CAPITOLO 4 CICLO FRIGORIFERO
|
|
|
- Giovanni Baroni
- 9 anni fa
- Visualizzazioni
Transcript
1 CAPITOLO 4 CICLO FRIGORIFERO Cap. 4 1
2 CICLO FRIGORIFERO IL CICLO FRIGORIFERO SI UTILIZZA PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A TEMPERATURA PIU BASSA RISPETTO ALL AMBIENTE PER IL SECONDO PRINCIPIO DELLA TERMODINAMICA, QUESTO TRASFERIMENTO DI ENERGIA NON PUO AVVENIRE NATURALMENTE ESISTONO DUE TIPOLOGIE DI CICLI FRIGORIFERI: CICLO FRIGORIFERO A COMPRESSIONE CICLO FRIGORIFERO AD ASSORBIMENTO Cap. 4 2
3 CICLO FRIGORIFERO A COMPRESSIONE E UN CICLO CHIUSO OPERATORE, PERCORSO IN SENSO ANTIORARIO, SOSTANZIALMENTE SIMILE A UN CICLO RANKINE PERCORSO IN SENSO INVERSO POICHE IL PROCESSO DI SOTTRAZIONE DI ENERGIA TERMICA (Q L ) AD UNA SORGENTE FREDDA DA RIVERSARE AD UNA SORGENTE CALDA NON E' UN PROCESSO SPONTANEO, PER IL FUNZIONAMENTO DEL CICLO SI RENDE NECESSARIA L'INTRODUZIONE DI UN LAVORO L. L ENERGIA TERMICA Q H RIVERSATA ALLA SORGENTE CALDA E : Q H = Q L + L SI DEFINISCE COEFFICIENTE DI PRESTAZIONE COP IL RAPPORTO FRA L EFFETTO UTILE E LA SPESA ENERGETICA COP = Q L / L Cap. 4 3
4 CICLO FRIGORIFERO A COMPRESSIONE Q H = Q L + L COP = Q L / L Cap. 4 4
5 CICLO FRIGORIFERO A COMPRESSIONE I DATI DI PROGETTO PRINCIPALI DI UN CICLO FRIGORIFERO SONO: TEMPERATURA LATO FREDDO (TEMPERATURA DI EVAPORAZIONE) TEMPERATURA LATO CALDO (TEMPERATURA DI CONDENSAZIONE) POTENZIALITA' FRIGORIFERA RICHIESTA LA TEMPERATURA DI EVAPORAZIONE DIPENDE DALLE ESIGENZE DELL'UTENZA. LA TEMPERATURA DI CONDENSAZIONE DIPENDE DAL TIPO DI CONDENSAZIONE (AD ACQUA, AD ARIA) E DALLE CONDIZIONI AMBIENTALI ESTERNE. LA POTENZIALITA FRIGORIFERA SI OTTIENE VARIANDO LA PORTATA IN CIRCOLO E QUESTA DETERMINA LA SCELTA DEL TIPO DI COMPRESSORE (ALTERNATIVO, A VITE, CENTRIFUGO). CIO PUO INFLUENZARE LA SCELTA DEL TIPO DI FLUIDO FRIGORIGENO E LE PRESSIONI DI EVAPORAZIONE E CONDENSAZIONE E, QUINDI, RIPERCUOTERSI SUL CICLIO TERMODINAMICO Cap. 4 5
6 FLUIDI DI LAVORO PER CICLI A COMPRESSIONE SI UTILIZZANO I FLUIDI COSIDDETTI "REFRIGERANTI" (IDROCARBURI CLORATI E FLUORATI). VENGONO DESIGNATI CON UNA SIGLA, COSTITUITA DALLA LETTERA R (REFRIGERANTE) SEGUITA DA TRE CIFRE. LA PRIMA CIFRA INDICA IL NUMERO DI ATOMI DI CARBONIO MENO UNO, LA SECONDA IL NUMERO DI ATOMI DI IDROGENO PIU' UNO, LA TERZA IL NUMERO DI ATOMI DI FLUORO. SI RICAVA POI IL NUMERO DI ATOMI DI CLORO CON LA FORMULA: ncl = 2nC + 2-2nH - nf SE IL NUMERO DI ATOMI DI CARBONIO MENO UNO VALE ZERO, TALE CIFRA VIENE TRALASCIATA. QUESTI FLUIDI SONO RITENUTI I PRINCIPALI RESPONSABILI DELL'ALLARGAMENTO DEL BUCO DELL'OZONO IN ATMOSFERA, PER CUI VENGONO PROGRESSIVAMENTE SOSTITUITI CON ALTRI CHE HANNO MINOR IMPATTO AMBIENTALE Cap. 4 6
7 TERMODINAMICA DEL CICLO FRIGORIFERO A COMPRESSIONE IL CICLO FRIGORIFERO A COMPRESSIONE VIENE GENERALMENTE STUDIATO NEL PIANO TERMODINAMICO p - h. COME DETTO, E UN CICLO CHIUSO OPERATORE, PERCORSO IN SENSO ANTIORARIO, SOSTANZIALMENTE SIMILE A UN CICLO RANKINE PERCORSO IN SENSO INVERSO. Cap. 4 7
8 CICLO FRIGORIFERO A COMPRESSIONE 1-2 ESPANSIONE ADIABATICA 2-3 EVAPORAZIONE ISOTERMA / ISOBARA 3-4 COMPRESSIONE ADIABATICA 4-1 CONDENSAZIONE ISOTERMA / ISOBARA Cap. 4 8
9 CICLO FRIGORIFERO A COMPRESSIONE Cap. 4 9
10 SIMBOLOGIA VALUTAZIONI ENERGETICHE G q 1 q 2 l P 1 P 2 P C = PORTATA DEL FLUIDO DI LAVORO = ENERGIA TERMICA SPECIFICA SOTTRATTA ALL'UTENZA = ENERGIA TERMICA SPECIFICA CEDUTA AL CONDENSATORE = LAVORO SPECIFICO DEL COMPRESSORE = POTENZA FRIGORIFERA = POTENZA TERMICA CEDUTA AL CONDENSATORE = POTENZA DEL COMPRESSORE q 1 = h 3 - h 2 q 2 = h 4 - h 1 l = h 4 - h 3 P 1 = G(h 3 - h 2 ) P 2 = G(h 4 - h 1 ) P C = G(h 4 - h 3 ) COP = q 1 / l = P 1 / P C = (h 3 - h 2 ) / (h 4 h 3 ) Cap. 4 10
11 CICLO FRIGORIFERO AD ASSORBIMENTO IL CICLO FRIGORIFERO AD ASSORBIMENTO SI DIFFERENZIA ESSENZIALMENTE DAL CICLO FRIGORIFERO A COMPRESSIONE PER LA FASE DI COMPRESSIONE NEL CICLO A COMPRESSIONE, IL VAPORE DEL FLUIDO DI LAVORO DEL CICLO VIENE PORTATO DALLA PRESSIONE MINIMA ALLA PRESSIONE MASSIMA DEL CICLO MEDIANTE COMPRESSIONE. NEL CICLO AD ASSORBIMENTO, IL VAPORE IN USCITA DALL'EVAPORATORE VIENE FATTO ASSORBIRE IN UN LIQUIDO; QUEST'ULTIMO, CON UNA POMPA, SUBISCE L'INCREMENTO RICHIESTO DI PRESSIONE DA QUELLA MINIMA A QUELLA MASSIMA DEL CICLO. POI AVVIENE LA SEPARAZIONE DEI DUE FLUIDI Cap. 4 11
12 CICLO FRIGORIFERO AD ASSORBIMENTO NEL CICLO AD ASSORBIMENTO, DATO CHE LA COMPRESSIONE AVVIENE SUL LIQUIDO, IL LAVORO INTRODOTTO NEL CICLO E' FORTEMENTE RIDOTTO (A VALORI QUASI TRASCURABILI) RISPETTO AL CICLO A COMPRESSIONE. PER CONTRO, SI RENDE NECESSARIA L'INTRODUZIONE DI ENERGIA TERMICA AD UNA TEMPERATURA DI: 90 C o 120 C NEL CICLO MONOSTADIO (COP = 0,65-0,7 0) 160 C (VAPORE SATURO A 8 BAR) NEL CICLO BISTADIO (C OP = 1,10 1,15) ESISTONO ANCHE CICLI AD ASSORBIMENTO A FIAMMA DIRETTA, ALIMENTATI A GAS NATURALE. IN QUESTI GRUPPI, IL CALORE E FORNITO DIRETTAMENTE DALLA COMBUSTIONE E NON E' NECESSARIO L'IMPIEGO DI UN FLUIDO TERMOVETTORE PER L'INTRODUZIONE DI CALORE NEL CICLO. Cap. 4 12
13 CICLO FRIGORIFERO AD ASSORBIMENTO COME FLUIDI PER CICLI AD ASSORBIMENTO SI UTILIZZANO PRINCIPALMENTE: ACQUA + BROMURO DI LITIO AMMONIACA + ACQUA SOLVENTE SOLUTO REFRIGERANTE ACQUA BROMURO DI LITIO ACQUA ACQUA AMMONIACA AMMONIACA Cap. 4 13
14 CICLO FRIGORIFERO AD ASSORBIMENTO IL COEFFICIENTE DI EFFETTO FRIGORIFERO PER IL CICLO AD ASSORBIMENTO SI ESPRIME NEL MODO SEGUENTE: COP = Q E / Q G Q E = Q G = ENERGIA TERMICA SOTTRATTA NELL EVAPORATORE (EQUIVALE A QUELLA SOTTRATTA ALL UTENZA)ALL'UTENZA ENERGIA TERMICA FORNITA AL GENERATORE (CIOE CONSUMATA) IL CALORE DA ASPORTARE, TRAMITE TORRE DI RAFFREDDAMENTO, E PARI ALLA SOMMA Q E + Q G Cap. 4 14
CAPITOLO 4 CICLO FRIGORIFERO
CAPITOLO 4 CICLO FRIGORIFERO Cap. 4 1 CICLO FRIGORIFERO IL CICLO FRIGORIFERO SI UTILIZZA PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A TEMPERATURA PIU BASSA RISPETTO ALL AMBIENTE PER IL SECONDO PRINCIPIO
CAPITOLO 6 CENTRALI FRIGORIFERE
CAPITOLO 6 CENTRALI FRIGORIFERE Cap. 6 1 MACCHINE FRIGORIFERE LE MACCHINE FRIGORIFERE SI UTILIZZANO PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A BASSA TEMPERATURA E QUINDI PER REFRIGERARE L UTENZA STESSA
CAPITOLO 13 CENTRALI FRIGORIFERE
CAPITOLO 13 CENTRALI FRIGORIFERE Cap. 13 1 MACCHINE FRIGORIFERE LE MACCHINE FRIGORIFERE SI UTILIZZANO PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A BASSA TEMPERATURA E QUINDI PER REFRIGERARE L UTENZA STESSA
CAPITOLO 13 CENTRALI FRIGORIFERE
CAPITOLO 13 CENTRALI FRIGORIFERE Cap. 13 1 MACCHINE FRIGORIFERE LE MACCHINE FRIGORIFERE SI UTILIZZANO PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A BASSA TEMPERATURA E QUINDI PER REFRIGERARE L UTENZA STESSA
Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl
SOLUZIONI problemi cap.9 9.1 (a) Assimiliamo l aria a un gas perfetto con calori specifici costanti a temperatura ambiente: Trasformazione 1-2: compressione isoentropica. Trasformazione 2-3: somministrazione
CICLO COMBINATO CON SPILLAMENTO IN TURBINA E RIGENERATORE DI TIPO CHIUSO
CICLO COMBINATO CON SPILLAMENTO IN TURBINA E RIGENERATORE DI TIPO CHIUSO 2J 3J 3J 1J sc 4J 2J 4J m m 1 2 4 3 1J 4 3 m 2 5 7 2 3 6 m m 1 2 m 2 5 m 1 3 6 1 7 m 1 CICLO COMBINATO CON SPILLAMENTO IN TURBINA
Impianti di refrigerazione (climatizzazione estiva): valutazioni tecnico economiche su soluzioni alternative
Impianti di refrigerazione (climatizzazione estiva): valutazioni tecnico economiche su soluzioni alternative 1/12 CICLO FRIGORIFERO PER RAFFREDDAMENTO REGIONE CALDA Liquido saturo o sottoraffreddato 3
CAPITOLO 13 CENTRALI FRIGORIFERE
CAPITOLO 13 CENTRALI FRIGORIFERE Cap. 13 1 MACCHINE FRIGORIFERE LE MACCHINE FRIGORIFERE SI UTILIZZANO PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A BASSA TEMPERATURA E QUINDI PER REFRIGERARE L UTENZA STESSA
IMPIANTO FRIGORIFERO A COMPRESSIONE DI VAPORE CON CAMERA DI SEPARAZIONE (liquido - vapore) E COMPRESSIONE A DUE STADI
IMPIANTO FRIGORIFERO A COMPRESSIONE DI VAPORE CON CAMERA DI SEPARAZIONE (liquido - vapore) E COMPRESSIONE A DUE STADI IMPIANTO FRIGORIFERO A COMPRESSIONE DI VAPORE CON CAMERA DI SEPARAZIONE (liquido -
CICLI TERMODINAMICI 1
CICLI TERMODINAMICI 1 CICLO RANKINE - TURBINE A VAPORE LE TURBINE A VAPORE SONO MACCHINE MOTRICI, INSERITE IN UN IMPIANTO BASATO SU UN CICLO TERMODINAMICO, DETTO CICLO RANKINE, COMPOSTO DA QUATTRO TRASFORMAZIONI
Messa a punto di un sistema di acquisizione dati per la valutazione delle prestazioni di una macchina ad assorbimento
UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Ingegneria Corso di Laurea in Ingegneria Energetica Sede di Terni Anno Accademico 2008-2009 Relazione finale Messa a punto di un sistema di acquisizione dati
CICLO FRIGORIFERO PER RAFFREDDAMENTO
CICLO FRIGORIFERO PER RAFFREDDAMENTO REGIONE CALDA Liquido saturo o sottoraffreddato Q out 3 2 Vapore valvola di espansione condensatore compressore P c evaporatore 4 1 Miscela bifase liquidovapore Q in
Componenti impianto frigorifero. Certificazione Frigoristi Regolamento CE n.842/2006
Componenti impianto frigorifero Certificazione Frigoristi Regolamento CE n.842/2006 Il CIRCUITO FRIGORIFERO 23/04/2013 2 In natura il calore fluisce da un corpo più caldo ad un corpo più freddo CORPO CALDO
CAPITOLO 2 CICLO BRAYTON TURBINE A GAS FLUIDO: MONOFASE
CAPITOLO 2 CICLO BRAYTON TURBINE A GAS FLUIDO: MONOFASE 1 CICLO BRAYTON IL CICLO TERMODINAMICO BRAYTON E COMPOSTO DA QUATTRO TRASFORMAZIONI PRINCIPALI (COMPRESSIONE, RISCALDAMENTO, ESPANSIONE E RAFFREDDAMENTO),
Dispensa del corso di SISTEMI ENERGETICI. Argomento: Sistemi Energetici (parte 3.3) Prof. Pier Ruggero Spina Dipartimento di Ingegneria
Dispensa del corso di SISTEMI ENERGETICI Argomento: Sistemi Energetici (parte 3.3) Prof. Pier Ruggero Spina Dipartimento di Ingegneria La trigenerazione: motivazioni e tecnologie 2 Picchi di richiesta
EQUILIBRIO TERMODINAMICO
LA TERMODINAMICA EQUILIBRIO TERMODINAMICO TRASFORMAZIONI QUASISTATICHE Le trasformazioni quasistatiche Le trasformazioni termodinamiche si possono rappresentare sul piano pressione-volume ogni punto del
thermo frigo refrigeratori di liquidi ad assorbimento (libr) condensati ad acqua
thermo frigo refrigeratori di liquidi ad assorbimento (libr) condensati ad acqua 153 potenza frigorifera 134,0 4928,0 kw refrigerante soluzione di acqua e Bromuro di Litio (LiBr) sorgenti di calore acqua
Cicli ad assorbimento
Cicli ad assorbimento Il compressore meccanico del fluido del ciclo inverso è sostituito da un complesso assorbitore-generatore (vedi figura 10.25). Il primo componente A (assorbitore), attraverso un solvente,
CICLO FRIGORIFERO PER RAFFREDDAMENTO
CICLO FRIGORIFERO PER RAFFREDDAMENTO REGIONE CALDA Liquido saturo o sottoraffreddato Q out 3 2 Vapore surriscaldato condensatore compressore valvola di espansione P c evaporatore 4 Miscela bifase liquidovapore
MARCO GENTILINI IMPIANTI MECCANICI. Marco Gentilini IMPIANTI MECCANICI 1
MARCO GENTILINI IMPIANTI MECCANICI 1 2 INDICE Premessa. PARTE PRIMA FONDAMENTI DI IMPIANTISTICA MECCANICA CAP.I 1 ANALISI DEGLI IMPIANTI I.1.1 Definizione degli impianti. I.1.2 La progettazione degli impianti.
Pompe di calore ad assorbimento acqua ammoniaca
Pompe di calore ad assorbimento acqua ammoniaca Il Raffrescamento estivo utilizzando le macchine ad assorbimento Un interessante possibilità di sfruttamento dell energia solare ai fini del raffrescamento
REFRIGERAZIONE. Refrigerazione Riduzione e/o mantenimento della temperatura a valori più bassi della temperatura ambiente (<8 C)
Refrigerazione Riduzione e/o mantenimento della temperatura a valori più bassi della temperatura ambiente (
Frigorifero CICLO FRIGORIFERO-TEORIA L = Q C - Q F. Coefficiente di prestazione
Frigorifero CICLO FRIGORIFERO-TEORIA Frigorifero: dispositivo a funzionamento ciclico composto da: (Fig. 1) un insieme di sorgenti di calore ad alta temperatura, T i, un insieme di sorgenti a più bassa
CICLI TERMODINAMICI. Introduzione 1
CICLI TERMODINAMICI Introduzione 1 CICLI TERMODINAMICI CICLO DI CARNOT CICLO RANKINE CICLO BRAYTON CICLO OTTO / CICLO DIESEL IL CICLO DI CARNOT RAPPRESENTA IL MODELLO DA PERSEGUIRE, PERCHE A PARITA DI
Gestione dell Energia
Gestione dell Energia I Prova in itinere del 14.06.2006 1. Illustrare il contenuto exergetico della radiazione solare, descrivere il comportamento dei radiatori e ricavare il rendimento exergetico. 2.
ENERGETICA DEGLI EDIFICI
LA SFIDA DELLA RIQUALIFICAZIONE ENERGETICA DEGLI EDIFICI ing. Michele Vio Libero professionista Past president AiCARR ing. Michele Vio 0 Riepilogo introduttivo ing. Michele Vio 1 Riepilogo introduttivo
Macchine termiche: ciclo di Carnot
Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un
Guida all acquisto. Pompa di calore per la produzione di acqua calda sanitaria
Guida all acquisto Beni per l Efficienza Energetica attraverso il Mercato Elettronico produzione di acqua calda sanitaria (Dicembre 2012) Acquisti in Rete della P.A. Guida all acquisto Pagina 1 di 6 1
Progettazione e installazione PALAGHIACCIO COMUNE DI PONTEBBA FRIULI VENEZIA GIULIA OSPEDALE DI LEOBEN AUSTRIA CONSORZIO PESCATORI DI GORO - FERRARA
Riscaldamento e raffrescamento da idrotermia e geotermia: il Palaghiaccio di Pontebba e l ospedale di Leoben (A) B. Della Vedova, F. Aloisio [email protected], [email protected] Introduzione IMPEGNO Efficienza
Macchine termiche: ciclo di Carnot
Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un
I cicli transcritici nella refrigerazione
Tesi di laurea triennale in Ingegneria Per l Ambiente e il Territorio I cicli transcritici nella refrigerazione Anno accademico 2013-2014 Relatore: Ch.ma Prof. Adriana Greco Correlatore: Ing. Claudia Masselli
CAPITOLO 2 CICLO BRAYTON TURBINE A GAS
CAPITOLO 2 CICLO BRAYTON TURBINE A GAS 1 CICLO BRAYTON IL CICLO TERMODINAMICO BRAYTON E COMPOSTO DA QUATTRO TRASFORMAZIONI PRINCIPALI (COMPRESSIONE, RISCALDAMENTO, ESPANSIONE E RAFFREDDAMENTO), PIÙ ALTRE
FISICA TECNICA E MACCHINE
FISICA TECNICA E MACCHINE Prof. Lucio Araneo AA 2018/2019 ESERCITAZIONE N.10 Ing. Gabriele D Ippolito 1) Il circuito di un impianto industriale che necessita 10 kg/s di aria compressa alla pressione di
Terminologia Cecomaf 1
INDICE Terminologia Cecomaf 1 Capitolo 1 - Elementi di fisica 15 1.1 Temperatura 15 1.1.1 Sensazione di calore 15 1.1.2 Scale di temperatura 15 1.1.3 Zero assoluto e Sistema Internazionale di unità (SI)
Indice. Prefazione all edizione italiana... Terminologia CECOMAF...
Prefazione all edizione italiana... Terminologia CECOMAF... XI XIII Capitolo 1 Elementi di fisica... 1 1.1 Temperatura................................................. 1 1.1.1 Sensazione di calore... 1
1 Ciclo Rankine inverso.
1 Ciclo Rankine inverso. Il ciclo rappresentato, detto ciclo di Rankine inverso, viene modificato attraverso lo scambiatore di calore introdotto nello schema della macchina e che permette la cessione di
Ciclo Otto (Motore a Benzina)
Ciclo Otto (Motore a Benzina) Cicli Termodinamici - 1 p 3 p 2 > O 2 3 Trasformazione Adiabatica Dati Generali m, p 1, V 1, V 1 /V 2, T 1, T 3 m RT1 1 L 2 = ( V2 / V1 ) 1 k ( ) 2 3 = m cv T3 T2 > 0 m RT3
Cap. 1 Richiami di termodinamica. 1.1 Concetti base 1.2 Principio di conservazione dell energia. Cap. 2 Il bilancio exergetico
III Indice IX 1 1 2 3 5 6 7 9 11 12 12 13 13 Presentazione Cap. 1 Richiami di termodinamica 1.1 Concetti base 1.2 Principio di conservazione dell energia 1.2.1 Sistema con involucro chiuso allo scambio
Corso L: area gestione impianti divisione tecnica impianti tecnologici: installazione gruppo frigo con recuperatore di calore
Corso L: area gestione impianti divisione tecnica impianti tecnologici: installazione gruppo frigo con recuperatore di calore Ciclo frigorifero Definizione: È un ciclo termodinamico indiretto che regola
Realizzare il miracolo dell efficienza. Il refrigeratore azionato dal calore.
Realizzare il miracolo dell efficienza Il refrigeratore azionato dal calore. Refrigerare con il calore I refrigeratori ad adsorbimento di SorTech sono costruiti come Successivamente il refrigerante viene
Determinazione e confronto delle prestazioni di impianti geotermoelettrici
Determinazione e confronto delle prestazioni di impianti geotermoelettrici Si ipotizzi di avere una potenza geotermica disponibile pari a 600 MW. La temperatura dell'acqua di refrigerazione all'uscita
POLITECNICO DI TORINO
POLITECNICO DI TORINO Vittorio Verda Dipartimento Energia POMPE DI CALORE GEOTERMICHE Il calore della terra a casa nostra. La Geotermia: cos è, come funziona, quanto si risparmia Pompe di calore a compressione
Ingegneria Edile-Architettura Esercizi di Fisica Tecnica Ambientale Termodinamica
Ingegneria Edile-Architettura Esercizi di Fisica Tecnica Ambientale 2012-2013 Termodinamica TD1 In un sistema pistone-cilindro, 1 kg di gas (! = 1,29 ed R * = 190 J/(kg"K)) si espande da 5 bar e 90 C ad
SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 25 Giugno Proff. Consonni S., Chiesa P., Martelli E.
SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 25 Giugno 2013 Proff. Consonni S., Chiesa P., Martelli E. Tempo a disposizione: 2 ore Avvertenze per lo svolgimento del tema d esame: 1)
Macchina termica ideale (di Carnot)
Macchina termica ideale (di Carnot) La macchina di Carnot è formata da un ciclo in un gas perfetto, costituito da due trasformazioni isoterme (ab e dc in figura) e due adiabatiche (bc e da in figura).
murelle revolution la caldaia in classe a++
murelle revolution la caldaia in classe a++ UNO SGUARDO AL FUTURO Sempre più frequentemente gli impianti per il comfort ambientale si compongono di caldaie e di macchine a ciclo frigorifero inverso. La
Le pompe di calore: tipologie e caratterizzazione
Le pompe di calore: tipologie e caratterizzazione G.L. Morini Laboratorio di Termotecnica Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale Viale Risorgimento 2, 40136 Bologna
POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA
POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 9 settembre 2014 per le sedi di Milano Bovisa e Piacenza Proff. Consonni S., Chiesa P., Martelli
SOLUZIONE SECONDA PROVA - TEMA N 2 - TECNICO DEI SISTEMI ENERGETICI Svolgimento :
SOLUZIONE SECONDA PROVA - TEMA N 2 - TECNICO DEI SISTEMI ENERGETICI 2003 Svolgimento : Riferendoci alla figura del ciclo reale sul piano entalpico, il calore assorbito nell' eveporatore Q2 e il lavoro
FISICA TECNICA (Ingegneria Medica)
NOME N. MATRICOLA N. CREDITI E-MAIL Prova di esame del 11 Febbraio 2014 1. Sia dato un ciclo frigorifero, in cui il fluido evolvente è R134a, a cui in cascata è collegato un secondo ciclo il cui fluido
Termodinamica applicata ai cicli frigoriferi. Certificazione Frigoristi Regolamento CE n.842/2006
Termodinamica applicata ai cicli frigoriferi Certificazione Frigoristi Regolamento CE n.842/2006 Termodinamica applicata ai cicli frigoriferi Parte I Ciclo frigorifero Parte II Diagrammi termodinamici
FISICA TECNICA - A.A. 99/00
Termo-fluidodinamica applicata - 1 a Interprova del 30.3.2000 Cognome Nome Anno di Corso Matricola 1 T1=200 C p1=7,0 bar m1=40 kg/s 2 A2=25 cm 2 T2=40,0 C p2=7,0 bar 3 V3=0,060 m 3 /s p3=7,0 bar Q A) Due
FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale.
Serie 10: ermodinamica X FISICA II liceo Esercizio 1 Ciclo di Carnot Considera il ciclo di Carnot, in cui il fluido (=sistema) è considerato un gas ideale. Si considerano inoltre delle trasformazioni reversibili.
ŋ = 1-Tf / Tc ŋ = rendimento termodinamico, rapporto fra lavoro e calore speso Il motore stirling Principali caratteristiche
Il motore stirling Ideato da quasi 200 anni, è un motore potenzialmente ad elevatissima efficienza, utilizzato inizialmente come alternativa più affidabile delle macchine a vapore, così detto anche motore
REFRIGERAZIONE. Corso Base II. ESSE - Wilhelm Nießen
REFRIGERAZIONE Corso Base II Temperatura Cosa e il freddo? Temperatura Dal punto di vista fisico la parola Freddo non e corretta. Si parla di calore. Il Calore e una forma di energia. Ogni materiale ha
Ciclo Rankine - Clausius
Ciclo Rankine - Clausius Si inizia considerando il ciclo di Rankine Clausius anche chiamato ciclo di Hirn semplice avente le seguenti caratteristiche: Temperatura ambiente 30 C Pressione massima 151 bar
Riscaldamento e raffrescamento da idrotermia e geotermia: il Palaghiaccio di Pontebba e l ospedale di Leoben (A)
Riscaldamento e raffrescamento da idrotermia e geotermia: il Palaghiaccio di Pontebba e l ospedale di Leoben (A) B. Della Vedova, F. Aloisio [email protected], [email protected] Introduzione IMPEGNO Efficienza
Termodinamica. secondo principio. ovvero. principio della impossibilità
ermodinamica secondo principio ovvero principio della impossibilità Il verso privilegiato delle trasformazioni di energia: non si crea energia dal nulla Il primo principio può essere enunciato sotto forma
Corso Termodinamica. Esercitazione 3. II Principio
Corso Termodinamica Esercitazione 3 II Principio 1. Una mole di metano fluisce in un condotto; la sua pressione passa da 1.5 a 0.5 atm a temperatura costante. Calcolare la variazione di entropia. 2. Calcolare
Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA
Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Prof. Matteo Intermite 1 5.1 LEGGE DEI GAS I gas sono delle sostanze che in determinate condizioni di
il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche.
16 Il ciclo di Stirling Il coefficiente di effetto utile per il ciclo frigorifero di Carnot è, in base alla (2.9): T min ɛ =. (2.31) T max T min Il ciclo di Carnot è il ciclo termodinamico che dà il maggior
I più comuni fluidi termici che si utilizzano ad elevate temperature sono riportati in tabella.
Circuiti termici La gran parte delle esigenze di scambio termico in un impianto chimico si riescono a soddisfare utilizzando acqua, per raffreddare, o vapore d acqua, per riscaldare. Tuttavia, quando la
Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv
Prefazione alla terza edizione italiana...xi Ringraziamenti dell Editore...XIII Guida alla lettura...xiv 1 INTRODUZIONE E UNO SGUARDO D INSIEME...1 1.1 Introduzione alle scienze termiche...2 1.2 La termodinamica
Esercitazione 2 Ciclo a vapore a recupero
Esercitazione 2 Ciclo a vapore a recupero Lo scopo di questa esercitazione è la progettazione di un ciclo a recupero: l impianto è composto da un ciclo a vapore ad un livello di pressione che utilizza
Volendo utilizzare per
di Sergio Girotto Applicazione nei paesi dell Europa del Sud Evoluzione dei sistemi frigoriferi con come refrigerante I sistemi frigoriferi commerciali con come unico refrigerante, comunemente chiamati
Motore di Stirling. Scopo dell esperienza
Motore di Stirling Scopo dell esperienza Lo scopo dell esperienza è duplice: calcolare il rendimento del motore in seguito alla realizzazione di un ciclo termico determinare il potere refrigerante e calorifico
REFRIGERAZIONE. Corso Base III. November 2002. ESSE - Wilhelm Nießen
REFRIGERAZIONE Corso Base III 1 REFRIGERAZIONE Misure di Temperatura e Pressione per la diagnosi 2 Temperature nel circuito refrigerante Temperatura superficiale dell evaporatore Temperatura superficiale
VALORE MINIMO DEL RENDIMENTO DI COMBUSTIONE DEI GENERATORI DI CALORE SECONDO IL DECRETO LEGISLATIVO NUMERO 192 DEL 19 AGOSTO
VALORE MINIMO DEL RENDIMENTO DI COMBUSTIONE DEI GENERATORI DI CALORE SECONDO IL DECRETO LEGISLATIVO NUMERO 192 DEL 19 AGOSTO 2005 (modificato dal DM 26 giugno 2009) a) Riferimenti normativi b) Caldaie
Pompe di calore ad assorbimento.
Facoltà di Ingegneria Università degli Studi di Bologna Dipartimento di Ingegneria Industriale Marco Gentilini Pompe di calore ad assorbimento. Quaderni del Dipartimento MARCO GENTILINI POMPE FDI CALORE
Politecnico di Milano Dipartimento di Ingegneria Aerospaziale
Politecnico di Milano Dipartimento di Ingegneria Aerospaziale Corso di Impianti e Sistemi Aerospaziale IMPIANTO DI CONDIZIONAMENTO Alessandro Daniele Galluzzi Giugno 2016 1. Premessa. La presente relazione
