Pensate che la nuova cinghia sarà abbastanza lunga? Giustificate la vostra risposta 19. LA RACCOLTA DELLE MELE (Cat. 9, 10) Nell azienda del signor Giovanni sono state raccolte le mele del frutteto e disposte in novantanove cassette. Per la raccolta, Giovanni è stato aiutato dalla moglie Teresa e dal figlio Luca. Giovanni ha riempito ogni ora otto cassette, Teresa sei e Luca solo quattro. Giovanni ha lavorato tutto il tempo, Teresa la metà del tempo di Giovanni e Luca solamente la metà del tempo di Teresa. Per quanto tempo ha lavorato Giovanni? Esprimete questo tempo in ore e minuti e spiegate il vostro ragionamento.
22 o RMT PROVA I gennaio - febbraio 2014 ARMT
o RMT PROVA I gennaio - febbraio 014 ARMT 014 1 Titolo Categorie Tema Origine 1. Numeri sconosciuti 3 4 numerazione 6.I.03. Le giuste somme 3 4 addizione (numeri naturali < 50) SR 3. Le tre case 3 4 5
Indicate il numero di mattonelle bianche e il numero di mattonelle grigie che mancano. Spiegate come avete trovato la risposta.
12 o RALLY MATEMATICO TRANSALPINO - FINALE ARMT.2004 p. 1 1. AL CINEMA (Cat. 3) ARMT.2004-12 - Finale Quattro amiche, Angela, Daniela, Gabriella e Lucia vanno al cinema insieme e si siedono una accanto
In questa tabella si possono vedere molti quadrati di quattro caselle:
10 o RALLY MATEMATICO TRANSALPINO - PROVA I - gen. - feb. 2002 /ARMT/2002 p. 1 1. Quadrati di quattro caselle (Cat. 3) /ARMT/2002-10 - I prova 3 14 17 11 14 In questa tabella si possono vedere molti quadrati
tutto 42 biglie". biglie ci sono in tutto?". 5. LE BIGLIE DI ARTURO (Cat. 3, 4, 5, 6) ARMT RMT PROVA II
4 e RMT PROVA II marzo-aprile 06 ARMT06 5. LE BIGLIE DI ARTURO (Cat. 3, 4, 5, 6) ARMT 06 4 RMT PROVA II Arturo ha l abitudine di riporre le sue biglie in scatole di due tipi diversi: Mette sempre lo stesso
Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti
Kangourou della Matematica 0 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio 0 Quesiti. umeri di quest anno Quanti numeri interi positivi n sono tali che entrambi i numeri n 0 e n + 0 siano
ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Docente: Daniele De Pieri.
6 settembre 008 Giochi Matematici. Il gioco dei grattacieli (puoi trovare una versione online all indirizzo: http://gamescene.com/skyscrapers_game.html) In una città ci sono solo grattacieli da, 0, 0 o
3) Quale numero corrisponde a 1 centinaio - 6 decine - 9 unità?
ATTIVITA A NUMERO 1)1)Numera + 4 da 63 a 107 63 2) numera - 2 da 74 a 52 74 3) Quale numero corrisponde a 1 centinaio - 6 decine - 9 unità? 196 169 619 3) Scrivi il numero che corrisponde a : 5 decine.
19 RMT PROVA II marzo aprile 2011 ARMT 2011 1. Problemi Categorie Argomenti Origine
19 RMT PROVA II marzo aprile 11 ARMT 11 1 Problemi Categorie Argomenti Origine 7. Il pirata Barbanera (II) 5 6 Ar Co AO 8. Rettangoli ingranditi 5 6 7 Geo gp geo2d 9. Tappeto da srotolare 5 6 7 Ar Geo
6 dicembre 2012 Gara a squadre di matematica per le scuole medie
1 Logo scuola Kangourou Italia UNIVERSITA DEGLI STUDI DI MODENA E REGGIO EMILIA Dipartimento di Fisica, Informatica e Matematica PIANO LAUREE SCIENTIFICHE Orientamento e Formazione degli Insegnanti 6 dicembre
I problemi di questa prova
I problemi di questa prova Categoria Problemi 3 1-2-3-4-5 4 1-2-3-4-5-6 5 1-2-3-4-5-6-7 6 7-8-9-10-11-12-13 7 8-9-10-11-12-13-14 8 8-9-10-11-12-13-14 9 10-11-12-13-14-15-16 10 10-11-12-13-14-15-16 Correzione
23 Rally Matematico Transalpino, prova 1
23 Rally Matematico Transalpino, prova 1 I problemi del RMT sono protetti da diritti di autore. Per un'utilizzazione in classe deve essere indicata la provenienza del problema inserendo la dicitura " ARMT".
1. Pompieri (Cat. 3) /ARMT/ II prova
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) /ARMT/2002-10 - II prova I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2
1. Pompieri (Cat. 3) /ARMT/ II prova
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) /ARMT/2002-10 - II prova I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2
1. Pompieri (Cat. 3) Quanto misura ciascuna scala? Spiegate il vostro ragionamento. 2. La casa di Viola (Cat. 3, 4)
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2 volte quella corta, - una
6. I PROBLEMI DEL RALLY
14 o RMT FINALE maggio-giugno 2006 ARMT 2006 pag. 1 6. I PROBLEMI DEL RALLY (CAT. 4, 5, 6) ARMT.2006-14 - finale Un gruppo di insegnanti prepara i problemi per il prossimo Rally, per gli allievi delle
FINALE del 23 campionato: 29 agosto giornata
FINALE del 23 campionato: 29 agosto 2009-2 giornata INIZIO DI TUTTE LE CATEGORIE 1 Il numero del giorno (coefficiente 1) Ogni giorno dopo il 1 gennaio, Matilde addiziona le cifre della data. Per esempio,
PuzzleFountain. Amico Logico
PuzzleFountain Amico Logico Autori: ALBERTO FABRIS, ADOLFO ZANELLATI Date: 0 novembre 0, 6.00 8.00 (orario server Italia) Durata: 0 minuti Sito web: www.puzzlefountain.com Akari Trilogia Circuito chiuso
8. Cammelli e dromedari 5.I 5-6 sistema di due equazioni in N. 9. La vasca MI 5-6 scomposizione additiva di 49 in multipli di 3, 4, 5
24 e RMT PROVA I gennaio-febbraio 2016 ARMT 2016 1 Titolo or. cat. Tema matematico 8. Cammelli e dromedari 5.I 5-6 sistema di due equazioni in N 9. La vasca MI 5-6 scomposizione additiva di 49 in multipli
Come può Zoe ricoprire completamente la sua tavoletta? Indicate tutte le diverse possibilità. Spiegate il vostro ragionamento.
14 RMT PROVA I gennaio-febbraio 2006 ARMT.2006 1 4. TAVOLETTA DA RICOPRIRE (Cat. 3, 4, 5) ARMT.2006-14 - I prova Zoe deve ricoprire completamente questa tavoletta di 9 caselle quadrate. Per farlo, ha a
18 RMT PROVA I gennaio - febbraio 2010 ARMT
8 RMT PROVA I gennaio - febbraio 00 ARMT.00 Problemi Categorie Argomenti Origine. Quattro numeri da scrivere 3 4 Ar Co LU. Il pianeta TAEP 3 4 Geo Co gpp 3. Domande e risposte 3 4 Ar 7RMT 4. Scatola da
Kangourou Italia Gara del 18 marzo 2004 Categoria Ecolier Per studenti di quarta o quinta elementare
5-8-.qxd 22/02/2004 14.55 Pagina 5 Kangourou Italia Gara del 18 marzo 2004 Categoria Per studenti di quarta o quinta elementare I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Qual è il risultato
1. NEL PAESE DI PIOVEPOCO (Cat. 3) ARMT II prova
o RALLY MATEMATICO TRANSALPINO - PROVA II marzo - aprile ARMT. p.. NEL PAESE DI PIOVEPOCO (Cat. ) ARMT. - - II prova Nel paese PIOVEPOCO manca l acqua. Due amiche, Laura e Paola, vanno a prendere l acqua
7 Rally matematico transalpino Prova I p. 1
7 Rally matematico transalpino Prova I p. 1 1. I CIOCCOLATINI (Cat 3) In questa scatola i cioccolatini erano perfettamente allineati e disposti in modo regolare. Ora, però, ne restano solo 17. Quanti cioccolatini
Addiziona poi questi tre numeri e trova come somma 45 che è proprio l età di sua mamma.
1. I BOTTONI DI ERNESTO (Cat 3, 4) ARMT 2003 - finale 11 Per il suo prossimo spettacolo il clown Ernesto deve preparare un nuovo vestito. Vuole cucire 3 bottoni sul suo vestito, nel posto indicato nel
Fra quanti anni i quattro bambini avranno insieme la stessa età della loro mamma? Indicate la vostra soluzione e spiegate il vostro ragionamento.
12 o RALLY MATEMATICO TRANSALPINO - PROVA I - gen. - feb. 2004-8 a cat. /ARMT/2004 1 6. IL COMPLEANNO DELLA MAMMA (Cat. 4, 5, 6) /ARMT/2004 Andrea, Anna, Annalisa e Alberto hanno rispettivamente 11, 9,
Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA. 4. Qual è la cifra delle unità di 3 (87)? (A) 1 (B) 7 (C) 3 (D) 9 (E) 5
T1 Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA Ministero dell Istruzione, dell Università e della Ricerca Scuola Normale Superiore I Giochi di Archimede - Gara Biennio 25 novembre 2015
Giochi matematici. Olimpiadi della matematica * Giochi di Archimede 23/11/2016
Giochi matematici Istituto Poliziano a.s. 2016/2017 Olimpiadi della matematica * Giochi di Archimede 23/11/2016 2h mattina Biennio - Triennio * Classi prime 02/02/2017 * Fase distrettuale 21/02/17 * Gara
8 RALLY MATEMATICO TRANSALPINO PROVA II (marzo 2000) 1. 1. IN BICICLETTA (Cat. 3)
1. IN BICICLETTA (Cat. 3) Claudio, Hans, Alfio, Jacky e Giancarlo partecipano ad una gara di biciclette e passano la linea del traguardo uno dopo l altro. Claudio arriva dopo Hans ma prima di Alfio. Giancarlo
1. Quale dei seguenti sviluppi rappresenta il tetraedro in figura? A. A B. B C. C D. D E. nessuno dei precedenti
Prova di abilità logico-matematiche pagina 1 di 5 Rispondi a ciascuna delle domande seguenti selezionando tra le opzioni proposte quella che ritieni corretta. Le domande hanno tutte lo stesso valore; le
Giochi a squadre. N.B.: non necessariamente a lettere diverse sono associati numeri diversi.
Giochi a squadre 1. LETTERE E NUMERI (punti 9) Associa un numero (scelto nell'insieme {0,1,2,3,4,8,9}) ad ogni lettera nella seguente addizione : e d b d d + e d b d d + e d b d d = c f a b-1 d-1 e-1 N.B.:
PuzzleFountain. Amico Logico
PuzzleFountain Amico Logico Autore: Data: Durata: Sito web: ALBERTO FABRIS sabato 29 novembre 20, 6.00 8.00 (orario server Italia) 20 minuti www.puzzlefountain.com Battaglia navale 2 Labirinto magico Circuito
6 o RALLY MATEMATICO TRANSALPINO - PROVA I gennaio 1998 ARMT 1 POLLICINO E I SUOI FRATELLI
6 o RALLY MATEMATICO TRANSALPINO - PROVA I gennaio 1998 ARMT 1 POLLICINO E I SUOI FRATELLI Pollicino e i suoi 4 fratelli camminano nel bosco, tutti in fila. Pollicino è l'ultimo della fila e lascia cadere
LE ALTEZZE. Sandra Taccetti, Antonio Moro, Classe quarta o quinta delle scuola primaria
LE ALTEZZE Sandra Taccetti, Antonio Moro, 2013 Classe quarta o quinta delle scuola primaria 1. Oggi misuriamo le nostre altezze: esperienza in classe con l uso del metro e dei grafici (già fatta lo scorso
Kangourou Italia Gara del 15 marzo 2001 Categoria Benjamin Per studenti di prima e seconda media
Kangourou Italia Gara del 15 marzo 2001 Categoria Benjamin Per studenti di prima e seconda media Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta
Traduzione e adattamento a cura di Gylas per Giochi Rari. Versione 1.1 Novembre
Traduzione e adattamento a cura di Gylas per Giochi Rari Versione 1.1 Novembre 2001 http://www.giochirari.it e-mail: [email protected] NOTA. La presente traduzione non sostituisce in alcun modo
Kangourou Italia Gara del 19 marzo 2015 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado
N G A RA Kangourou Italia Gara del 19 marzo 2015 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. In quale
Immagina di seguire il filo partendo dall estremità dove c è la freccia. In quale ordine incontri le tre figure nere (cerchio, quadrato, triangolo )?
1 La coccinella si poserà su un fiore che ha cinque petali e tre foglie. Su quale fiore si poserà? B D C E 2 Immagina di seguire il filo partendo dall estremità dove c è la freccia. In quale ordine incontri
GIOCHI A SQUADRE 2000
1 di 5 4/16/2009 10:48 PM International Site Ricerca > Centri di Ricerca > PRISTEM > Giochi matematici > Archivio edizioni precedenti - testi di allenamento > 2000 Giochi a squadre 2000 Giochi a squadre
21 o RMT Finale maggio giugno 2013 armt2013
Titolo Categorie Ar Alg Geo Lo/Co Origine 1. La cordicella (I) 3 4 x x rc 2. I bicchieri 3 4 x RO 3. I coniglietti 3 4 x 10.II.1 4. Bianco o grigio? 3 4 5 x 2.F.11 5. Pesciolini 3 4 5 x SI 6. Il puzzle
14 o RALLY MATEMATICO TRANSALPINO Finale (maggio, giugno 2006) ARMT 2006
1. CIOCCOLATINI TROPPO BUONI (Cat. 3) I cioccolatini di questa scatola erano disposti in modo regolare quando era piena: - nella prima riga, due cioccolatini tondi al latte erano seguiti da un cremino
Kangourou Italia Gara del 28 marzo 2008 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado
Testi_08.qxp 9-0-008 :6 Pagina 8 Kangourou Italia Gara del 8 marzo 008 ategoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono punti ciascuno. Nelle
Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado
Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. La somma degli
Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio Quesiti
Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio 2012 Quesiti 1. Paola ed Enrico Considerate tutti i numeri interi positivi fino a 2012 incluso: Paola calcola la
Finale nazionale di giochi matematici 2004
Finale nazionale di giochi matematici 2004 Milano 15 maggio 1.LA PARTITA DI BOCCE Anna e Chiara si sfidano in un accanita partita di bocce. Ad ogni turno di gioco, chi vince ottiene uno o due punti (a
Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria
Testi_07.qxp 16-04-2007 12:02 Pagina 5 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Osserva
FINALE 30 agosto 2008
FINALE 30 agosto 2008 INIZIO CATEGORIA CE 1- LE SETTE CARTE (coefficiente 1) Matilde ha messo 7 carte sulla tavola una dopo l'altra. In che ordine lo ha fatto? 2 - LE GOBBE (coefficiente 2) Una carovana
Test di autovalutazione
Test di autovalutazione 0 10 0 30 40 50 60 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle 5 alternative. n Confronta le tue risposte con le soluzioni.
Problemi di secondo grado con argomento geometrico (aree e perimetri)
Problemi di secondo grado con argomento geometrico (aree e perimetri) Impostare con una o due incognite 1. Un rettangolo ha perimetro 10 cm ed è tale che l area gli raddoppia aumentando di 1 cm sia la
A IC T A M E T A M I D A V O R P
PROVA DI MATEMATICA Classe seconda MAT7 1 3 D1. La metà di è 4 3 A., perché ho diviso il denominatore per 2 2 6 2 B., perché ho moltiplicato la frazione per 8 2 3 1 C., perché ho moltiplicato la frazione
Tetrapyramis. organizza. Warm up. Gara di giochii logici a squadre per Istituti Scolastici
Tetrapyramis organizza Warm up Gara di giochii logici a squadre per Istituti Scolastici Autore: Data: Durata: Categoria: Sito web: ALBERTO FABRIS martedì 25 ottobre 2016, 14.30 16.00 (orario server Italia)
Scrivete tutte le possibili soluzioni numeriche per la parola MILANO.
1. NUMERO CICLICO Considerate la seguente moltiplicazione, sapendo che a lettere uguali corrispondono cifre uguali e a lettere diverse corrispondono cifre diverse: ILANOM x 4 = MILANO Scrivete tutte le
I TRIANGOLI RETTANGOLI
I TRIANGOLI RETTANGOLI IN QUESTA ATTIVITÀ PARLEREMO DI TRIANGOLI RETTANGOLI, PERTANTO RICORDA CHE I LATI DI TALI TRIANGOLI HANNO NOMI PARTICOLARI: SI CHIAMANO CATETI DI UN TRIANGOLO RETTANGOLO ABC I DUE
1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di
1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di 150 pagine. Quante pagine restano da leggere? 3) Luca
22 o RMT PROVA I gennaio - febbraio 2014 ARMT 2014 1
22 o RMT PROVA I gennaio - febbraio 2014 ARMT 2014 1 Titolo Categorie Tema Origine 1. Numeri sconosciuti 3 4 numerazione 6.I.03 2. Le giuste somme 3 4 addizione (numeri naturali < 50) SR 3. Le tre case
Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:
Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte
14 o RMT FINALE maggio-giugno 2006 ARMT 2006 pag. 1
14 o RMT FINALE maggio-giugno 2006 ARMT 2006 pag. 1 1. CIOCCOLATINI TROPPO BUONI (Cat. 3) ARMT.2006-14 - finale I cioccolatini di questa scatola erano disposti in modo regolare quando era piena: - nella
10. Quale dei seguenti numeri
Test d'ingresso di matematica per la secondaria di secondo grado (liceo classico) Il test si basa su alcuni test di ingresso (opportunamente modificati) assegnati al liceo classico e trovati in Rete Nome:
Kangourou Italia Gara del 15 marzo 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado
Testi_07.qxp 16-0-2007 12:0 Pagina 10 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di prima o seconda della scuola secondaria di primo grado I quesiti dal N. 1 al N. 10 valgono punti
Kangourou della Matematica 2010 Coppa a squadre Kangourou Semifinale turno A Mirabilandia, 8 maggio Quesiti
Kangourou della Matematica 2010 Coppa a squadre Kangourou Semifinale turno A Mirabilandia, 8 maggio 2010 Quesiti 1. Sei cifre per due numeri Avete a disposizione le cifre 1, 3, 4, 7, 8, 9 per formare due
Quattro operazioni. Che belle colonne!
Quattro operazioni Il naso di Pinocchio Il naso di Pinocchio è lungo 5 centimetri. Quando Pinocchio dice una bugia la Fata dai capelli turchini glielo fa allungare di 3 centimetri, ma quando Pinocchio
Gara a squadre 2010. Martedì 13 aprile. Qual è il perimetro di questa parte del campo (gialla o comunque più scura in figura)?
Gara a squadre 2010 Martedì 13 aprile 1 Problemi di eredità Il professor Pitagoris vuole lasciare ai quattro figli un campo che ha la forma di un triangolo isoscele e i cui lati misurano 240 m, 150 m,
Kangourou della Matematica 2017 Coppa Kangourou a squadre Semifinale turno A Cervia, 6 maggio Quesiti
Kangourou della Matematica 2017 Coppa Kangourou a squadre Semifinale turno A Cervia, 6 maggio 2017 Quesiti 1. Addendi Il numero 5 6 può essere ottenuto sia come prodotto di 6 fattori ognuno uguale a 5
un rettangolo, due quadrati e un cerchio un cerchio, due triangoli e un quadrato due quadrati, un cerchio, un triangolo
questa figura è formata da... un rettangolo, due quadrati e un cerchio un cerchio, due triangoli e un quadrato due quadrati, un cerchio, un triangolo osserva la sequenza di numeri 3 6 12 24 in questa sequenza
Kangourou Italia Quesiti per la Categoria Pre Ecolier
Kangourou Italia 2013 Quesiti per la Categoria Pre Ecolier Riservata agli alunni delle classi seconda e terza della Scuola Primaria (Sperimentazione da effettuare singolarmente o come gruppo-classe tempo
BUON LAVORO E BUON DIVERTIMENTO!!! 1) Seguendo un ragionamento logico stabilisci qual è il numero che può essere posto nella casella vuota.
A. I. C.M. c/o L.S. S. Cannizzaro Via Arimondi, 14 Palermo http://aicm.cjb.net [email protected] GARA DI MATEMATICA PER LA SCUOLA DELL O OBBLIGO DELLA REGIONE AUTONOMA SICILIA QUALIFICAZIONE SCUOLA MEDIA
Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011
Gara Matematica Dipartimento di Matematica Ulisse Dini Viale Morgagni 67/a - 50134 Firenze Soluzioni edizione 011 Esercizio 1. Determinare tutti gli interi positivi non nulli n che sono uguali alla somma
19 Rally Matematico Transalpino, prova 1
19 Rally Matematico Transalpino, prova 1 I problemi del RMT sono protetti da diritti di autore. Per un'utilizzazione in classe deve essere indicata la provenienza del problema inserendo la dicitura " ARMT".
Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Prima. Codici. Scuola:...
Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Prima Codici Scuola:..... Classe:.. Studente:. Spazio
Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel (cell.: )
Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 087 65843 (cell.: 340 47 47 952) e-mail:[email protected] Terza Edizione Giochi di Achille - Olimpiadi di Matematica
Logica figurale. 1 Quanti quadrati contengono la stella? A. 1 B. 2 C. 5 D. 6 E. 9. 2 Quanti triangoli sono rappresentati nella figura?
Logica figurale 1 Quanti quadrati contengono la stella? A. 1 B. 2 C. 5 D. 6 E. 9 2 Quanti triangoli sono rappresentati nella figura? A. 6 B. 8 C. 9 D. 10 E. 12 3 Quanti sono i quadrati presenti nella seguente
3 CAMPIONATO STUDENTESCO DI GIOCHI LOGICI. Anno scolastico Finale nazionale. Competizione individuale per le scuole superiori (triennio)
3 CAMPIONATO STUDENTESCO DI GIOCHI LOGICI Anno scolastico 2015-16 Finale nazionale Competizione individuale per le scuole superiori (triennio) SOLUZIONI N Gioco Punti 1 Ponti 5 2 Kakuro 12 3 Campo minato
Allenamenti di Matematica
rescia, 3-4 febbraio 2006 llenamenti di Matematica Geometria 1. Il trapezio rettangolo contiene una circonferenza di raggio 1 metro, tangente a tutti i suoi lati. Sapendo che il lato obliquo è lungo 7
Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA
T1 Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA Ministero dell Istruzione, dell Università e della Ricerca Scuola Normale Superiore I Giochi di Archimede - Gara Triennio 25 novembre 2015
Kangourou della Matematica 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado
Kangourou della Matematica 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado 1. Risposta D). Fra i fattori del prodotto vi è 0. 2. Risposta C). Si tratta di
Nome.. Cognome..classe data.. PROVA DI INGRESSO MATEMATICA
Nome. Cognome.classe data.. 1) Scomponi i seguenti numeri PROVA DI INGRESSO MATEMATICA 8 621 52 632 648 105 896 654 098 2) Inserisci i simboli < o > 548 584 24760 24706 1009 1090 21001 21010 675 757 3)
Andrea e Luca stanno guardando la loro costruzione. 1a) PROCESSO 8 - LIVELLO 5. 1)Quale bambino vede la costruzione in questo modo?
1) Andrea e Luca stanno guardando la loro costruzione Andrea Luca 1a) PROCESSO 8 - LIVELLO 5 1)Quale bambino vede la costruzione in questo modo? 1b) a) Nessuno dei due b) Andrea c) Luca d) Entrambi PROCESSO
THE SETTLERS OF CATAN
THE SETTLERS OF CATAN N.d.R.: Quelle che seguono sono le istruzioni in italiano del gioco base. Oltre alle istruzioni, nella scatola di I Coloni di Catan, si trova il "Manuale del perfetto colono", che
Kangourou Italia Gara del 17 marzo 2005 Categoria Junior Per studenti di seconda o terza superiore
junior_05_d.qxp 21/02/2005 16.13 Pagina 22 Kangourou Italia Gara del 17 marzo 2005 Categoria Per studenti di seconda o terza superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. A Kangourou
Quesiti. 1. La somma di quest anno La somma vale Quanti sono gli addendi?
Quesiti 1. La somma di quest anno La somma 1 3 + 5 7 + 9 vale 2013. Quanti sono gli addendi? 2. Il triangolo numerato Una tabella di numeri ha l aspetto di un triangolo: in figura ne vedete una parte.
Simulazione della Prova Nazionale. Matematica
VERSO LA PROVA nazionale scuola secondaria di primo grado Simulazione della Prova Nazionale Invalsi di Matematica 2 28 aprile 2011 Scuola..................................................................................................................................................
Kangourou della Matematica 2016 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio Quesiti
Kangourou della Matematica 2016 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio 2016 Quesiti 1. I biglietti di Giacomo Ci sono 200 biglietti numerati da 1 a 200. Giacomo vuole accoppiare
matematica classe quinta LE ISOMETRIE SCHEDA N Trasla la figura, disegnandola nella posizione indicata dal vettore.
SCHEDA N. 60 LE ISOMETRIE 1. Trasla la figura, disegnandola nella posizione indicata dal vettore. 2. Ribalta la parola PACE secondo gli assi di simmetria verticale e orizzontale rappresentati dalle linee
Tetrapyramis. organizza. Made in Japan. Gara di giochii logici a squadre per Istituti Scolastici
Tetrapyramis organizza Made in Japan Gara di giochii logici a squadre per Istituti Scolastici Autore: Data: Durata: Categoria: Sito web: ALBERTO FABRIS martedì 14 febbraio 2017, 14.30 16.00 (orario server
SIMULAZIONE TEST INVALSI
SIMULAZIONE TEST INVALSI AREE POLIGONI Disegna nel piano quadrettato un rettangolo che abbia la stessa area del rettangolo ABCD, ma perimetro maggiore. Osserva il rettangolo. Sul lato DC segna il punto
Appunti su numeri e operazioni
Scienze della Formazione Primaria Matera Fondamenti della Matematica Appunti su numeri e operazioni Prof.ssa Eleonora Faggiano Il concetto di numero Il numero può essere usato come: indicatore di quantità
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria Inferiore.
Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico
3 CAMPIONATO STUDENTESCO DI GIOCHI LOGICI. Anno scolastico Finale nazionale. Competizione a squadre per le scuole medie SOLUZIONI
CAMPIONATO STUDENTESCO DI GIOCHI LOGICI Anno scolastico 205-6 Finale nazionale Competizione a squadre per le scuole medie SOLUZIONI Nano Gioco Punti Brontolo Serpente 2 Repulsione Cucciolo Circuito chiuso
VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA. Scuola... Classe... Alunno...
VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA Scuola..........................................................................................................................................
Chi non risolve esercizi non impara la matematica.
. esercizi 85 Esercizio 50. Senza utilizzare la calcolatrice, calcola il prodotto 8. Soluzione. 8 = 0 )0 + ) = 0 = 900 = 896 Espressioni con i prodotti notevoli Esercizio 5. Calcola l espressione + ) +
Esercitazioni di. LOGICA e MATEMATICA. per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA
Esercitazioni di LOGICA e MATEMATICA per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA prof.ssa Lina Migliaccio 1 I test di Bertoldino 1. In una stalla ci sono 15 pecore. Scappano tutte tranne
Problemi di secondo grado con argomento vario
Problemi di secondo grado con argomento vario Impostare con una o due incognite Problemi Età. L età di Carlo è oggi il quadrato dell età di Massimo e fra quattro anni sarà il quadruplo. Quanti anni hanno
TETRAPYRAMIS. di Alberto Fabris. organizza il 3 CAMPIONATOO STUDENTESCO DI GIOCHII LOGICI. per l anno scolastico
TETRAPYRAMIS di Alberto Fabris organizza il 3 CAMPIONATOO STUDENTESCO DI GIOCHII LOGICI per l anno scolastico 2015-16 Regolamento delle gare a squadre Biancaneve e i sette nani Ad ogni squadra verrà consegnata
Tetrapyramis. organizza Halloween. Gara di giochii logici a squadre per Istituti scolastici
Tetrapyramis organizza Halloween Gara di giochii logici a squadre per Istituti scolastici Autore: Data: Durata: Categoria: Sito web: ALBERTO FABRIS giovedì 9 ottobre 05,.30 6.00 (orario server Italia)
14 RMT PROVA I gennaio-febbraio 2006 ARMT
14 RMT PROVA I gennaio-febbraio 2006 ARMT.2006 1 1. SUDOKU (Cat. 3) ARMT.2006-14 - I prova Dovete sistemare in ogni casella vuota di questa tabella una di queste quattro lettere: una A o una B o una C
Kangourou Italia Gara del 15 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado
Testi_07.qxp 6-04-2007 2:07 Pagina 28 Kangourou Italia Gara del 5 marzo 2007 Categoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono 3 punti ciascuno.
PROGETTO ESPE.RI.A. Quaderno delle discipline STOR A, GEOGRAF A, SC ENZE, MATEMAT CA
PROGETTO ESPE.RI.A 3 Quaderno delle discipline STOR A, GEOGRAF A, SC ENZE, MATEMAT CA PROGETTO ESPE.RI.A 3 Quaderno delle discipline MATEMAT CA, SC ENZE, STOR A, GEOGRAF A LE TABELLINE DEL 2 E DEL 3 Se
Kangourou Italia Gara del 15 marzo 2001 Categoria Ecolier Per studenti di quarta e quinta elementare
Kangourou Italia Gara del 15 marzo 2001 Categoria Ecolier Per studenti di quarta e quinta elementare Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta
