Regolazione delle Pompe Centrifughe. Dispense per il corso di Macchine e Sistemi Energetici Speciali



Documenti analoghi
Pompe di circolazione

Revision Date Description Paragraph TickRef New release All #8416

LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi.

MACCHINE IDRAULICHE Le macchine idrauliche si suddividono in. ELEMENTI DI IDRODINAMICA (3 a PARTE)

14.4 Pompe centrifughe

TESTO. Art. 2. Sono abrogati i decreti ministeriali 10 gennaio 1950 e 2 agosto ALLEGATO

Indice. 8 novembre La similitudine idraulica per le pompe 2. 2 Esercizi sulla similitudine idraulica 3

ESERCITAZIONE N. 1 (11 Ottobre 2007) Verifica di un impianto di pompaggio

Generalità sulle elettropompe

Regole della mano destra.

SISTEMA DI POMPAGGIO (introduzione)

Dario Savarino Cuneo 16 dicembre 2009 RISPARMIO ENERGETICO E TUTELA DELL AMBIENTE

Classificazione delle pompe. Pompe cinetiche centrifughe ed assiali. Pompe cinetiche. Generalità POMPE CINETICHE CLASSIFICAZIONE

LA CORRENTE ELETTRICA

Pompe di circolazione per gli impianti di riscaldamento

ANALISI E VALUTAZIONE DEL RISPARMIO ENERGETICO SULLE POMPE CENTRIFUGHE REGOLATE MEDIANTE INVERTER

LE VALVOLE TERMOSTATICHE

Università di Roma Tor Vergata

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

AMBIENTE E RISPARMIO ENERGETICO AMBIENTE E RISPARMIO ENERGETICO. Motori elettrici più efficienti: un opportunità di risparmio

Impianto di Sollevamento Acqua

Impianti per il trasferimento di energia

Fondamenti di macchine elettriche Corso SSIS 2006/07

Schema piezometrico di un generico impianto di sollevamento.

Associazione professionale svizzera delle pompe di calore APP

A. Maggiore Appunti dalle lezioni di Meccanica Tecnica

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S

MACCHINE Lezione 7 Impianti di pompaggio

BERICA IMPIANTI SPA- COGENERAZIONE

Lo scambiatore coassiale Questo è lo scambiatore coassiale che ho acquistato del costo di circa 100 euro + IVA:

Il concetto di valore medio in generale

EIETTORE A GETTO DI GAS PER VUOTO PER POMPE AD ANELLO LIQUIDO. Aspirazione e compressione di gas e vapore. Modello GES.

COMPONENTI TERMODINAMICI APERTI

ALLEGATO II. Calcolo della produzione da cogenerazione

DFP /112 ID POMPE A PALETTE A CILINDRATA FISSA SERIE 20 PRINCIPIO DI FUNZIONAMENTO CARATTERISTICHE TECNICHE SIMBOLO IDRAULICO.

Azionamenti a inverter nel settore HVAC

I collettori solari termici

E ASSISTENZA TECNICA ESEMPIO DI SECONDA PROVA

La caratteristica meccanica rappresenta l'andamento della coppia motrice C in

Equivalenza economica

Circuito di pilotaggio ON OFF con operazionale

CICLO FRIGORIFERO PER RAFFREDDAMENTO

Come valutare le caratteristiche aerobiche di ogni singolo atleta sul campo

LE FUNZIONI A DUE VARIABILI

Impianti di sollevamento

GUIDA AL CALCOLO DEI COSTI DELLE ATTIVITA DI RICERCA DOCUMENTALE

VALVOLE MONOTUBO E BITUBO TERMOSTATIZZABILI

PROBLEMA 1. Soluzione

Corso di Componenti e Impianti Termotecnici LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE

Analisi del trivai point

Caratterizzazione di un cogeneratore a combustione esterna: la macchina di Striling nel laboratorio mobile del progetto Sinergreen

GEOMETRIA DELLE MASSE

SISTEMI DI NUMERAZIONE E CODICI

Effetto reddito ed effetto sostituzione.

PUNTATE ALLE STELLE. INFORMAZIONI SU RUOTE COMPLETE E PNEUMATICI ORIGINALI BMW/MINI CON IL MARCHIO DELLA STELLA.

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Esercizi di Fisica Tecnica Termodinamica

( x) ( x) 0. Equazioni irrazionali

Miglioramenti Energetici Solare Termico. Aslam Magenta - Ing. Mauro Mazzucchelli Anno Scolastico

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Miscelatori e riduttori di pressione

Impianti di propulsione navale

Certificazione Energetica

CIRCUITI OLEODINAMICI ELEMENTARI

Caratteristiche tecniche. Per trasportare aria, gas e vapori poco aggressivi, generare vuoto e comprimere aria, senza contaminazione di olio.

Le pompe (Febbraio 2009)

Capitolo Terzo Valore attuale e costo opportunità del capitale

LA CORRENTE ELETTRICA Prof. Erasmo Modica

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x x2. 2, x3 +2x +3.

CAPITOLO 10 I SINDACATI

I VANTAGGI DELLA VARIAZIONE DI VELOCITA NEGLI IMPIANTI DI POMPAGGIO E VENTILAZIONE. Stefano PANI

ACCUMULATORI IDRAULICI

Eco 8, intelligente, semplice, utile. Software di calcolo del risparmio energetico con Altivar

Transitori del primo ordine

Sistemi di Protezione e Coordinamento. Impianti Elettrici in BT. Qualunque linea elettrica è caratterizzata da tre caratteristiche principali:

Hydrovar -Sensorless-Retrofit

Analisi e diagramma di Pareto

Impianti di propulsione navale

ENERGIA INTERNA ENERGIA INTERNA SPECIFICA. e = E/m = cv T ENTALPIA. H = E + pv ENTALPIA SPECIFICA. h = H/m = cp T h = e + pv = e + p/d L-1

Elettropompe Centrifughe Multistadio Verticali Serie SV2, 4, 8, 16 NUOVA TECNOLOGIA LASER

Pompa elettrica di alimentazione carburante

Classificazione delle pompe. Pompe rotative volumetriche POMPE ROTATIVE. POMPE VOLUMETRICHE si dividono in... VOLUMETRICHE

RIDURRE I COSTI ENERGETICI!

Politecnico di Bari I Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica ENERGIA EOLICA

Capitolo 26. Stabilizzare l economia: il ruolo della banca centrale. Principi di economia (seconda edizione) Robert H. Frank, Ben S.

CAPITOLO 5 IDRAULICA

Bonus casa: recupero edilizio e risparmio energetico potenziati al 50 e 65% fino al

a b c Figura 1 Generatori ideali di tensione

Domande a scelta multipla 1

Regtronic Centraline per energia solare termica

Giornata di studio su progetto e gestione delle stazioni di pompaggio. Pompe centrifughe. Alberto Bianchi. Brescia 22 novembre 2013

Impianti di propulsione navale

20.18-ITA Assemblaggio valvole AGS a triplo servizio

SOLUZIONE ESAME DI STATO TEMA NR.1 TECNICO DEI SISTEMI ENERGETICI ANNO 2015


L'automazione come fattore di risparmio energetico nel water treatment. Roma, 21 Marzo 2013 Marco Filippis

Scelta intertemporale: Consumo vs. risparmio

Impianto Pneumatico. Capitolo

1 Giochi a due, con informazione perfetta e somma zero

SOLO I CARRELLI TOYOTA CON SAS SANNO COME

Transcript:

Regolazione delle Pompe Centrifughe Dispense per il corso di Macchine e Sistemi Energetici Speciali Corso di Laurea in Scienze ed Ingegneria dei Materiali Aggiornamento al 19/09/2006 Ing Amoresano Amedeo

Regolazione Durante il funzionamento di una pompa centrifuga il punto di esercizio risulta dall'intersezione della curva caratteristica della pompa con la curva caratteristica dell'impianto Questo permette di determinare la portata Q e la prevalenza H. Una variazione del punto di funzionamento richiede la variazione della curva caratteristica dell'impianto o della curva della pompa. Se il liquido convogliato è acqua, la curva caratteristica dell'impianto può essere modificata solo: variando le resistenze al flusso (ad es. cambiando il grado di apertura di'un organo di strozzamento,mediante l'inserzione di un diaframma forato o di una tubazione di bypass, mediante modifica delle tubazioni o in seguito ad incrostazione delle stesse), oppure variando la prevalenza statica (ad es. con una differente altezza del livello dell'acqua o della pressione nel serbatoio). Fig.12 La curva caratteristica di una pompa può essere modificata : cambiando la velocità di rotazione Inserendo una pompa in parallelo o in serie nelle pompe con giranti radiali variandone il diametro esterno nelle pompe con giranti semi assiali (giranti elicoidali) mediante il collegamento o la pre - impostazione di raddrizzatori di flusso nelle pompe ad elica cambiando l'angolo di regolazione della pale dell'elica

Nota: Gli effetti che questi provvedimenti avranno sulla variazione delle curve caratteristiche si possono prevedere solo con un funzionamento esente da cavitazione Regolazione della portata mediante strozzamento La variazione della portata Q: mediante una valvola di strozzamento è il metodo più semplice sia per una singola regolazione che per una regolazione in continuo in quanto richiede un investimento minimo. Nello stesso tempo è la soluzione più favorevole dal punto di vista energetico perché trasforma l'energia del flusso in energia termica. La Fig. 12 indica questo procedimento: aumentando intenzionalmente la resistenza dell'impianto (ad es. strozzando una valvola sul lato premente della pompa), la curva dell'impianto H A1 diventa più ripida e si sposta in H A2. Se la velocità di rotazione Fig.13 della pompa è costante, il punto di funzionamento B 1 si sposta in B 2 sulla curva caratteristica della pompa verso una portata inferiore. A questo punto la pompa genera una prevalenza superiore a quella necessaria per l'impianto; questa eccedenza di prevalenza viene abbattuta nella valvola strozzata, nella quale l'energia idraulica viene trasformata irreversibilmente in energia termica ed asportata dal flusso. Questa perdita è accettabile se il campo di regolazione è piccolo oppure se la regolazione è sporadica. La potenza risparmiata è rappresentata nella parte inferiore e - rispetto alla grande eccedenza di prevalenza - è relativamente modesta. Lo stesso vale per l'inserimento nella tubazione premente di un diaframma forato a spigoli vivi, ancora accettabile con piccole potenze o brevi intervalli di Funzionamento di una pompa a velocità di rotazione funzionamento. Regolazione della portata mediante variazione della velocità di rotazione variabile con diverse curve caratteristiche dell'impianto HAi ed HA2. (Potenza risparmiata I-.Pi e I-.P2 a mezzo carico rispetto allo strozzamento) Una pompa centrifuga a diverse velocità di rotazione n ha diverse curve caratteristiche collegate l'una con l'altra secondo la legge delle similitudini precedentemente analizzata ricordiamo che le (*) valgono solo se il rendimento η non diminuisce con la velocità di rotazione in diminuzione. Variando la velocità di rotazione si sposta anche il punto di

funzionamento (vedi La Fig. 13 mostra le curve QH per diverse velocità di rotazione, ognuna delle quali ha un punto di intersezione con la curva caratteristica H A1 dell'impianto. Se la velocità di rotazione viene ridotta il punto di funzionamento B si sposta lungo questa curva caratteristica dell'impianto verso portate inferiori. Se la curva caratteristica dell'impianto è una parabola che parte dall'origine degli assi, come nell'esempio H A1, dimezzando la velocità di rotazione secondo l'equazione 2(*) la prevalenza H si riduce a un quarto, la potenza P di comando, secondo l'equazione 3(*),si riduce ad un ottavo del valore iniziale. La parte inferiore della figura 13 mostra la misura del risparmio M 1 rispetto allo strozzamento. Se invece la curva caratteristica dell'impianto (nell'esempio H A2 ) è un parabola con una grande prevalenza statica H A2,stat, è necessario assicurarsi che diminuendo la velocità di rotazione la curva non abbia più un punto di intersezione con la curva caratteristica della pompa, e quindi nemmeno un punto di funzionamento. Il campo inferiore di variazione della velocità di rotazione diventa inutile e si può evitare. In questo caso i possibili risparmi di potenza M 2 alla stessa portata sono inferiori a quelli della curva caratteristica H A1 dell'impianto, come mostra la parte inferiore del diagramma Il guadagno di potenza rispetto allo strozzamento è minore quanto maggiore è la prevalenza statica H A stat (quindi quanto minore la prevalenza dinamica H A, din ). Eventuali variazioni della velocità di rotazione comportano di solito variazioni della frequenza, di cui si deve tener conto durante la selezione del motore di comando. Il costo è basso, ma si può ammortizzare rapidamente se le Fig. 14 :Funzionamento in parallelo di due pompee centrifughe uguali con curva caratteristica stabile pompe funzionano frequentemente e con H A,stat, vengono règolate spesso a carico parzializzato Questo vale soprattutto per le pompe installate in impianti d riscaldamento. Funzionamento in parallelo pompe centrifughe

Se la portata Q necessaria per l'impianto nel punto di esercizio non si può ottenere con una sola pompa è possibile far partire 2 o più pompe in parallelo che, con le valvole di ritegno, convogliano nella tubazione premente Fig. (14). Il funzionamento in parallelo è piu semplice se le pompe hanno la stessa prevalenza H o a portata zero, un fatto certo se le pompe sono identiche. Se invece le prevalenze H o a portata zero non sono uguali fra di loro, la prevalenza minima a portata zero riportata sulla curva caratteristica Q/H comune indica la portata minima Q min al disotto della quale il funzionamento in parallelo non è ammesso perché in questo campo la valvola di Pompe in parallelo: Schema di impianto a); Punto di funzionamento di due pompe in parallelo diverse tra loro); Fig. 15 ritegno della pompa con la minore H o viene chiusa dalla prevalenza più alta delle altre pompe. Durante il funzionamento in parallelo si deve provvedere affinché, dopo l'arresto di una delle due pompe uguali (Fig. 14), la portata Q singola della pompa ancora in funzione non si riduca alla metà di Q parallelo, ma rimanga superiore alla metà. Questa pompa eventualmente si porta subito in sovraccarico nel punto di funzionamento B singola, un elemento di cui si deve tenere conto nel controllo di NPSH e della potenza del comando. Il motivo di questo comportamento è dovuto all'andamento parabolico della curva caratteristica H A dell'impianto. Per lo stesso motivo, se si inserisce una seconda pompa uguale la portata Q singola della pompa già in funzione non raddoppia, ma aumenta meno del doppio, ossia Q parallelo <2. Q singo!a All'arresto o all'inserimento dell'altra pompa questo effetto è più accentuato quanto più ripida è la curva dell'impianto o quanto più piatta la curva caratteristica della pompa. Finché entrambe le pompe I e II funzionano, la portata complessiva Q parallelo è sempre la somma di Q I e Q II (vedi Fig. 14 e 15), cioé Q parallelo = Q I + Q II

Fig 16 Funzionamento di due pompe in parallelo uguali con curva caratteristica instabile L'inserimento o l'arresto di singole pompe in parallelo permette un risparmio di energia, ma solo una regolazione graduale della portata. Per la regolazione continua una delle pompe deve prevedere una regolazione della velocità di rotazione; altrimenti la tubazione premente deve essere equipaggiata con una valvola di strozzamento [4]. Se le pompe centrifughe con velocità di rotazione fissa e curva caratteristica instabile devono funzionare in parallelo, l'inserimento di una pompa può essere problematico se la prevalenza H 1 della pompa in funzione è maggiore della prevalenza nel punto zero H 0 (questa è la prevalenza a Q = O) della pompa che deve partire in un secondo tempo; quest'ultima quindi non è in grado di superare la contropressione che grava sulla sua valvola di ritegno (Fig. 16, curva caratteristica dell'impianto H AI ). Le pompe con curva caratteristica instabile non sono adatte per un funzionamento a carico parzializzato. (Con una curva caratteristica dell'impianto H A2 più bassa la pompa potrebbe essere inserita senza difficoltà perché la prevalenza in esercizio H 2 della pompa in funzione è inferiore alla prevalenza nel punto zero H o della pompa che deve essere inserita). Pompe in serie e pompe multistadio Fig 17 Pompe in serie: Schema di impianto a); Punto di funzionamento di due pompe in serie diverse tra loro b); Punto di funzionamento di due pompe in serie uguali tra loro c); Qualora una singola pompa non sia in grado di fornire tutta la prevalenza necessaria ovvero, per esigenze di esercizio, si desideri poter frazionare in varia misura tale prevalenza, si può ricorrere all'installazione di più pompe in serie. Due o più pompe si dicono disposte in serie quando tutto il

liquido che passa attraverso una pompa passa anche attraverso tutte le altre (Figura 17a). Analogamente, gli stadi di una pompa multistadio possono essere equiparati a più pompe in serie, infatti la stessa portata passa in successione attraverso tutti gli stadi della pompa. La curva caratteristica di più pompe in serie o di una pompa multistadio, date le curve caratteristiche delle singole pompe o del singolo stadio, si costruisce perciò sommando per ogni valore della portata Q la prevalenza H di ciascuna pompa o di ciascuno stadio (Figura 17b). In particolare, se le pompe sono tutte dello stesso modello, ossia con la stessa curva caratteristica, per ogni valore di portata Q si moltiplica la prevalenza H per il numero delle pompe (Figura 17c); altrimenti, il che è lo stesso, mantenendo invariata la curva caratteristica della singola pompa, si moltiplicano per il numero delle pompe i valori di H sull'asse delle ordinate. Il punto di funzionamento, di coordinate Ho e Q 0, di due o più pompe in serie inserite in un impianto è individuato dall'intersezione della curva caratteristica di quest'ultimo con la curva caratteristica complessiva delle pompe in serie. In corrispondenza della portata Q 0 del punto di funzionamento si possono leggere le prevalenze H 1 e H 2 delle singole pompe e i rispettivi rendimenti η 1 ed η 2 Regolazione della portata mediante bypass Fig 18 La terza possibilità di regolazione, anche questa molto usata, prevede l'inserimento della pompa nel circuito secondo lo schema di fig. 18. La rappresentazione della regolazione per by-pass sul diagramma H Q risulta meno evidente delle altre ma comunque possibile. Si consideri (Fig. 19) il piano H Q con le curve caratteristiche, i della pompa ed e del circuito. La pompa funziona normalmente con una portata Q A e con una prevalenza utile H". Se si vuole ridurre la portata a Q 2 basta aprire la valvola V in modo da far rifluire parte del liquido di nuovo a monte della pompa, sino ad avere, nella tubazione di mandata, la portata desiderata Q 2' In queste condizioni però le perdite di carico del circuito esterno non sono più rappresentabili da:

H p,a = H A H u cioé quelle relative alla portata Q A, bensì, per la ridotta portata in tutto il circuito esterno (a monte ed a valle della pompa), da: H p,2 = H 2 - H u H i n=co Di conseguenza, non essendo variato il numero di giri della pompa, la portata da essa elaborata sarà Q h cioè quella relativa ad una prevalenza richiesta pari a: A H I = H 2 = H u + H p,2 H u e H p,2 2 1 H p,a e la portata da bypassare non corrisponde, come ad una prima analisi potrebbe apparire, a Q A - Q 2, ma ad un valore Q 3 più grande dato da: Q Q 3 = Q I - Q 2 2 Qa Q Q Fig 19 1 È evidente che anche questo metodo è di tipo dissipativo, elaborando la macchina una portata maggiore di quella inviata all'utilizzazione. In particolare, le perdite che si accompagnano a tale sistema di regolazione sono maggiori di quelle relative al sistema di strozzamento che pertanto risulta il più diffuso. La regolazione mediante by-pass trova applicazione essenzialmente nelle pompe caratterizzate da elevati valori di n, (200 ed oltre) per le quali la potenza assorbita diminuisce all'aumentare della portata elaborata. I tre sistemi di regolazione illustrati possono essere utilizzati anche per i compressori con l'avvertenza che, nel caso di by-pass, occorre refrigerare il gas a valle della valvola di laminazione, che altrimenti ritornerebbe caldo al compressore, con conseguenti inaccettabili aumenti nel lavoro di compressione e possibili surriscaldamenti della macchina.. La curva caratteristica dell'impianto può diventare più ripida mediante lo strozzamento di una valvola oppure più piatta aprendo un bypass nella tubazione premente (In questo caso il punto di funzionamento si sposta da B 1 verso B 2 dove la portata è maggiore; la portata regolabile del bypass può essere riportata nel serbatoio di aspirazione, quindi non viene utilizzata. Questo tipo di regolazione della portata è giustificata, da un punto di vista energetico, solo se la curva della potenza cade con l'aumentare della portata, ad esempio (P 1 > P 2 ) con elevati numeri di giri specifici (giranti elicoidali o a elica). In questo campo il raddrizzamento o la regolazione dell'inclinazione delle pale dell'elica rappresentano soluzioni ancora più economiche. Il costo per bypass e valvola di regolazione non è basso Questo

metodo è adatto anche per proteggere le pompe contro il funzionamento in campi parzializzati non ammissibili