Protezione delle Linee Elettriche AT e AAT



Documenti analoghi
CABINE ELETTRICHE DI TRASFORMAZIONE

Criteri di taratura delle protezione degli impianti di A2A Reti Elettriche - Ambito Milano

MAPPE DI KARNAUGH. Nei capitoli precedenti si è visto che è possibile associare un circuito elettronico o elettrico ad una funzione logica.

QUALITA DEL SERVIZIO DI TRASMISSIONE LIVELLI ATTESI DELLA QUALITÀ DELLA TENSIONE PER L ANNO 2011

Gestione dei segnali analogici nei sistemi di automazione industriale con PLC.

Sistemi Elettrici }BT }AT

GUIDA TECNICA. A.8 CORRENTI DI CORTO CIRCUITO E TEMPO DI ELIMINAZIONE DEI GUASTI NEGLI IMPIANTI DELLE RETI A TENSIONE UGUALE O SUPERIORE A 120 kv

Le Regole Tecniche per. e la nuova edizione della Guida CEI 82-25

Il neutro, un conduttore molto "attivo" (3)

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

Dispositivi di rete. Ripetitori. Hub

Sicurezza e rispetto della privacy, finalmente non in conflitto.

Architettura hardware

La manutenzione come elemento di garanzia della sicurezza di macchine e impianti

PREMESSA AUTOMAZIONE E FLESSIBILITA'

ALL. 6 SPECIFICA TECNICA RELATIVA AGLI IMPIANTI ELETTRICI DI ALIMENTAZIONE PER OSPITALITA DI ENTI ESTERNI

Università degli Studi di L Aquila. Facoltà di Ingegneria. Corso di Laurea in Ingegneria Elettronica Corso di Sistemi Informativi

GLI APPARATI PER L INTERCONNESSIONE DI RETI LOCALI 1. Il Repeater 2. L Hub 2. Il Bridge 4. Lo Switch 4. Router 6

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Relazione Tecnica Progetto dell Impianto Elettrico

Il Sistema di Distribuzione dell Energia Elettrica Roberto Faranda Dipartimento di Energia, Via La Masa, 34 (Bovisa)

- Limena (Padova) - &HQWUDOH$;,6 MANUALE PER L UTENTE. Centrale mod. AXIS 5. Omologazione IMQ - ALLARME 1 e 2 LIVELLO

ELETTRONICA. L amplificatore Operazionale

Protezione dai contatti indiretti

POLITECNICO DI TORINO

Integrazione degli impianti fotovoltaici nella rete elettrica

Informatica per la comunicazione" - lezione 7 -

SEMINARIO. Le nuove regole. Lavori su impianti elettrici: le novità introdotte dalla IV edizione della norma CEI Dr. Giuseppe Floriello

Zeno Martini (admin)

ALGEBRA DELLE PROPOSIZIONI

Sistemi di Protezione e Coordinamento. Impianti Elettrici in BT. Qualunque linea elettrica è caratterizzata da tre caratteristiche principali:

Esercizi su. Funzioni

LA SICUREZZA ELETTRICA NEL FERMODELLISMO (I Trasformatori)

Un metodo per il rilevamento degli errori: la tecnica del Bit di Parità

GUIDA ALL INSTALLAZIONE

I.P.S.I.A. Di BOCCHIGLIERO Sicurezza elettrica ---- Materia: Elettronica, Telecomunicazioni ed applicazioni. prof. Ing.

Novità introdotte dalle nuove Norme CEI 0-16 e CEI 0-21 al sistema di protezione di interfaccia per utenti attivi

Ventilazione del locale di carica carrelli elevatori

Stefano Bifaretti. Laurea Magistrale in Ingegneria Energetica

Manutenzione e manutenzione preventiva: un investimento fondamentale per abbattere i costi e migliorare l efficienza produttiva di macchine e impianti

SymCAD/C.A.T.S. modulo Canali Schema

Corso manutenzione cabine MT/BT. Capitolo 2 PROBLEMI IMPIANTISTICI DI CABINA. Gorizia, Giugno-Ottobre 2000

Registratori di Cassa

Come valutare le caratteristiche aerobiche di ogni singolo atleta sul campo

GUIDA AL PRONTUARIO MOBILE

Le direttive nuovo approccio applicabili alle macchine in riferimento alla direttiva 2006/42/CE

G S M C O M M A N D E R Duo S

Guida Compilazione Piani di Studio on-line

Appunti sulla Macchina di Turing. Macchina di Turing

Telecontrollo. Come poter controllare in remoto l efficienza del vostro impianto

(Uninterruptible Power Supply, UPS hanno bisogno di una continuità di alimentazione con un certo ritardo

CitySoftware PROTOCOLLO. Info-Mark srl

CONCENTRATORE UNIVERSALE DI PERIFERICHE GPRS-LAN CONVERSIONE IN PERIFERICHE RADIO BIDIREZIONALI

Collegamento a terra degli impianti elettrici

ARCHITETTURA DI RETE FOLEGNANI ANDREA

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

N. 2 / 14 MESSAGGIO MUNICIPALE CONCERNENTE UN CREDITO DI FR. 146'000. PER LE INFRASTRUTTURE DELL ILLUMINAZIONE PUBBLICA

Cantieri di cui al titolo IV del D. Lgs. n. 81/08 e s.m.i. Nota sull intervento delle aziende distributrici di pubblici servizi.

Revision Date Description Paragraph TickRef New release All #8416

Introduzione all analisi dei segnali digitali.

Si intende una parte conduttrice, che non fa parte dell'impianto. grado di introdurre nell'impianto un potenziale, generalmente quello di terra

Esame di INFORMATICA

Introduzione alle misure con moduli multifunzione (DAQ)

Laboratorio di reti Relazione N 5 Gruppo 9. Vettorato Mattia Mesin Alberto

Dispensa di Informatica I.1

PDF created with pdffactory trial version

Informatica per la comunicazione" - lezione 8 -

Correnti di corto circuito

La corrente elettrica

I libri di testo. Carlo Tarsitani

PIATTAFORMA DOCUMENTALE CRG

DIPLOMA A DISTANZA IN INGEGNERIA ELETTRICA

IMPIANTI DI TERRA Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A.

Sicurezza nei lavori in presenza di rischi elettrici

INDICE. Assessorato turismo, sport, commercio e trasporti Infrastrutture funiviarie

SISTEMA di GESTIONE QUALITÀ Non Conformità ed Efficacia delle Azioni Correttive Preventive

Interruttore automatico

PRINCIPI FONDAMENTALI...

PROTEZIONI GENERALE PROTEZIONE DI MASSIMA CORRENTE DI FASE

MANUALE D USO PER TRASFORMATORI DI TENSIONE PER MISURA IN MEDIA TENSIONE

LCMobile Restaurant. Guida su come usare il software per palmare LCMobile Restaurant.

ERMES Extended Remote Management for Electrical Substation

Soluzione dell esercizio del 2 Febbraio 2004

Prestazioni CPU Corso di Calcolatori Elettronici A 2007/2008 Sito Web: Prof. G. Quarella prof@quarella.

IL CODICE UNICO DI PROGETTO (CUP) FAQ PER L AREA RICERCA

5. TECNOLOGIE E MATERIALE ROTABILE

SENSORI E TRASDUTTORI

CASO D USO: MICRORACCOLTA. 21 aprile

39 Il linguaggio grafico a contatti

REGOLE PER L ESAME (agg.te settembre 2015)

PROCEDURA INVENTARIO DI MAGAZZINO di FINE ESERCIZIO (dalla versione 3.2.0)

L evoluzione del Sistema di Telecontrollo di Enel Distribuzione: una struttura chiave di supporto alle Smart Grids

CONDUTTORI, CAPACITA' E DIELETTRICI

Amplificatori Audio di Potenza

Diagnostica Impianti Fotovoltaici

TELEFLUX 2000 PLUS SISTEMA DI SUPERVISIONE CONTROLLO ED AQUISIZIONE DATI PER LA PUBBLICA ILLUMINAZIONE

SISTEMI DI PRELIEVO DELLA ENERGIA ELETTRICA DALLE RETI DI DISTRIBUZIONE

Gestione Turni. Introduzione

Interruttore automatico

Novità: Riscaldamento Standard RISCALDAMENTO / TUBAZIONI. Novità in SymCAD

Transcript:

Protezione delle Linee Elettriche AT e AAT Centro Nazionale di Controllo - Terna S.p.A Il contenuto di questo documento è frutto di un riassunto di alcuni capitoli del libro Pratesi, Le protezioni dei sistemi elettrici di potenza (Cei) integrati con dei seminari svolti dall'ing. Vellucci di Terna S.p.A. presso il dipartimento di Ingegneria Elettrica (ora DIAEE) dell'università La Sapienza di Roma, durante il corso di Sistemi Elettrici per l'energia tenuto dal Prof. Carlo Mazzetti di Pietralata. Tengo a precisare che quanto racchiuso nel pdf ha il solo scopo di supportare lo studio delle protezioni delle linee elettriche in alta ed altissima tensione e non pretende di approfondire nel dettaglio tale materia. Per qualunque imprecisione, errore nella dispensa, o altro vi invito a contattarmi via mail. Damiano Zito damianozito@gmail.com http://www.damianozito.org

Protezione delle Linee Elettriche AT e AAT Per trattare lo studio delle protezioni delle linee elettriche si considera come criterio di distinzione lo stato del neutro. In Italia le reti di AT e AAT sono esercite con il neutro direttamente a terra (collegando a terra il centro-stella di un certo numero di trasformatori). Sistema di Protezione delle linee di trasmissione Si definisce come un insieme costituito da riduttori, elementi di misura, interruttori, connessi tra loro al fine di consentire l eliminazione dei guasti dal sistema elettrico. Le linee di trasmissione AT e AAT con neutro francamente a terra vengono protette mediante le Protezioni Distanziometriche. La tecnologia di tali relè di protezione si distingue in: Elettromeccanica Elettronica (che col tempo ha subito un'evoluzione poiché in passato era di tipo analogico) La protezione ha due compiti: eliminare il guasto nel minimo tempo possibile ed isolare il solo componente affetto da guasto. Principio di Funzionamento delle Protezioni Distanziometriche Le protezioni distanziometriche intervengono per guasto in un determinato tratto di linea con tempi di funzionamento prefissati i quali sono anche i tempi di funzionamento minimi compatibili per garantire la selettività del sistema. t III gradino III gradino II gradino II gradino I gradino I gradino A B Caratteristica di una protezione distanziometrica Si noti che la caratteristica tempo-distanza della protezione distanziometrica consente tempi di intervento costanti per guasti in un determinato tratto. La selettività è quindi garantita dalla possibilità di regolare autonomamente la lunghezza dei gradini (regolazione in impedenza) e l'altezza degli stessi (regolazione in tempo). La distanza del corto circuito viene controllata mediante la misura dell'impedenza diretta Z d del tratto di linea compreso tra la protezione e la posizione del guasto. Per risalire al valore dell'impedenza vengono perciò effettuate le misure della tensione, corrente di fase (riportata in tensione) e della cosiddetta corrente residua (che circola nel neutro). Il metodo usato è quello dei componenti d

simmetrici e nella tabella che segue sono riportati i vari tipi di misura per ogni genere di guasto che si può verificare: Tipo di guasto Tensione di misura Corrente di misura a - 0 b 0 c 0 a b b c c a a b 0 b c 0 c a 0 E a E b E c V ab V bc V ac E a E b E c I b I c I b I b I c I c I b I c a b c E a dove K = (Z 0 Z d )/(3 Z d ) I r = 3 I 0 Costituzione delle Protezioni Distanziometriche Dalla tabella precedente si nota che con tre misure fase-terra e tre misure fase-fase è possibile assicurare la rilevazione di tutte le combinazioni di guasto possibili. Ciò vuol dire che una protezione distanziometrica a tre gradini dovrebbe aver bisogno di 18 elementi di misura: 3 gradini per 6 misure = 18 elementi di misura, cui devono essere associati altrettanti elementi direzionali. Una protezione così costituita, priva di commutazioni sui circuiti di alimentazione delle tensioni e correnti, è notevolmente affidabile e rapida. Protezioni Elettromeccaniche Per i relè di tipo elettromeccanico era praticamente impossibile realizzare una protezione di questo tipo. L'ingombro ed il costo raggiungevano livelli insostenibili e per risolvere il problema si è ricorso a soluzioni semplificate (protezioni commutate) con un numero limitato di elementi di misura (da uno fino a tre nelle distanziometriche con più alte prestazioni). Una protezione distanziometrica elettromeccanica è costituita da: n. 4 relè di avviamento: uno per ogni fase ed uno per il rilievo della corrente massima; n. 1 relè di misura il quale dà il consenso allo scatto in I, II, III gradino a seconda dell'impedenza misurata; n. 1 relè direzionale associato al relè di misura; n. 1 relè cronometrico il quale fornisce i tempi di scatto dei vari gradini; n. 4 relè di commutazione ausiliari muniti di diversi contatti di lavoro che, dipendentemente dal tipo di guasto, selezionano ed inseriscono sugli elementi di misura dell'impedenza e della direzione le tensioni e correnti necessarie per effettuare una misura corretta della impedenza alla sequenza diretta e della direzione del guasto.

I relè di avviamento hanno le seguenti funzioni: 1. avvertire il guasto ed indicarne il tipo: monofase, bifase, trifase, etc; 2. portare, mediante commutazione dei relè ausiliari, agli elementi di misura le tensioni e le correnti necessarie per l'individuazione della distanza e della direzione del guasto; 3. avviare il relè cronometrico per il conteggio dei tempi di commutazione della protezione da un gradino all'altro. Essi sono composti da tre relè per il controllo delle fasi e da un relè per rilevare i guasti interessanti la terra. Possono essere a minima impedenza o massima corrente: i primi sono più selettivi in quanto discriminano il tipo di guasto. Il relè di terra è un relè a massima corrente eccitato dalla corrente residua I r = 3 o. Come opera una distanziometrica in presenza di un guasto monofase a-0 sulla rete I relè di avviamento avvertono il guasto mediante l'eccitazione della fase a ed il relè di terra. A loro volta essi eccitano i relè ausiliari (in continua) i quali, tramite i loro contatti forniscono all'elemento di misura la tensione V a e la corrente in modo da eseguire la misura dell'impedenza diretta esistente tra il guasto ed il relè. Se l'impedenza misurata è inferiore all'impedenza di taratura del I gradino ed il guasto è visto in direzione avanti allora la protezione interviene, altrimenti, trascorso il tempo T 2 del II gradino, il cronometrico provvede ad estendere il campo di misura al valore di taratura dell'impedenza di II gradino. Se non avviene nel frattempo alcun intervento, la misura viene estesa al III gradino. Se la protezione non interviene neppure nella nuova zona di misura, trascorso il tempo T 4 di IV gradino, il consenso dell'elemento di misura di impedenza viene cortocircuitato e la protezione diviene una semplice direzionale: è sufficiente che sia ancora avviata e che il guasto sia in avanti per intervenire. Se il guasto è di spalle e la protezione è rimasta avviata, dopo il tempo T 5 di V gradino viene cortocircuitato anche il consenso della direzionale così che la protezione interviene con il solo consenso dell'avviamento. Protezioni Digitali I/O Sono costituite da scheda madre, ram, CPU la quale con un bus interno, normalmente sviluppato secondo tecnologia proprietaria, viene collegata ad un convertitore A/D che ha come ingresso le tensioni, le correnti di fase e la I r (nel neutro). Le schede di uscita sono gli scatti: Scatto fase 1, fase 2 e fase 3. Sono dei relè su scheda che vanno ad alimentare la bobina di sgancio dell'interruttore a sua volta alimentata a 110 Volt in continua. HMI È un'altra interfaccia importante: è quella uomo-macchina (schermo e un trackball con tastiera) detta HMI (Human Machine Interface), con bus proprietario, necessaria per l'inserimento dei dati. Ethernet È l'interfaccia di comunicazione e potrebbe essere uno standard commerciale IEEE o uno standard sviluppato ad-hoc per le utility che utilizzano sempre il protocollo http (almeno fino al routing). Poiché la trasmissione è solo quella di trasmissione/ricezione dati (e non di pagine html), il protocollo è stato

standardizzato (IEC 61850) e pubblicato nel 2004/2005. Le schede sulle protezioni fanno uso di questo protocollo, consentendo alla protezione di interfacciarsi con una LAN di stazione. Una stazione di interconnessione tra il livello 380 kv e 150 kv ha normalmente un numero di montanti tra i 30 e i 50 e almeno in ognuno di questi vi è una protezione digitale (esempio: 100 protezioni per 50 montanti). La LAN consente di acquisire tutti i dati provenienti dalle protezione e inviarli al sistema di supervisione che ha il compito di segnalare le anomalie di funzionamento elettrico. Il concetto è diverso dal sistema di protezione (anche se converge integrandoli). Avere in un unico punto la situazione del valore di frequenza e tensione della rete consente di individuare situazioni critiche nell'esercizio del sistema elettrico. I collegamenti sono effettuati in fibra ottica per evitare i problemi di inquinamento elettromagnetico. WAN A valle della LAN di stazione vi è un router che la collega ad una WAN nazionale che consente ad un operatore da remoto di configurare un montante a distanza. Differenze tra Protezioni Digitali ed Elettromeccaniche Come per i relè elettromeccanici la prima cosa che fa la distanziometrica digitale è discriminare la fase o le fasi affette da guasto (avviamento). L'applicativo della protezione sa qual è la fase e al limite la apre. Nel caso di elettromeccanici venivano rilevate le fasi e tramite dei contatti venivano inviate le tensioni e correnti agli equipaggi di misura. A differenza delle elettromeccaniche oggi le protezioni elettroniche sono dei veri e propri computer con CPU, Ram e interfacce. La protezione effettua una conversione della corrente di ingresso (analogica) in digitale e fornisce i dati alla CPU che li elabora con gli applicativi secondo le esigenze di protezione. La caratteristica dei relè elettromeccanici dipendeva dal tempo. Nei relè digitali la dipendenza dal tempo è funzione dell'applicativo, cioè è funzione della scelta e delle funzioni che si vogliono far svolgere all'applicazione. Rapporto di ricaduta: i relè elettromeccanici subivano delle isteresi, come ad esempio le molle. Se lo scatto avveniva su una certa soglia, la ricaduta del relè avveniva su una soglia diversa. Nei relè digitali la soglia è scritta in un dato di configurazione in ingresso alla protezione. Criteri di taratura dell'impedenza e del tempo dei gradini Normalmente il primo gradino della distanziometrica viene tarata per un valore tra 0 e l'80% della lunghezza (o meglio della reattanza) della linea ( X I =0,8 X AB ). Questo per ragioni di selettività (si adotta un margine di sicurezza del 20%) per tenere conto di errori di determinazioni della Z (compiuti dai relè, riduttori TA e TV, approssimazioni). Si osservi la figura che segue

C X D A B Se il primo gradino fosse tarato al 100% della lunghezza (si ricordi che però la taratura si esegue sulla reattanza) di linea, per effetto di errori, un guasto nel punto X potrebbe far intervenire, oltre al relè C, anche quello posto in A, mettendo fuori servizio l'intero tronco di linea AB. Il tempo di taratura del I gradino si assume uguale al tempo base della protezione, cioè il minimo possibile. Per coprire con certezza l'ultimo tratto di linea si utilizza il II gradino della distanziometrica il quale, con il I gradino, costituisce la protezione principale della linea. Poiché gli errori sono sempre valutati al 20% il II gradino si tara al 120% della lunghezza della linea. E F X A B C D Con riferimento alla figura sopra, il II gradino si potrebbe tarare anche secondo un criterio di selettività tenendo in considerazione la linea successiva più corta: 0,8( X AB +0,8 X CD ) dove CD = tratto linea successiva più corta. Il terzo gradino invece si tara al 120% del tratto di linea AB sommato col tratto di linea più lunga affacciata e collegata alla sbarra B: X III =1,20( X AB + X EF ) dove EF = tratto più lungo in partenza dalle sbarre dall'estremo opposto. Si può affermare che le protezioni distanziometriche su reti magliate sono particolarmente efficaci in primo e secondo gradino (cioè quando funzionano come protezioni principali) ma che le stesse non costituiscono una protezione di riserva selettiva sui gradini superiori.

Richiusura automatica delle linee Per le protezioni elettromeccaniche si parla di dispositivo di richiusura esterno. Nelle digitali è un applicativo installato all'interno della protezione. Esso non fa altro che considerare il tempo necessario per il ripristino dell'isolamento. A valle del guasto, per minimizzare l'impatto che esso provoca nella rete, le protezioni fanno anche da richiusura (o almeno la tentano) dopo che è trascorso un certo tempo. Questo perché di solito il guasto interessa l'aria che è un gas autoripristinante. A meno che il guasto non sia permanente. Richiusura Rapida La richiusura automatica rapida è funzione del tipo di guasto e il tempo di apertura, pari a 300 ms, indipendentemente dal livello di tensione. Nel caso di apertura unipolare, il guasto viene disalimentato dalla fase che si apre però continua ad essere alimentato dalle correnti capacitive alimentate dalle altre fasi ancora in tensione (quindi accoppiamento capacitivo tra le fasi in tensione e fase-terra). Per cui i tempi di attesi sono maggiori : 500 ms (per 132 150 kv) e 2 s per 380 kv. Richiusura Lenta In caso di fallimento della richiusura rapida, le protezioni sono provviste di una piccola automazione di richiusura lenta. Si attende un tempo più lungo per far estinguere l'arco e consentire all'isolante di ripristinarsi. Naturalmente si attende un tempo lungo per questioni meccaniche legate all'interruttore (tempo di neutralizzazione dell'interruttore che consente all'interruttore di rifare il ciclo di apertura/chiusura). Se il guasto è permanente si effettua l'apertura della linea e un'ispezione per capire cosa è successo. Si riassumono i tempi di attesa nella seguente tabella. kv Tempi di attesa Richiusura Rapida Unipolare Richiusura Rapida Tripolare Richiusura lenta 380 2 300 ms 60-180 s 220 1 300 ms 60-180 s 150 0,5 300 ms 60-180 s Un problema dovuto alla taratura del I gradino all'80%: tarare la protezione con intervento all'80% significa che i guasti dell'ultimo 20% non sono coperti da questa protezione. Il guasto verrebbe sicuramente rilevato dal I gradino della protezione in B e non della protezione A e quindi non si apre il rispettivo I gradino. Il guasto così continuerebbe ad essere alimentato e la richiusura sicuramente fallirebbe. Il problema viene risolto con le teleprotezioni. Le teleprotezioni consistono in un collegamento fisico tra le due protezioni alle estremità che effettuano uno scambio di informazioni. Molto diffusa è la tecnica (ne esistono diverse) di allungamento del I gradino di distanza. Per guasti prossimi ad una estremità, la protezione che vede un guasto in I gradino comanda l'apertura dell'interruttore ed invia un dato all'altra protezione remota col compito di variare temporaneamente la taratura del I gradino di quest'ultima dall'80% al 120%. Questo allargamento del campo di misura consente anche alla protezione remota di intervenire in tempo base; in questo modo i dispositivi di richiusura automatica iniziano il conteggio del tempo di attesa contemporaneamente o quasi. Questo sistema è usato prevalentemente sulle linee di trasmissione primaria a 380 kv.

Tempo di Eliminazione del Guasto Il tempo di eliminazione del guasto vale t e =t p +t i t e = tempo di eliminazione del guasto; t p = tempo di intervento della protezione; = tempo di apertura dell interruttore; t i dove: Gli ordini di grandezza sono i seguenti: t p t i : Protezioni ultrarapide anche fino a 25 ms : il minimo tecnico è di 35 45 ms da cui segue che t e : 60 70 ms Azioni preventive per la riduzione dei guasti Criteri di progettazione del sistema elettrico Razionale coordinamento degli isolamenti Razionale dimensionamento dei componenti per la tenuta alle sollecitazioni meccaniche/elettriche/termiche dovute ai guasti Razionale programmazione dello sviluppo della rete Uso dello stato dell arte tecnologico nei componenti AT: nei sistemi di protezione e di controllo (certe valutazioni su investimenti si fanno sulla base dei costi e quindi dell'impatto economico della soluzione tecnologicamente avanzata. Non è tuttavia scontato che si facciano investimenti al meglio della tecnologia disponibile) Evitare la concentrazione di produzione: I nodi con grossa concentrazione di produzione sono un problema perché un guasto nel nodo creerebbe problemi per l'esercizio della rete. Un altro problema rilevante è dovuto alla congestione delle linee. La problematica ambientale rende difficile e impossibile la costruzione di nuove linee. Quindi ci si ritrova con un sistema pensato per 20 anni fa con la richiesta di 20 anni fa e pertanto ci saranno dei punti della rete congestionati. Ottimizzare lo schema di rete (per esempio: isole a 132 kv)