Cogenerazione. Rino Romani. Corso preparazione EGE Roma gennaio

Documenti analoghi
CAPITOLO 2 CICLO BRAYTON TURBINE A GAS FLUIDO: MONOFASE

CICLI TERMODINAMICI 1

La Cogenerazione ad Alto Rendimento (CAR)

CAPITOLO 2 CICLO BRAYTON TURBINE A GAS

Piccoli sistemi cogenerativi ad alta efficienza. Porretta Terme 26 Settembre 2008 Ing. Riccardo Caliari

La cogenerazione Un opportunità per tutti

Dispensa del corso di SISTEMI ENERGETICI. Argomento: Sistemi Energetici (parte 3.1)

La cogenerazione: inquadramento e stato dell'arte

Cogenerazione oggi e domani. La cogenerazione: inquadramento e stato dell'arte

FIRE CERTIFICATI BIANCHI : RISULTATI E PROPOSTE DI MIGLIORAMENTO

Veronafiere 19 ottobre Gli atti dei convegni e più di contenuti su

INDICE. 1. Le attività del GSE. 2. La Cogenerazione ad Alto Rendimento. 3. Impianti di cogenerazione abbinati al teleriscaldamento

thermo frigo refrigeratori di liquidi ad assorbimento (libr) condensati ad acqua

LA COGENERAZIONE: UN OPPORTUNITA PER LA NUOVA INDUSTRIA ITALIANA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

ENERGIA DAL CALORE GENERAZIONE LOCALE DI ENERGIA CON LA TECNOLOGIA ORC

Termotecnica Pompe di Industriale. Gli atti dei convegni e più di contenuti su.

La cogenerazione in Italia. F. Sanson. Giornata di confronto sull applicazione della direttiva

La cogenerazione: introduzione e concetti di base

Lo sviluppo della generazione diffusa attraverso la cogenerazione e il recupero di calore

Cap. 1 Richiami di termodinamica. 1.1 Concetti base 1.2 Principio di conservazione dell energia. Cap. 2 Il bilancio exergetico

LA COGENERAZIONE: UN OPPORTUNITA PER LA NUOVA L INDUSTRIA ITALIANA

C CENTRO. energia nell industria ceramica. Ottimizzazione della gestione dell energia. Convegno ACIMAC - Il risparmio energetico in ceramica

La Cogenerazione ad Alto Rendimento (CAR)

Cogenerazione, microcogenerazione e il problema delle emissioni in atmosfera. Ing. Andrea De Pascale Università di Bologna - DIEM

I REQUISITI PER IL RICONOSCIMENTO DELLA CAR COGENERAZIONE AD ALTO RENDIMENTO

disciplina per il suo riconoscimento?

Gli atti dei convegni e più di contenuti su.

POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE INGEGNERIA GESTIONALE TEMA N. 2

9 GIORNATA SULL EFFICIENZA ENERGETICA NELLE INDUSTRIE

La micro-cogenerazione. cogenerazione: inquadramento, efficienza energetica e agevolazioni collegate.

L efficienza delle conversioni energetiche delle biomasse

L innovazione della produzione di energia: la trigenerazione

Sistemi di cogenerazione e indici caratteristici. La nuova norma 8887

Microcogenerazione con motore Stirling per utenze mono o bifamiliari

Termotecnica Pompe di Industriale. Gli atti dei convegni e più di contenuti su

Viale Col di Lana 12b Milano.

LEZIONE 7 REV2 DEL 17/01/2008. FONTI DI ENERGIA ED IMPIANTI: la cogenerazione. Mantova, 2007/12/14

Ottimizzazioni economiche frutto dell esperienza europea A winning combination: wood biomass and clean energy conference - Milano, 17/11/2010

Valorizzazione della biomassa legnosa a fini energetici in una piccola comunità montana: il caso della Valle di Soraggio

LA COGENERAZIONE SECONDO SAMSØ

Gestione dell Energia

Veronafiere 18 ottobre Gli atti dei convegni e più di contenuti su

XXI Giornata sull efficienza energetica nelle industrie

CICLI TERMODINAMICI. Introduzione 1

Termotecnica Pompe di Industriale. Gli atti dei convegni e più di contenuti su

Caso studio: L impianto di gassificazione di Malagrotta

MARCO GENTILINI IMPIANTI MECCANICI. Marco Gentilini IMPIANTI MECCANICI 1

Le prestazioni dei cicli combinati

COGENERAZIONE Efficientamento di un sistema industriale. Bologna, 02/10/2018

Impianti a turbogas. Scheda riassuntiva 8 capitolo 15. Il ciclo ideale di riferimento. Impianto a turbogas. Volume 2 (cap. 15) Impianti a turbogas

ISES ITALIA (sezione nazionale dell International Solar Energy Society) è un'associazione non profit, attiva dal 1978, con l obiettivo di promuovere l

CAPITOLO 4 CICLO FRIGORIFERO

gli impianti di cogenerazione e il Teleriscaldamento a Torino

Gli atti dei convegni e più di contenuti su

Ing. Riccardo Castorri

Cogenerazione ed efficienza energetica: panoramica e prospettive future

LA COGENERAZIONE CON TECNOLOGIA ORC AD ALTA TEMPERATURA

LA MICROCOGENERAZIONE: VANTAGGI ECONOMICI E AMBIENTALI PROF. GIANLUCA VALENTI, POLITECNICO DI MILANO

RECUPERATORE DI CALORE AD ALTISSIMA EFFICIENZA ENERGETICA

Key Energy 8 Novembre 2013, Rimini

I sistemi di cogenerazione e trigenerazione

PILLOLE DI EFFICIENZA ENERGETICA N.1 LA COGENERAZIONE AD ALTO RENDIMENTO

Centrale di Moncalieri 2 G T

Microcogenerazione. La sostenibilità economica dell efficienza energetica

Cicli H2 O2 per la produzione di energia elettrica Modifica dell impianto Icaro per funzionamento con idrogeno

Milano, 27 giugno 2013!

LA COGENERAZIONE: UN OPPORTUNITA PER LA NUOVA INDUSTRIA ITALIANA

Il riconoscimento della CAR (cogenerazione ad alto rendimento) Prof. Pier Ruggero Spina Dipartimento di Ingegneria - Università di Ferrara

Usi termici delle fonti rinnovabili. Alessandro Brusa Consiglio Direttivo APER

teleriscaldamento cogenerazione ed EELL

Ministero dello Sviluppo Economico

La sostenibilità energetica nel processo di produzione del Pellet

CORSO DI TERMODINAMICA E MACCHINE

SISTEMI DI COGENERAZIONE

SISTEMI ENERGETICI COGENERATIVI. Aspetti economici. Prof. Pier Ruggero Spina Dipartimento di Ingegneria - Università di Ferrara

Veronafiere 27 ottobre 2015

Impianti SDH in Italia: 4 casi studio

Laurea in Ingegneria Elettrica, A.A. 2008/2009 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Impianto antincendio*.

Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Ugello di De Laval*.

La cogenerazione come fattore competitivo nelle politiche energetiche di un importante Gruppo dell industria tessile. Il caso Olimpias Benetton

Energia da biomasse legnose: tecnologie per la generazione distribuita sul territorio

Cogenerazione Alto Rendimento DM 5 settembre 2011

Città e Comunità Sostenibili. Le emissioni di CO 2 e le misure di mitigazione

Dispensa del corso di SISTEMI ENERGETICI. Argomento: Sistemi Energetici (parte 1)

Procedura per la verifica del rispetto dei limiti di rendimento degli impianti alimentati a biomasse e bioliquidi

Impianti Combinati per la Produzione di Energia Termica ed Elettrica Finanziati e Realizzati presso UniSA

Termotecnica Pompe di Industriale. Milano, 27 giugno 2013!

BARRIERE ALLA MICROCOGENERAZIONE. Giuseppe Tomassetti

Cogenerazione di piccola potenza da biomassa

Generazione distribuita microcogenerazione climatizzazione smart grid

Quale mercato per la cogenerazione? Cogenerazione ad alto rendimento: La situazione in Italia, evoluzione e sviluppi futuri

INGEGNERIA. La Cogenerazione aiuta l ambiente e riduce i costi dell energia.

Esercitazione 2 Ciclo a vapore a recupero

Cogenerazione da biomassa legnosa

CAPITOLO 6 CENTRALI FRIGORIFERE

RAPPORTO STATISTICO SULLA COGENERAZIONE. Periodo di osservazione GSE S.p.a. Direzione Efficienza e Energia Termica Unità Cogenerazione

Dispensa del corso di SISTEMI ENERGETICI. Argomento: Sistemi Energetici (parte 3.3) Prof. Pier Ruggero Spina Dipartimento di Ingegneria

Caldo e freddo quando servono + risparmio emissioni tutto l anno

Transcript:

Cogenerazione Rino Romani rino.romani@isnova.net Corso preparazione EGE Roma 07-11 gennaio 2019 1

La cogenerazione (fonte ARERA) Corso preparazione EGE Roma 07-11 gennaio 2019 2

La cogenerazione (fonte ARERA) Corso preparazione EGE Roma 07-11 gennaio 2019 3

La cogenerazione (fonte ARERA) Corso preparazione EGE Roma 07-11 gennaio 2019 4

La cogenerazione (fonte MiSE) L'energia elettrica prodotta dalle unità di cogenerazione oggetto dello studio è stata classificata in: energia elettrica Lorda": totale energia elettrica prodotta dalle unità di cogenerazione; energia elettrica "Alto rendimento": energia elettrica che rispetta i criteri dell'allegato II della Direttiva 2012/27/UE; energia elettrica "Basso rendimento": energia elettrica pari alla differenza tra l energia elettrica Lorda" e l energia elettrica "Alto rendimento" (energia elettrica prodotta da unità che non rispettano l Allegato II). Figura 16 - Energia elettrica a Basso rendimento e Alto rendimento. Figura 17 - Energia elettrica a Basso rendimento e ad Alto rendimento. Corso preparazione EGE Roma 07-11 gennaio 2019 5

La cogenerazione (fonte MiSE) La Figura 1 illustra il contributo di ciascuna delle tecnologie di cogenerazione impiegate nella produzione combinata di energia elettrica ed energia termica, in termini di numero di unità, capacità totale e media di generazione elettrica Dati sulla produzione nazionale da cogenerazione anno 2016 Corso preparazione EGE Roma 07-11 gennaio 2019 6

La cogenerazione (fonte MiSE) La Figura illustra il contributo di ciascuna delle tecnologie di cogenerazione impiegate nella produzione combinata di energia elettrica ed energia termica, in termini produzione totale di energia elettrica lorda e di calore utile, rapporto medio tra l energia elettrica lorda e l energia termica. Corso preparazione EGE Roma 07-11 gennaio 2019 7

La cogenerazione (fonte MiSE) Le prestazioni rilevate per le turbine a gas a ciclo combinato evidenziano un rapporto energia elettrica/calore elevato, confermando la pratica diffusa da parte degli operatori di installare tale tecnologia presso utenze caratterizzate da una ridotta richiesta termica rispetto al fabbisogno elettrico oppure, nel caso in cui l obiettivo principale sia la produzione elettrica per l esportazione verso la rete, con possibilità di ottimizzare l efficienza sfruttando utenze termiche localizzate presso l area predisposta per la produzione di energia elettrica. Ciò si traduce in un rendimento termico inferiore a quello conseguito dalle altre tecnologie e inferiore, di due punti percentuali rispetto al 2015; i rendimenti termici conseguiti da tutte le altre tecnologie evidenziano l utilizzo di queste ultime principalmente al servizio di utenze con elevata richiesta termica rispetto ai fabbisogni elettrici. La Figura illustra le prestazioni energetiche di ciascuna delle tecnologie di cogenerazione, in particolare evidenziando i rendimenti medi elettrici, termici e di primo principio (ηi principio) medi registrati per la produzione 2016. Corso preparazione EGE Roma 07-11 gennaio 2019 8

La cogenerazione (fonte MiSE) Corso preparazione EGE Roma 07-11 gennaio 2019 9

La cogenerazione (fonte MiSE) Corso preparazione EGE Roma 07-11 gennaio 2019 10

La cogenerazione (fonte MiSE) Corso preparazione EGE Roma 07-11 gennaio 2019 11

La cogenerazione (fonte MiSE) Corso preparazione EGE Roma 07-11 gennaio 2019 12

La cogenerazione Per cogenerazione si intende produrre contemporaneamente energia elettrica e calore. Il ricorso alla cogenerazione produce a volte ritorni economici rilevanti per l utenza finale, ma spesso ciò non avviene. La cogenerazione sottende un impianto complesso e la convenienza economica è fortemente dipendente dal profilo energetico dell utenza finale. In fase di proposta della cogenerazione assume rilievo prima il profilo energetico dell utenza, dopo la scelta della tecnologia e infine il dimensionamento dell impianto Corso preparazione EGE Roma 07-11 gennaio 2019 13

La cogenerazione La produzione combinata di energia elettrica e calore trova applicazione sia in ambito industriale, sia in ambito civile In ambito industriale il calore viene utilizzato nella forma di vapore o di altri fluidi termovettori (acqua calda, olio diatermico, ) o nella forma di aria calda. In ambito civile per riscaldamento urbano tramite reti di teleriscaldamento nonchè per il raffreddamento tramite sistemi ad assorbimento Corso preparazione EGE Roma 07-11 gennaio 2019 14

La cogenerazione Le utenze privilegiate per la cogenerazione sono quelle caratterizzate da una domanda nel tempo piuttosto costante di energia termica ed elettrica: Industrie alimentari, cartiere, chimiche, petrolchimiche,.. In ambito civile/terziario: ospedali e case di cura, piscine e centri sportivi, centri commerciali, Corso preparazione EGE Roma 07-11 gennaio 2019 15

La cogenerazione. Quadro Normativo Direttiva 2004/8/CE (abrogata dalla direttiva 2012/27/UE). Introduce: a) la definizione di energia elettrica qualificabile come cogenerazione, a partire dalla domanda di calore utile; b) la definizione di cogenerazione ad alto rendimento. DLgs. 8 febbraio 2007, n.20. Per definire la CAR utilizza il criterio basato sull indice PES (Primary Energy Saving) che rappresenta il risparmio di energia primaria che la cogenerazione permette di ottenere rispetto alla produzione separata. Corso preparazione EGE Roma 07-11 gennaio 2019 16

La cogenerazione. Quadro Normativo DLgs. 3 marzo 2011, n 28 Il comma 4 dell art. 29 «Certificati Bianchi» prevede un regime di sostegno per gli impianti cogenerativi entrati in esercizio dopo il 1 aprile 1999 e prima dell entrata in vigore del DLgs. 8 febbraio 2007, n.20 Decreto MiSE del 4 agosto 2011. Esplicita le metodologie e i criteri da utilizzare per la valutazione del funzionamento di una unità come CAR Corso preparazione EGE Roma 07-11 gennaio 2019 17

La cogenerazione. Quadro Normativo Decreto MiSE 5 settembre 2011 Stabilisce le condizioni e le procedure per l accesso della cogenerazione al regime di sostegno legato al meccanismo dei Certificati Bianchi. Linee guida per l applicazione del decreto 5 sett. 2011. Sono redatte dal MiSE e hanno lo scopo di esemplificare i metodi di calcolo delle grandezze rilevanti ai fini del riconoscimento CAR e l accesso al meccanismo dei Certificati Bianchi Corso preparazione EGE Roma 07-11 gennaio 2019 18

La cogenerazione. Quadro Normativo DLgs 4 luglio 2014, n. 102 Attua la direttiva 2012/27/UE e non apporta modifiche rispetto alla normativa in vigore. Regolamante delegato UE 2015/2402 del 12 ottobre 2015. ha rivisto i valori di rendimento di riferimento armonizzati per la produzione separata di energia elettrica e di calore ai fini del calcolo e della verifica dell indice PES. I nuovi rendimenti, differenziati in funzione della tipologia di combustibile in ingresso all unità e della data di entrata in esercizio della stessa, sono da applicare a partire dalla produzione dell anno 2016. Corso preparazione EGE Roma 07-11 gennaio 2019 19

La cogenerazione. Quadro Normativo Decreto MiSE del 4 agosto del 2016 definisce condizioni e modalità per il riconoscimento di una maggiore valorizzazione dell energia da CAR, ottenuta a seguito della riconversione di esistenti impianti a bioliquidi sostenibili che alimentano siti industriali o artigianali. Decreto MiSE 16 marzo 2017. si applica agli impianti di microcogenerazione ad alto rendimento, così come definiti dal Decreto Legislativo n. 20 del 2007, e agli impianti di microcogenerazione alimentati da fonti rinnovabili. Lo scopo del decreto è di minimizzare l onere a carico dei produttori e razionalizzare lo scambio di informazioni tra Comuni, gestori di rete e GSE nell ambito delle attività che comprendono la realizzazione, la connessione e l esercizio di questa particolare tipologia di impianto Corso preparazione EGE Roma 07-11 gennaio 2019 20

La cogenerazione Produrre simultaneamente energia elettrica e calore comporta che nel caso di inferiori richieste di uno dei due vettori si ha un eccesso di disponibilità dell altro. 1. Eccesso di disponibilità di energia elettrica: a) vendita alla rete ad un prezzo del kwh inferiore al costo di produzione; b) accumulo in rete da recuperare al momento opportuno, in sede di conguaglio si dovrà riconoscere un onere per il servizio goduto. 2. Eccesso di disponibilità di energia termica: a) riversata in ambiente. Nel caso questa modalità si prolunghi per periodi significativi confermerebbe il sovradimensionamento della sezione termica del cogeneratore (maggiore investimento con diretta influenza sul bilancio economico) ; b accumulo termico. Aumenta la flessibilità dell impianto ma comporta un aggravio economico. La maggior parte degli impianti di cogenerazione non prevedono l accumulo termico. Corso preparazione EGE Roma 07-11 gennaio 2019 21

La cogenerazione e la produzione separata Sistema di cogenerazione Utenza Sistema tradizionale riferimento Ee = 40 Energia elettrica Ee = 40 Centrale Ec,e = 100 Ec = 100 Motore primo Et = 50 Energia termica Et = 50 Gen. calore Ec,t= 55 Corso preparazione EGE Roma 07-11 gennaio 2019 22

Il principio fisico In un ciclo di potenza c è sempre una quantità di calore di «scarto» (Q 2 ) che viene restituita all ambiente a bassa temperatura (T 2 ). Indicando con (L) il lavoro meccanico prodotto si ha: ηη= QQ 11 QQ 22 QQ 11 = LL QQ 11 Se si recupera il calore di «scarto» per soddisfare un utenza, si ha: ηη cccccc = LL+QQ 22 QQ 11 > LL QQ 11 Corso preparazione EGE Roma 07-11 gennaio 2019 23

L Indice elettrico E un indice molto usato che evidenzia la produzione di energia elettrica di un impianto di cogenerazione I el = EE ee EE tt +EEEE = ηη ee ηη tt +ηη ee varia tra 0 (per sistemi che generano solo calore) e 1 (per sistemi che generano solo energia elettrica) rappresenta, solo e soltanto, una caratteristica del «motore primo cogenerativo» è il riferimento a cui si ricorre all atto della scelta e del dimensionamento del cogeneratore Corso preparazione EGE Roma 07-11 gennaio 2019 24

Risparmio di Energia Primaria Sistema di cogenerazione Utenza Sistema tradizionale riferimento Ee = 40 Energia elettrica Ee = 40 Centrale Ec,e = 100 Ec = 100 Motore primo Et = 50 Energia termica Et = 50 Gen. calore Ec,t= 55 Corso preparazione EGE Roma 07-11 gennaio 2019 25

Risparmio di Energia Primaria ηref elettrico ηref termico 0,4 0,9 Corso preparazione EGE Roma 07-11 gennaio 2019 26

Risparmio di Energia Primaria (PES) Il PES (Primary Energy Saving) è un indice introdotto dalla Direttiva 2004/8/EC (recepita dal MiSE con decreto del 5 settembre 2011) sulla base del quale sono calcolati gli incentivi per gli impianti di cogenerazione CHP Hηη: rendimento termico del cogeneratore, rapporto tra calore utile diviso il combustibile usato per produre il calore utile e l elettricità da cogenerazione CHP Eηη: rendimento elettrico del cogeneratore, rapporto tra energia elettrica cogenerata diviso il combustibile usato per produre il calore utile e l elettricità da cogenerazione Ref Hηη: rendimento termico di riferimento per la produzione separata di elettricà e calore Ref Eηη:rendimento elettrico di riferimento per la produzione separata di elettricità e calore Ref Hηη e Ref Eηη sono valori determinati secondo i parametri indicati nell allegato V(es. gas naturale 90%) e IV (es. gas naturale 52,5%) del D.M. 5 settembre 2011. Corso preparazione EGE Roma 07-11 gennaio 2019 27

Risparmio di Energia Primaria (PES) Più alto il PES più conveniente è la cogenerazione dal punto di vista delle sfruttamento dell energia primaria Le unità di cogenerazione per ottenere la qualifica CAR (Cogenerazione ad Alto Rendimento) devono soddisfare le seguenti condizioni Corso preparazione EGE Roma 07-11 gennaio 2019 28

Calcolo dell incentivo per gli impianti riconosciti CAR L incentivo è parametrato sulla base dei risparmi di energia tra un unità di cogenerazione ad alto rendimento (CAR) e un unità tradizionale con produzione separata di energia elettrica e calore RRRRRRRR = EE ee ccccc, + EE tt ccccc, -EEEE ηη ee, ηη rrrrrr tt, rrrrrr RRRRRRRR è il risparmio di energia primaria, espresso in MWh, realizzato dall unità di cogenerazione. EE ee, cccccc è l energia elettrica, espressa in MWh, prodotta dall unità di cogenerazione. EE tt, cccccc è l energia termica utile, espressa in MWh, prodotta dall unità di cogenerazione. ηη ee, rrrrrr è il rendimento medio convenzionale del parco di produzione elettrica italiano, assunto pari a 0,46: Tale valore deve essere corretto per le perdite di rete evitate con gli stessi coefficienti e la medesima procedura adottata per il calcolo del PES. La percentuale di energia elettrica autoconsumata da tenere in conto è quella riferita alla produzione totale in regime CAR. ηη tt, rrrrrr è il rendimento medio convenzionale del parco di produzione termico italiano, assunto pari a 0,82 nel caso di utilizzo diretto dei gas di scarico; 0,90 nel caso di produzione di vapore / acqua calda; EEEE è l energia, espressa in MWh, del combustibile utilizzato dall unità di cogenerazione. Corso preparazione EGE Roma 07-11 gennaio 2019 29

Turbina a vapore Ciclo Rankine La produzione di potenza elettrica con turbine a vapore utilizza impianti basati sul ciclo Rankine che sfrutta il cambiamento di fase dell acqua o di altri fluidi Il ciclo comprende 5 trasformazioni: una compressione in fase liquida (1-2), un riscaldamento a pressione costante (2-3), un passaggio di stato o evaporazione(3-4), un espansione in zona bifase (4-5) e un nuovo passaggio di stato o condensazione per riportare il fluido alle condizioni iniziali GV generatore di vapore T turbina C condensatore T 2 4 T 3 P T GV Q 1 5 2 1 3 4 1 5 Turbina a vapore P p Q C 2 S Corso preparazione EGE Roma 07-11 gennaio 2019 30

Turbina a vapore Gli impianti a vapore hanno un rendimento elettrico in assetto cogenerativo compreso tra il 15% e il 30% e un rendimento termico che può arrivare fino al 60% L energia termica è messa a disposizione sotto forma di vapore a pressioni anche dell ordine di decine di bar Negli impianti a vapore è possibile impiegare qualsiasi combustibile Sono impianti adatti ad applicazioni in ciclo combinato e nel settore industriale nelle lavorazioni che richiedono grosse quantità di vapore (es. produzione della carta,.) Corso preparazione EGE Roma 07-11 gennaio 2019 31

Turbina a vapore Turbina a vapore a spillamento Aria GV T G Combustibile Sc Utenza GV generatore di vapore T turbina G generatore Sc scambiatore Corso preparazione EGE Roma 07-11 gennaio 2019 32

Ciclo Rankyne a fluido Organico (ORC) Sono basati sul ciclo a vapore (ciclo Rankyne) Tecnologia consolidata Il calore viene introdotto per combustione esterna in una caldaia e trasferito al fluido di lavoro tramite uno scambiatore Possibilità di utilizzare calore scaricato da TG e MCI I cicli ORC consentono di superare alcuni limiti imposti dall utilizzo del vapore d acqua Corso preparazione EGE Roma 07-11 gennaio 2019 33

Turbina a gas Ciclo Brayton Il ciclo termodinamico Brayton è composto da quattro trasformazioni principali: compressione, riscaldamento, espansione e raffreddamento I COMPONENTI PRINCIPALI DELL IMPIANTO SONO: COMPRESSORE COMBUSTORE TURBINA 1-2 COMPRESSIONE ADIABATICA (ISOENTROPICA NEL CICLO IDEALE) 2-3 COMBUSTIONE ISOBARA 3-4 ESPANSIONE ADIABATICA (ISOENTROPICA NEL CICLO IDEALE) 4-1 SCARICO IN ATMOSFERA (= RAFFREDDAMENTO) Il fluido di lavoro è l aria che compie le prime tre trasformazioni e poi viene scaricata all estero (dal punto di vista termodinamico lo scarico all esterno equivale al raffreddamento della trasformazone 4-1 del ciclo chiuso Corso preparazione EGE Roma 07-11 gennaio 2019 34

Turbina a gas Ciclo Brayton Corso preparazione EGE Roma 07-11 gennaio 2019 35

Turbina a gas a recupero Tecnologia consolidata Bassi pesi e ingombri Tempi di avviamento fermata rapidi Utilizzo di combustibili puliti Alti rendimenti per taglie elevate Disponibilità di taglie da 30 kw a 250 MW Corso preparazione EGE Roma 07-11 gennaio 2019 36

Turbina a gas a recupero Il calore da recuperare è concentrato nei fumi e può essere a alta temperatura (450 C) Prestazioni della turbina non influenzate dal recupero termico Flessibilità di funzionamento Interessante per applicazioni industriali (vapore alta temperatura, gas caldi) Corso preparazione EGE Roma 07-11 gennaio 2019 37

Turbina a gas a recupero Corso preparazione EGE Roma 07-11 gennaio 2019 38

Turbina a gas Corso preparazione EGE Roma 07-11 gennaio 2019 39

Motori alternativi a combustione interna Vantaggi Taglie da pochi kw a circa 5MW Tecnologia matura e ampiamente diffusa Elevata affidabilità Costi d investimento contenuti Elevata flessibilità di esercizio Svantaggi Elevati costi di manutenzione (8-25 /MWh) Elevati valori di emissioni (Nox e CO) Rumorosità Corso preparazione EGE Roma 07-11 gennaio 2019 40

Motori alternativi a combustione interna Corso preparazione EGE Roma 07-11 gennaio 2019 41

Motori alternativi a combustione interna Caso Esempio Corso preparazione EGE Roma 07-11 gennaio 2019 42

Cicli combinati I cicli combinati nascono dall idea di recuperare il calore contenuto nei fumi scaricati dalle turbine a gas per convertirlo, attraverso un opportuno ciclo termodinamico, in ulteriore potenza elettrica. Il ciclo combinato accoppia una turbina a gas ad un ciclo a vapore d acqua: il calore entrante in quest ultimo si ottiene dal recupero termico effettuato sui gas combusti scaricati dalla turbina a gas. Corso preparazione EGE Roma 07-11 gennaio 2019 43

Cicli combinati Nei cicli combinati esiste la possibilità di effettuare una postcombustione dei gas di scarico del turbogas. Ciò avviene con l utilizzo di bruciatori posti a monte della sezione di scambio termico della caldaia ed è possibile grazie all elevato contenuto di ossigeno presente nei gas di scarico. La combustione nelle turbine a gas avviene infatti con elevati eccessi di aria per cui nei fumi di scarico il contenuto di ossigeno è compreso tra il 12% e il 16% Corso preparazione EGE Roma 07-11 gennaio 2019 44

Cogenerazione: rendimenti Corso preparazione EGE Roma 07-11 gennaio 2019 45

Cogenerazione: dati caratteristici Corso preparazione EGE Roma 07-11 gennaio 2019 46

Cogenerazione: dati caratteristici Corso preparazione EGE Roma 07-11 gennaio 2019 47

Cogenerazione: Utenza L utenza deve presentare una contemporanea domanda di elettricità e calore per un certo numero di ore anno Al di sotto di 3500-4000 ore anno il ritorno economico non è scontato Se l energia termica è utilizzata solo per il riscaldamento degli ambienti la domanda è limitata al solo periodo invernale Nel caso della climatizzazione degli ambienti il numero di ore di funzionamento può essere ampliato avvalendosi di impianti di assorbimento per la produzione di energia frigorifera Corso preparazione EGE Roma 07-11 gennaio 2019 48

Cogenerazione: Curve di carico giornaliere Corso preparazione EGE Roma 07-11 gennaio 2019 49

Cogenerazione: Curve di carico Corso preparazione EGE Roma 07-11 gennaio 2019 50

Cogenerazione: Curva di carico elettrica Corso preparazione EGE Roma 07-11 gennaio 2019 51

Cogenerazione: Curve di carico Corso preparazione EGE Roma 07-11 gennaio 2019 52

Cogenerazione: Valutazioni ECOMAX 8 consumo 223,1 Sm 3 /h Potenza elettrica 851 kw Potenza termica rec. Acqua 347 kw Potenza termica rec. Vapore 441 kw contemporaneità 11 h dalle 06,00 - alle 16,00 giorni settimana 6 n settimane anno 47 n ore annuali di funzinamento 3102 h energia elettrica prodotta 2.639.802 kwh(anno Consumo di gas evitato 254.808 Sm 3 /anno Consumo annuale di gas cog. 691.990 Sm 3 /anno Maggior consumo gas 437.183 Sm 3 /anno costo metano 0,3 Sm 3 maggiore spesa per gas cog 131.155 /anno maggiore spesa per manuten. 21.118 /anno costo energia elettrica minore spesa per elettricità 0,16 /kwh 422.368 /anno risparmio economico 270.095 /anno interesse 4% % durata impianto 15 anni Fattore di annualità 11,1 Investimento che annulla il VAN 3.003.021,8 Corso preparazione EGE Roma 07-11 gennaio 2019 53

Cogenerazione: Valutazioni ECOMAX 10 consumo 277,0 Sm 3 /h Potenza elettrica 1067 kw Potenza termica rec. Acqua 347 kw Potenza termica rec. Vapore 515 kw contemporaneità 11 h dalle 06,00 - alle 16,00 giorni settimana 6 n settimane anno 47 n ore annuali di funzinamento 3102 h energia elettrica prodotta 3.309.834 kwh(anno Consumo di gas evitato 278.736 Sm 3 /anno Consumo annuale di gas cog. 859.168 Sm 3 /anno Maggior consumo gas 580.431 Sm 3 /anno costo metano 0,3 Sm 3 maggiore spesa per gas cog 174.129 /anno maggiore spesa per manuten. 26.479 /anno costo energia elettrica minore spesa per elettricità 0,16 /kwh 529.573 /anno risparmio economico 328.965 /anno interesse 4% % durata impianto 15 anni Fattore di annualità 11,1 Investimento che annulla il VAN 3.657.564,9 Corso preparazione EGE Roma 07-11 gennaio 2019 54

Cogenerazione: Analisi economica Corso preparazione EGE Roma 07-11 gennaio 2019 55

Cogenerazione: Analisi economica Corso preparazione EGE Roma 07-11 gennaio 2019 56

Cogenerazione: Valutazioni Grazie per l attenzione Corso preparazione EGE Roma 07-11 gennaio 2019 57