Le vibrazioni possono essere



Documenti analoghi
SENSORI E TRASDUTTORI

Per questo motivo negli accelerometri : ζ=0.67

Sensori di Sensori di spost spos am ent ent a cont cont t at o Pot P enziom etri enziom

Estensimetro. in variazioni di resistenza.

Introduzione all analisi dei segnali digitali.

Cap Misure di vi braz di vi ioni

TRASDUTTORI di FORZA E PRESSIONE

Circuiti amplificatori

E possibile classificazione i trasduttori in base a diversi criteri, ad esempio: Criterio Trasduttori Caratteristiche

3 PROVE MECCANICHE DEI MATERIALI METALLICI

Modello generale di trasduttore Come leggere la scheda tecnica di un trasduttore

Le macchine elettriche

PRINCIPI DI TRASDUZIONE

MISURE DI GRANDEZZE ELETTRICHE

Argomenti del corso Parte II Strumenti di misura

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Classificazione dei Sensori. (raccolta di lucidi)

PROGETTAZIONE DI UN CONTROLLO ON-OFF CON CRITERI E METODOLOGIA

Corso di Elettronica Organizzato dall associazione no-profit Agorà Lesina (FG)

La prove dinamiche sugli edifici II parte strumentazione e analisi dei segnali

PREMESSA AUTOMAZIONE E FLESSIBILITA'

Generatore radiologico

26/08/2010. del sistema tecnico) al cm² o al m² l atmosfera tecnica pari a 1 kg p. /cm², di poco inferiore all'atmosfera (1 atm= 1, at).

POLITECNICO DI TORINO

LA CORRENTE ELETTRICA

Gestione dei segnali analogici nei sistemi di automazione industriale con PLC.

L IDENTIFICAZIONE STRUTTURALE

LA CORRENTE ELETTRICA CONTINUA

I.T.I.S. M. FARADAY - Programmazione modulare

Generatori di segnale. Generatore sinusoidale BF. Generatori di funzione. Generatori sinusoidali a RF. Generatori a battimenti. Oscillatori a quarzo

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

Strumentazione Biomedica

Amplificatori Audio di Potenza

Si classifica come una grandezza intensiva

Veloci, Economiche, Scalabili: Tecnologie Magnetiche per l Automazione

APP_PIT_Comparazione Pile Dynamics Inc. Rev

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

I.P.S.I.A. BOCCHIGLIERO

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI

ITI M. FARADAY Programmazione modulare

PR aprile 2012 Motion Control Pagina 1 di 5. XTS extended Transport System: un nuovo modo di concepire il Motion Control

PROGRAMMAZIONE DIDATTICA ANNUALE. SETTORE TECNOLOGICO Indirizzo: Elettrotecnica ed Elettronica

ELETTRONICA. L amplificatore Operazionale

Appunti sulla Macchina di Turing. Macchina di Turing

Tesina di scienze. L Elettricità. Le forze elettriche

L interruttore Microfonico

I sistemi di controllo possono essere distinti in due categorie: sistemi ad anello aperto e sistemi ad anello chiuso:

stazione sismica Sistema di rilevazione e archiviazione dei segnali sismici PDF created with pdffactory Pro trial version

Il neutro, un conduttore molto "attivo" (3)

Rappresentazione grafica di un sistema retroazionato

DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE

Sensori a effetto Hall bipolari con ritenuta stabilizzati e non stabilizzati con circuito chopper

Le strumentazioni laser scanning oriented per i processi di censimento anagrafico dei patrimoni

Inclinometro Omnidirezionale Modello 400B 401B

Sistemi Elettrici. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Interruttore automatico

Collegamento a terra degli impianti elettrici

Progetti reali con ARDUINO

BONIFICA ACUSTICA: URTI E IMPATTI. Bonifica acustica_moduloj1_rev_3_10_03

RISONANZA. Introduzione. Risonanza Serie.

Impianti per il trasferimento di energia

779 CAVI PER SISTEMI DI PESATURA

COS'E' UN IMPIANTO FOTOVOLTAICO E COME FUNZIONA

Modellistica e Simulazione del Comportamento Dinamico di Beccheggio di un Trattore Agricolo

Sistemi Elettrici }BT }AT

TRASDUTTORI di TEMPERATURA

SCIENZE INTEGRATE FISICA

PROVE SULLA MACCHINA A CORRENTE CONTINUA

NORME E DEFINIZIONI PER GLI STRUMENTI DI MISURE DELLE GRANDEZZE ETTROMAGNETICHE

Elettricità e magnetismo

SECONDO BIENNIO ISTITUTO TECNICO

CEMB S.p.A MANDELLO DEL LARIO (LC) - Via Risorgimento 9

Circuiti di condizionamento per sensori resistivi

Controllo di un Motore Elettrico in Corrente Continua

LE VALVOLE TERMOSTATICHE

PANNELLI SOLARI TERMICI PANNELLI SOLARI FOTOVOLTAICI

Inquadramento legislativo e normativo: dal D.Lgs.81/2008 alla UNI/TR 11450:2012 Modena 12 ottobre 2012

Protezione dai contatti indiretti

Motore passo passo: Laboratorio di Elettronica 1

Impianti di propulsione navale

Trasformatore di corrente (TA)

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA

Apparati di radiodiffusione AM ed FM. Tratto dal testo di Cecconelli Tomassini Le Telecomunicazioni

Misure Elettroniche, Sensori e Trasduttori 1

Come valutare le caratteristiche aerobiche di ogni singolo atleta sul campo

ASPETTI INSTALLATIVI DELL IMPIANTO FOTOVOLTAICO

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo

Basetta per misure su amplificatori

I motori elettrici più diffusi

RESISTENZA DEI MATERIALI TEST

Elettrostatica dei mezzi materiali

Giornata di studio Problematiche di misura della pressione: Sensori e trasduttori di misura della pressione

CONDUTTORI, CAPACITA' E DIELETTRICI

Sensori, Segnali e Rumore Prof. Sergio Cova A B + - V AB. Metalli a contatto V A Φ Φ B = Φ B (T) dφ A dt V AB = V AB (T) V B = Φ B.

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

IL CONTROLLO AUTOMATICO: TRASDUTTORI, ATTUATORI CONTROLLO DIGITALE, ON-OFF, DI POTENZA

La manutenzione come elemento di garanzia della sicurezza di macchine e impianti

NOTE E CONSIDERAZIONI SULLA PESATURA DI SILOS E SERBATOI CON CELLE DI CARICO

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

GESTIONE DELLE TECNOLOGIE AMBIENTALI PER SCARICHI INDUSTRIALI ED EMISSIONI NOCIVE LEZIONE 10. Angelo Bonomi

Transcript:

automazioneoggi Come misurare le vibrazioni Alcuni materiali generano cariche elettriche quando vengono sollecitati: l accelerometro piezoelettrico sfrutta ciò per misurare le vibrazioni MATTEO MARINO Le vibrazioni possono essere misurate attraverso dispositivi che, sfruttando alcuni Registratore principi fisici, si adattano alle diverse applicazioni. Per esempio, la valutazione del rispetto delle Condizionatore Trasduttore Amplificatore di segnale norme di sicurezza di un sistema meccanico, il dimensionamento delle sospensioni di una macchina o l elaborazione di un Plotter adeguato modello matematico per un automatismo vibrante sono attività che posso Convertitore Stampante Analizzatore A/D no essere condotte rispettivamente attraverso campagne di misura dei livelli di... vibrazione, mediante la valutazione delle azioni eccitatrici che nascono nelle macchine stesse e attraverso la verifica della Fig. 1 Elementi della catena di misura dei fenomeni vibratori risposta a eccitazioni note. Quali sono, però, i passi e le per la rilevazione delle vibrazioni comprende almeno un operazioni principali da seguire per creare un adeguato trasduttore, un amplificatore e un indicatore, mentre per impianto di misura delle vibrazioni in funzione delle differenti applicazioni? catore, un condizionatore di segnale, un convertitore ana completare la serie si possono aggiungere un preamplifi Quali tipi di sistemi di acquisizione sono utilizzati nei differenti ambiti applicativi e quali sono le loro peculiarità? per la visualizzazione dei risultati. All interno della catelogico digitale, un analizzatore del segnale e dispositivi Di seguito sarà descritta la catena di misura utilizzata per na di misura il trasduttore ha il compito di trasformare la valutare i fenomeni vibratori oltre ai trasduttori comunemente impiegati. logico secondo una relazione nota tra le quantità in misura del fenomeno fisico d interesse in un segnale ana ingresso e in uscita. Detto, quindi, x(t) l andamento del La catena di misura segnale in ingresso e y(t) quello in uscita, la differenza tra Le apparecchiature e gli strumenti impiegati per effettuare le operazioni di acquisizione, registrazione, preparazio calibrazione (C) per cui si possa esplicitare la relazione le due grandezze dovrebbe consistere in una costante di ne e analisi dei dati relativi alle vibrazioni costituiscono la y(t) = Cx(t). Il trasduttore trasforma la natura del segnale cosiddetta catena di misura. La strumentazione minima in ingresso senza alterarne il contenuto, anche se spesso 124 DICEMBRE 2004 AUTOMAZIONE OGGI 275

in tale processo di conversione possono intervenire fenomeni di distorsione che modificano sostanzialmente la relazione lineare descritta. Inoltre, l uso degli accelerometri come strumenti di trasduzione potrebbe generare difficoltà di acquisizione dei segnali di uscita particolarmente deboli, a causa della proporzionalità tra l accelerazione del moto vibrazionale misurato e il segnale in tensione. Tale fenomeno potrebbe, inoltre, accentuarsi nel caso di utilizzo degli accelerometri piezoelettrici, i quali generano segnali d uscita d intensità molto bassa. Le considerazioni riportate determinano l utilizzo di adeguati sistemi di amplificazione nella catena di misura per elevare l ampiezza dei segnali provenienti dal trasduttore, previa regolazione del guadagno dell amplificatore stesso. Il segnale amplificato è successivamente trattato da un condizionatore che effettua alcune operazioni d integrazione nel tempo e di filtraggio. Accelerazione in ingresso Mentre attraverso l integrazione è possibile ottenere il passaggio dall accelerazione alla velocità e dalla velocità allo spostamento, mediante il filtraggio in frequenza il segnale è sottoposto a una serie di filtraggi affinché le condizioni d uscita dello stesso siano conformi a specifici parametri di spettro. La catena di misura dei fenomeni vibratori è costituita da una serie di dispositivi indispensabili (trasduttore, amplificatore del segnale e indicatore), tuttavia possono far parte di essa anche apparecchi che, seppure non fondamentali per la valutazione dei fenomeni, costituiscono un utile miglioria della strumentazione. Il registratore magnetico, per esempio, è un dispositivo che, situato a monte o a valle del condizionatore di segnale, permette di conservare i dati sperimentali e può sostituire, in alcune applicazioni, i più evoluti sistemi di analisi per la memorizzazione dell andamento dei fenomeni. Così come il registratore magnetico costituisce uno strumento della catena non strettamente indispensabile, anche il convertitore analogico digitale può essere considerato tale a patto che il segnale non alimenti un sistema software dedicato di analisi dei segnali. L analizzatore di segnale, infatti, è costituito nella pratica da una stazione computerizzata dedicata espressamente all analisi di spettro e all elaborazione dei segnali. Trasduttori di vibrazione Una prima classificazione dei trasduttori di vibrazione può essere effettuata in funzione della loro specifica capacità di effettuare la conversione della natura del segnale in modo autonomo. I trasduttori attivi convertono infatti l energia meccanica in ingresso in energia senza bisogno di alcuna ulteriore sorgente di energia, mentre i trasduttori passivi necessitano di una fonte secondaria per effettuare la conversione. I trasduttori, inoltre, possono essere a conversione diretta, se convertono direttamente automazioneoggi l energia meccanica vibrazionale in energia, o a conversione indiretta, se tale processo avviene attraverso altre forme energetiche come l acustica, l ottica, ecc. Tra i sistemi di conversione dei segnali attivi maggiormente impiegati nelle catene di misura, l accelerometro piezoelettrico gioca un ruolo fondamentale. Tale trasduttore è considerato oggi uno dei migliori disponibili per la m C K Tensione in uscita Fig. 2 Rappresentazione schematica di un trasduttore di tipo sismico INGRESSO meccanica INGRESSO meccanica Trasduttori attivi Trasduttori passivi INGRESSO SECONDARIO USCITA USCITA Fig. 3 I trasduttori attivi convertono direttamente l energia meccanica in ingresso in energia, mentre i trasduttori passivi necessitano di una sorgente di energia secondaria misura assoluta delle vibrazioni e il suo largo impiego è giustificato dalla flessibilità di fronte a campi di frequenza ampi, dalla buona linearità su un campo dinamico esteso, dall ottima integrazione elettronica con il segnale di accelerazione con cui ottenere velocità e spostamento e dal buon livello di accuratezza anche in condizioni ambientali difficili. L accelerometro piezoelettrico, inoltre, presenta un ingombro contenuto e, grazie all assenza di parti in movimento, è particolarmente robusto. Principio di funzionamento Alcuni materiali naturali o ceramici hanno la proprietà di generare cariche elettriche quando sono sottoposti a sollecitazioni meccaniche; i trasduttori che sfruttano tale principio fisico, indipendentemente dal tipo di materiale DICEMBRE 2004 AUTOMAZIONE OGGI 275 125

automazioneoggi usato (cristallo naturale o ceramica ferro polarizzata), sono chiamati trasduttori piezoelettrici. Lo schema di un accelerometro piezoelettrico è mostrato nella figura 4 nella quale sono posti in evidenza la molla di precarico (1), la massa sismica (2), i dischi piezoelettrici (3), i terminali collegati alle superfici metalliche (4), tra i quali sono compressi i dischi e a lamina metallica intermedia, 1 2 3 4 5 6 l involucro (5) e la base (6). Gli accelerometri di questa categoria sono strumenti sismici perché basati sul moto relativo di una massa sospesa alla struttura vibrante mediante un elemento elastico secondo il modello a 1 grado di libertà (g.d.l.) rappresentato in figura 5. In questo tipo di accelerometri la reazione elastica è fornita da un elemento cristallino che funge da trasduttore. Il quarzo, sia nella sua forma naturale, sia dopo aver subito trattamenti particolari, costituisce uno dei materiali piezoelettrici naturali più utilizzati perché particolarmente sensibile e stabile. I trasduttori di questo tipo sono basati sulla separazione e l accumulo di cariche elettriche positive e negative sulle facce opposte di un reticolo cristallino sottoposto all azione di una forza esterna. Gli ioni di ossigeno e quelli di silicio (figura 6) si ridistribuiscono nel reticolo accumulandosi sulle facce opposte del cristallo. L intensità di questo fenomeno è proporzionale alla sollecitazione alla quale il cristallo è sottoposto e le cariche che si accumulano sulle due facce rispettano la relazione in figura 6. In essa, k è la costante piezo che rappresenta la quantità di carica che il quarzo fornisce per quel tipo di taglio in funzione del carico applicato. Poiché il doppio strato di cariche è separato da un dielettrico, costituito dal cristallo stesso, si può affermare che tale elemento sotto carico si comporta come un condensatore che rispetta la relazione Q = C*V, dove C, capacità del condensatore, può essere espressa come C = (S/b)* ε, nella quale S è la superficie delle facce, b la distanza tra le facce ed ε la Fig. 4 Schema di un trasduttore piezoelettrico. Molla di precarico (1), massa sismica (2), dischi piezoelettrici (3), terminali collegati alle superfici metalliche (4), involucro (5) e base (6) k m C x y = Y cos ω t X Forza Z O Si O Si O O Si O O Y b X Forza F x Fig. 5 Modello matematico del trasduttore sismico con 1 g.d.l. (grado di libertà) a q x = k F x q y = k a F y b costante di del quarzo. La differenza di potenziale (V) che si genera tra le due facce vale quindi V = kxy*(f/c) = (kxy*m*k*a)/s* ε, dove m è la massa cristallo e a l accelerazione lungo l asse preso in considerazione Z per l applicazione della forza (F). Negli accelerometri di questo tipo è necessario che la forza F x imposta sul materiale piezoelettrico sia pari all accelerazione da Y c Fig. 6 Risposta di carica (qx e qy) alla sollecitazione assiale (Fx) sulla faccia di massima ampiezza di un cristallo di quarzo piezoelettrico. Per il quarzo la costante piezo (k) vale 2,1x1012 coulomb/newton, mentre per altri materiali, come il titanato di bario, può avere valori molto più elevati 126 DICEMBRE 2004 AUTOMAZIONE OGGI 275

automazioneoggi misurare, per cui il cristallo è solidale a una massa nota in grado di imprimere al cristallo stesso una forza direttamente proporzionale all accelerazione. Gli ioni accumulati, raccolti da sottili elettrodi costruiti solitamente in oro puro, sono trasferiti successivamente mediante cavi di collegamento dedicati. La configurazione dell accelerometro non prevede nessun tipo di smorzamento, se non sotto forma di dissipazione energetica determinata dall isteresi del cristallo. La mancanza di smorzamento è trascurabile anche in conseguenza dell elevata frequenza di risonanza. Negli accelerometri piezometrici la risposta alle basse frequenze è determinata dalla costante di tempo t del cristallo, mentre alle alte frequenze dalla risonanza meccanica; l intervallo di utilizzo può essere espresso matematicamente nel seguente modo: 3/τ < ω < 0,2 ωn. Nella catena Compressione Flessione Taglio Fig. 7 Tre modalità di azione della forza d inerzia della massa sul cristallino di misura per disporre di un elevata costante di tempo (τ), per avere un adeguata risposta alle basse frequenze, è solitamente impiegato un amplificatore di tensione ad alta impedenza o, in alternativa, un amplificatore di carica. La migrazione delle cariche genererebbe, infatti, un errore proporzionale alla loro riduzione, per cui l amplificatore rileva la differenza di potenziale presente per avere un livello d impedenza d ingresso nel primo stadio dello stesso ordine di grandezza dell impedenza di uscita del cristallo di quarzo (circa 10ˆ14 Ω). Valori accettabili sono ottenuti solitamente tramite l uso di triodi ad alto vuoto nei quali la corrente di griglia è praticamente nulla (amplificatori di carica). Il problema della fuga delle cariche è proporzionale alla staticità della misura, ossia al tempo in cui si desidera mantenere le cariche ferme. Il cristallo di quarzo è infatti un condensatore che si scarica attraverso una resistenza esterna; ciò significa che i trasduttori al quarzo sono idonei a misure dinamiche o quasi statiche. Non misurano cioè né accelerazioni costanti, né, se posti in un campo gravitazionale, l accelerazione di gravità. Nelle realizzazioni più accurate si possono raggiungere rilevazioni di qualche centesimo di Hz. Inoltre, i sistemi progettati per l acquisizione a bassa frequenza (al di sotto di 1 Hz) possono generare degli errori in presenza di transienti termici a causa dell effetto piroelettrico tipico di molti materiali piezoelettrici. Tale effetto produce una carica in uscita anomala, dovuta alla variazione di temperatura. Per i sensori in cui è trascurabile la risposta alle basse frequenze questi segnali indotti dalla temperatura sono irrilevanti, mentre per accelerometri con costanti di tempo elevate l errore può essere significativo soprattutto se in fase di progettazione non si minimizzano gli effetti termici. Un ulteriore elemento da considerare quando si impiega tale tipo di sensore è costituito dall effetto che la rigidezza del cristallo (100 GPa) può ingenerare. Una sua deformazione minima è in grado di provocare un segnale di uscita elevato. Rispetto ad altri tipi di accelerometri, inoltre, essi tendono ad avere un elevata sensibilità trasversale, tipicamente attorno al 24%. Configurazioni del sensore Le numerose configurazioni costruttive del sensore al quarzo rendono gli accelerometri di questa categoria adeguati all impiego in diverse applicazioni. Un aspetto costruttivamente importante dei sensori al quarzo è costituito dalla forza di serraggio alla quale gli elementi costruttivi sono sottoposti. Un eccessiva forza sugli elementi costituenti il sensore potrebbe deformare il cristallo, mentre un valore troppo basso potrebbe tagliare le alte frequenze. Per questo la coppia di serraggio deve essere fornita con un opportuna modulazione. Il serraggio conferisce un precarico al cristallino per cui le cariche positive si posizionano sempre sulla stessa faccia anche in occasione di accelerazioni negative. In tale caso, la massima accelerazione negativa rilevabile è quella in grado di annullare il precarico. Tale forza potrebbe essere annullata anche incollando la massa al cristallino, anche se spesso tale configurazione non è proponibile a causa dell inagibilità della massa rispetto agli elettrodi. Generalmente gli accelerometri piezoelettrici si differenziano in base al modo in cui la forza d inerzia della massa accelerata agisce sul cristallino; le tre configurazioni principali sono costituite da sensori che lavorano in compressione, in flessione e a taglio. La configurazione più semplice e solida è quella in cui la massa comprime l elemento piezoelettrico attraverso la forza d inezia generata dall accelerazione alla quale è sottoposta, facendo conseguentemente variare la carica in uscita. Una taratura idonea della massa sul cristallino determina una sollecitazione specifica sull elemento sensibile creando un segnale proporzionale all intensità del segnale in uscita. Tale configurazione è la migliore dal punto di vista del rapporto massa/sensibilità, ma è anche quella maggiormente suscettibile al rumore sia acustico, sia termico derivante dalla deformazione della superficie di montaggio. Due alternative in grado di limitare questi effetti sono costituite dalla configurazione a flessione, adatta per analisi a bassa frequenza e a bassi livelli di accelerazione, e dalla configurazione in cui il cristallino è sottoposto alla forza di taglio. Tale struttura prevede che l elemento piezoelettrico sia solidale a un montante centrale e alla massa 128 DICEMBRE 2004 AUTOMAZIONE OGGI 275

sismica, mentre un anello esterno applica un precarico di compressione per conferire rigidezza alla struttura, assicurando che il sensore lavori nella porzione più ampia a comportamento lineare della sua curva sforzo/carica. In presenza di un accelerazione la massa genera uno sforzo di taglio nel cristallo che, per l effetto piezoelettrico, produce sugli elettrodi un segnale in uscita proporzionale allo sforzo e, quindi, all accelerazione che lo ha indotto. Questo modello, avendo l elemento sensibile isolato rispetto alla base e all involucro dell accelerometro, è insensibile sia alle variazioni di temperatura, sia alla deformazione della superficie su cui è montato. Housing Fixed plates Diaphragm (free ends) A y Fig. 8 Accelerometri a equilibrio di forza (sopra) e capacitivi (sotto) Il sensore ideale Il quarzo e i cristalli ceramici sono gli elementi piezoelettrici maggiormente utilizzati negli accelerometri. Il quarzo è un materiale piezoelettrico naturale a elevata stabilità, anche se attualmente si preferisce impiegare accelerometri dotati di sensore al quarzo artificiale con una migliore insensibilità alle variazioni di temperatura, oltre a una migliore stabilità e riproducibilità della misura. I materiali ceramici usati nella realizzazione degli accelerometri sono diversi e la scelta dipende dal tipo di applicazione; il più diffuso è lo zirconato di titanio (PZT). Tali sensori sono prodotti artificialmente e diventano piezoelettrici tramite un processo di polarizzazione conosciuto con il termine di polling. Esso consiste nel sottoporre il materiale a un campo elettrico di elevata intensità che allinea i dipoli elettrici della sua struttura cristallina. I trasduttori di questa categoria non possono essere sottoposti a campi elettrici d intensità superiore al valore di polling con cui sono stati polarizzati, in quanto tale intensità costituisce proprio il limite oltre il quale le proprietà piezoelettriche sarebbero alterate. R Applied Acceleration x Electrical connector Lead Wires Electronics automazioneoggi Rispetto al quarzo il segnale elettrico in uscita prodotto dai materiali ceramici è più elevato. Tale effetto, a parità di output, favorisce la realizzazione di sensori più piccoli, più leggeri, più economici e in grado di esercitare misure di livelli di vibrazione più bassi e con frequenze più elevate. Accelerometri alternativi Oltre ai piezoelettrici esistono altre tipologie di accelerometri, come i meccanici in cui la massa e la molla sono significativamente più consistenti. Tale tipo di sensore è utilizzato per percepire vibrazioni che variano lentamente nel tempo e lo spostamento della massa è misurato da potenziometri resistivi o da Lvdt3. Il loro campo di applicazione, in termini di ampiezza, può essere compreso tra ± 1 g e ± 50 g e la loro frequenza naturale può oscillare tra 12 e 86 Hz con uno smorzamento di 0,5/0,8. La resistenza del trasduttore, in caso di utilizzo di potenziometri, può variare tra 1.000 e 10.000 Ω che corrispondono a una risoluzione di 0,45% o di 0,25% dell intera scala, mentre la temperatura di utilizzo può oscillare tra 65 F e 165 F. La sensibilità alle accelerazioni ortogonali alla direzione di misura è pari a ± 1% della sensibilità lungo l asse di misura. Per misurare frequenze maggiori la soluzione consiste nell impiego di straingauge disposti all incastro di elementi elastici a mensola che sorreggono la massa. Con sensori di questo tipo si ottengono misure accurate fino a frequenze dell ordine 15.000 Hz. Un ulteriore variante dell accelerometro meccanico è quella a equilibrio di forza, in cui lo spostamento della massa sensibile alle accelerazioni rispetto all involucro è rilevato tramite un trasduttore posizionetensione. La tensione risultante, amplificata tramite un amplificatore di corrente a elevato guadagno, alimenta un forzatore che equilibra la forza d inerzia. Nel caso in cui la massa sia costituita da un magnete permanente, una bobina può fungere da forzatore ottenendo un legame lineare tra corrente e forza. Negli accelerometri di questa tipologia la corrente è proporzionale alla forza d inerzia e quindi all accelerazione da misurare, il cui il valore è determinato mediante la caduta di tensione ai capi di una resistenza nota. Sul principio di funzionamento degli accelerometri a equilibrio di forza si realizzano sensori che misurano anche le variazioni rispetto al tempo (jerkmetri), includendo nel trasduttore di base un circuito integratore. Negli accelerometri capacitivi l elemento sensibile è un condensatore la cui capacità varia al variare dell accelerazione. Esso consiste in un diaframma che, sotto l azione di accelerazioni o vibrazioni, si flette svolgendo il ruolo che nei trasduttori meccanici era assunto della massa. La deformazione del diaframma a causa dell accelerazione genera la variazione della capacità dei due condensatori solidali al diaframma la quale, attraverso un circuito a ponte sensibile, determina in uscita un segnale elettrico proporzionale all accelerazione in ingresso. DICEMBRE 2004 AUTOMAZIONE OGGI 275 129