Geotermia a bassa entalpia

Documenti analoghi
Come funziona una pompa di calore geotermica

LA GEOTERMIA A BASSA ENTALPIA

Convegno. Le pompe di calore geotermiche: I vincoli e gli incentivi per lo sviluppo

La fattibilità della geotermia nel settore edilizio

POLITECNICO DI TORINO

DECRETO MSE ( BOZZA, 30 Novembre 2011)

IL LAGO. UNA RISERVA DI ENERGIA

Dott. Geol. MARCO VINCI BERGAMO VIA G. CARNOVALI, 88 TEL FAX

Virtù e pecche nelle potenzialità della geotermia nell edilizia

GEOTERMIA PER LA CLIMATIZZAZIONE DEGLI EDIFICI

prepresidente Roberto Calovi SETTORE GESTIONE PATRIMONIO ITEA SPA

applicazioni a Pompa di Calore e quadro generale della Tecnologia

Fasi operative: fase di perforazione. Tecniche di perforazione:

Sistemi geotermici a bassa entalpia a ciclo aperto: modellazione dell'impatto termico nel sottosuolo

Tipologie e caratteristiche degli impianti di produzione ed utilizzo di energia geotermica

Geotermia e Pompe di Calore Con excursus su applicazione di Gemmi

In rosso il circuito del fluido geotermico, in blu il circuito di raffreddamento.

Consulenza e progettazione termotecnica. Installazione degli impianti chiavi in mano. Soluzioni chiavi in mano con i seguenti servizi:

La geotermia nel veronese

Introduzione alla geotermia (prima parte)

DOVE NASCE UN GIACIMENTO GEOTERMICO? TIPOLOGIA DELLE SUE SORGENTI

Progettazione e installazione PALAGHIACCIO COMUNE DI PONTEBBA FRIULI VENEZIA GIULIA OSPEDALE DI LEOBEN AUSTRIA CONSORZIO PESCATORI DI GORO - FERRARA

LA GEOTERMIA NELLA MARCA. Il contributo dei sistemi di geoscambio in campo agricolo zootecnico

PROGETTO GEO HEAT. POR CREO FESR Attività 1.5 e 1.6 Bando Unico R&S Anno 2012

LA GEOTERMIA A BASSA ENTALPIA. Nuove opportunità per uno sviluppo sostenibile il ruolo del geologo. Patti 15 marzo 2013 Sala Comunale ex Tribunale

Sonde geotermiche: rischi ambientali, disciplina tecnica e linee guida per l utilizzo della risorsa

E ZERO ENERGY BUILDING. Riccione, 15/04/2011

LEZIONE 3. Analisi delle metodologie, simulazione della progettazione di un impianto di piccola taglia. Esempio di un caso reale casa monofamiliare.

Problematiche connesse allo sviluppo dell energia geotermica in Provincia di Milano

Aerotermia e geotermia Dalla natura le fonti per un riscaldamento ad alta efficienza energetica.

Piano Energetico Comunale (PECo) Cevio

la transizione energetica Concorso e

GEOTERMIA E TELERISCALDAMENTO: L ESPERIENZA DI FERRARA

Gli impianti geotermici e relative leggi. Ing Alessandro Clerici

ENERGIA DAL MARE. Maree onde correnti, gradiente termico tra superficie e fondali

IMPIANTO GEOTERMICO DI ROCCABRUNA (CUNEO) ATTIVAZIONE DICEMBRE 2003 DATI DI MONITORAGGIO PERIODO

Obiettivi dell attività

Introduzione alla Geotermia

L Energia geotermica a bassa entalpia nella regione Friuli Venezia Giulia

LE ACQUE SOTTERRANEE

Energia geotermica. Energia Calore

Lo scambio termico tra risparmio energetico e tutela dell ambiente: il punto di vista della Provincia di Treviso

Piano Energetico Comunale (PECo) Collina d Oro

Il solare termodinamico come soluzione di efficientamento energetico. Udine 25 settembre 2014

Edifici a energia quasi zero: scelte progettuali e soluzioni tecnologiche

Sistemi per l'energia in edilizia. LM Ingegneria Edile. A. Perdichizzi Dipartimento di Ingegneria Industriale Università degli Studi di Bergamo

SCHEDA TECNICA SULLE SONDE GEOTERMICHE (M.Menichetti Università di Urbino)

Progetto unificato AEM a pompa di calore. Convegno FIRE "La climatizzazione degli edifici: soluzioni a confronto" Rho - 2 marzo 2006

L esperienza della Provincia di Treviso nel geoscambio a oltre un anno dalla sua regolamentazione

Sistema Galileus. Zone ambiente. Miscelatrici e circolatore di zona. Pannello Solare. Accumulo impianto. Scaldasalviette

Geotermia a bassa entalpia

GIOVANNI GIANOTTI Perito Industriale Termotecnico

Pompe di Calore. Parte 2 ING. STEFANO MARIANI. a cura di: Firenze 25-26/04/2009

Analisi delle metodologie di simulazione della progettazione di un impianto di media-grande taglia.

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Energia termica dal sottosuolo: storia, tecnica, bufale e potenzialità Geol. Michele Ambrosio AF Geoscience and Technology Consulting srl

il futuro è nelle tue mani

al Regolamento Edilizio

INTRODUZIONE ALLA GEOTERMIA

REGOLAMENTO PER LA REALIZZAZIONE DI IMPIANTI DI SCAMBIO TERMICO CON SONDE GEOTERMICHE A CIRCUITO CHIUSO (S.G.C.C.) ORIZZONTALI E VERTICALI

GAHP-AR. energia rinnovabile. efficienza termica. in più al m 2 per il tuo immobile

CAPO I Disposizioni generali

Pompa di calore Air Inverter

Energia geotermica. Centrale geotermoelettrica sul Monte Amiata, la più grande al mondo.

La produzione di freddo per mezzo dell irraggiamento solare (Solar cooling)

Riqualificazione energetica ed ambientale Del complesso edilizio C.so Vercelli 23-25/Via Mauri 6

IMPIANTI GEOTERMICI PER LA CLIMATIZZAZIONE

thermo frigo refrigeratori di liquidi ad assorbimento (libr) condensati ad acqua

Dati tecnici Moto-evaporanti Unità Esterne Booster HR 3.0 / 3.0 INC. / 5.2 / 7.8 / 8.3 /16.6

Capitolo 12 Le acque sotterranee

Pompa di calore Euro Cube HP &

Il contributo della risorsa geotermica all obiettivo 2020 per le rinnovabili nei consumi per riscaldamento/raffreddamento (direttiva 2009/28/CE)

La Geotermia in chiave SMART

CGT. Centro di GeoTecnologie. Le pompe di calore geotermiche: i vincoli e le opportunità per lo sviluppo. Giovedì 11 dicembre Milano

Il progetto e l esecuzione dei pozzi d acqua. Gianluigi Giannella

EDIFICI A CONSUMO ENERGETICO QUASI ZERO

Pompe di calore geotermiche in Toscana

Edifici industriali - 136

Caldo e freddo quando servono + risparmio emissioni tutto l anno

INDICE 1. OGGETTO 2. DOCUMENTI DI RIFERIMENTO 3. DATI DI PROGETTO 4. CARICO TERMICO INVERNALE 5. DESCRIZIONE IMPIANTO DI RISCALDAMENTO

Campo so s nde geote t rmich c e ed impianti realizzati Venerdì 05 Marzo 10 Sala Santa Caterina, Forlì

Elaborazione realizzata con Energy Planning ANALISI ENERGETICA CON SOLUZIONI PER LA CLIMATIZZAZIONE

Lo sviluppo della geotermia in Lombardia

POMPE DI CALORE da 3 a 540 kw

P O M P A I D R O T E R M I C A

Regolamentazione dei sistemi geotermici a bassa entalpia: l'esperienza della Provincia di Treviso

Piano energetico Generoso Tavole

"Mappatura delle caratteristiche del sottosuolo in relazione al possibile sfruttamento mediante l'accoppiata Sonda geotermica e Pompa di calore.

STUDIO PROGETTAZIONE E REALIZZAZIONE IMPIANTI DI GEOTERMIA

IL PROGETTO DI TELERISCALDAMENTO DI RADICONDOLI Una soluzione ecosostenibile. A cura dell ing. Sergio Borgioli

NUOVO POLO TERRITORIALE PER LA PRIMA INFANZIA CON ASILO NIDO DI COLOGNO MONZESE (MI)

Piano Energetico Comunale (PECo) Vezia

IX Forum QualEnergia. Il riscaldamento sostenibile negli edifici. Come ridurre i costi ed azzerare le emissioni in loco

BARRIERA D ARIA LINEA INDUSTRIALE. Per installazioni fino a 4,50 metri di altezza

ORDINE DEI GEOLOGI DELL ORDINE DEI GEOL A TOSCANA

LE ACQUE TERMALI DELLA PROVINCIA DI VERONA La diffusione degli acquiferi caldi e prime valutazioni sulla geologia degli affioramenti

Assessorato all Ambiente SPORTELLO INCENTIVI PER IL RISPARMIO ENERGETICO. Detrazioni fiscali del 65% Conto termico Detrazioni fiscali del 50%

La geotermia, l Italia e la strategia del Progetto VIGOR

Pompa di calore Euro Quadra HP &

Università degli Studi di Siena. Facoltà di Scienze Matematiche, Fisiche e Naturali. Laurea Specialistica in Geologia Applicata

Transcript:

Comune di Rimini Assessorato alle Politiche Ambientali ed Energetiche Direzione Infrastrutture, Mobilità e Ambiente Sportello Generale per l Energia Geotermia a bassa entalpia Ing. Davide Frisoni, Dott.ssa Elena Favi

Introduzione L energia Geotermica è generata dal calore terrestre. L origine di questo calore è legato alla natura interna del nostro pianeta e con i processi fisici che in esso hanno luogo. E una risorsa diffusa praticamente inesauribile (se sfruttata correttamente), costantemente disponibile nel tempo, rinnovabile e a bassissimo impatto ambientale. Rappresentazione schematica di un sistema geotermico

Introduzione Nella maggior parte delle aree terrestri, le rocce hanno una temperatura di circa 25-30 C a 500 m di profondità, e di 35-45 C a 1000 m. In altre zone, dove le condizioni geologiche sono più favorevoli (crosta terrestre più sottile, vulcanismo e/o fratture tettoniche), le temperature possono raggiungere e superare i 200 C. L energia termica accumulata in queste zone viene resa disponibile a profondità accessibili da vettori termici presenti nella crosta terrestre e denominati fluidi geotermici. Al disotto di 15-20 metri si ha la zona di OMOTERMIA, in cui il calore è fornito esclusivamente dal flusso proveniente dall interno della terra con un aumento medio progressivo di 1 C ogni 33 metri di profondità. Nella maggior parte delle regioni italiane, indipendentemente dal tipo di roccia, dall assetto geologico-strutturale e dalla stratigrafia, la temperatura della zona di omotermia è compresa tra 12 e 17 C.

Quale geotermia? Le forme di utilizzo della risorsa geotermica possono essere suddivise, in funzione di temperature decrescenti, in tre categorie: 1.Geotermia ad alta entalpia per la produzione di energia elettrica attraverso vapore ad alta temperatura che aziona delle turbine e trasforma il proprio contenuto energetico in energia meccanica. 2. Geotermia a media entalpia con utilizzo diretto del calore. 3. Geotermia a bassa entalpia basata sul semplice scambio termico col sottosuolo attraverso sistemi costituiti da sonde inserite nel terreno e pompe di calore geotermico (GHP Geothermal Heat Pump ).

Geotermia a bassa entalpia Per comprendere e spiegare le potenzialità e l elevata compatibilità ambientale che accompagnano un sistema geotermico a pompa di calore, potrebbe essere sufficiente prendere a prestito quanto affermato dalla Divisione per l Energia Elettrica e le Energie Rinnovabili del Canada: Non esiste sistema di riscaldamento e condizionamento in grado di ridurre le emissioni di gas serra ed il conseguente impatto sul riscaldamento globale così efficace come le pompe di calore geotermiche. Il potenziale energetico immagazzinato nella parte pellicolare della crosta terrestre è elevatissimo. A partire da 10 m di profondità, la temperatura del terreno risulta pressoché costante tutto l anno. Oltre tale profondità, il gradiente geotermico medio aumenta di circa 3 C ogni 100 m. Mediamente a 100 150 m di profondità si registrano temperature del terreno comprese tra 13 e 17 C; queste condizioni, costanti tutto l anno e indipendenti dalle condizioni climatiche esterne, risultano ottimali per l associazione pompa di calore sonda geotermica (SG), sostanzialmente inesauribili e totalmente rinnovali nel tempo.

Geotermia a bassa entalpia La GEOTERMIA A BASSA ENTALPIA è relativa allo sfruttamento del sottosuolo come serbatoio termico dal quale estrarre calore durante la stagione invernale ed al quale cederne durante la stagione estiva. Qualsiasi edificio, in qualsiasi luogo della terra può riscaldarsi e raffrescarsi,invece di usare la classica caldaia d'inverno e il gruppo frigo d'estate.

Perché il sottosuolo ricopre un ruolo così importante per l installazione delle sonde geotermiche? In generale l ampiezza della variazione giornaliera di temperatura si riduce già dai primi centimetri di profondità mentre quella della variazione stagionale si riduce dello stesso fattore dopo alcuni metri. Il terreno possiede un elevata capacità di accumulo. Quindi il terreno si trova a temperature notevolmente differenti dall ambiente da climatizzare ed un salto termico inferiore rispetto a quanto si avrebbe utilizzando l aria esterna (climatizzazione tradizionale). Minor lavoro per portare una situazione climatica favorevole Minori consumi e costi

La conducibilità termica del terreno Gli aspetti che influenzano la conducibilità termica: Il tipo di terreno: granulometria e tipo di materiali successione stratigrafica dei terreni densità Le caratteristiche della falda: temperatura velocità di flusso profondità La presenza di acqua Favorisce il contatto tra l impianto ed il sottosuolo: ciò comporta un aumento del rendimento potenziale. La presenza nel sottosuolo di una falda acquifera favorisce il ripristino del campo termico modificato dalle sonde geotermiche: in funzione della velocità, temperatura e geometria. L umidità naturale: nel caso di terreni insaturi migliora la conducibilità termica e garantisce un buon contatto tra sonda e sottosuolo.

La situazione del conoide del Marecchia (Geol.M.Zaghini) Si possono distinguere tre zone a diversa problematica idrogeologica per l utilizzo di sonde geotermiche: 1.Una zona apicale (conoide antico), da Ponte Verucchio sino a poco a monte della Strada Traversa Marecchia, caratterizzata da un sottile pavè ghiaioso, sede di falda acquifera soprastante i terreni di deposito marino (argille azzurre plioceniche): non vi sono particolari limitazioni all uso di geosonde; 2. Una zona di amalgamazione delle ghiaie, presso San Martino dei Mulini, caratterizzata da spessori di 20-30 m di ghiaie da cui si dipartono come digitazioni i vari livelli acquiferi della bassa pianura e costituisce l area di ricarica delle falde: dovrebbe essere vietate le perforazioni; Zona apicale Zona di amalgamazione 3. Una zona mediana e distale del conoide, costituita da un acquifero multifalda, con falde in pressione: l uso di geosonde dovrebbe essere condizionato e limitato. Zona mediana

L impianto geotermico a circuito chiuso Componenti fondamentali: - pompa di calore geotermica: macchina in grado di spostare calore da un corpo più freddo ad uno più caldo a spese di energia elettrica, - sonde geotermiche: tubi in polietilene infissi nel sottosuolo attraversati da un fluido vettore (acqua), -impianto di distribuzione del calore prodotto a bassa temperatura (pavimento, parete, soffitto). Questa tipologia di scambio termico sfrutta come linea generale delle tubazioni in polietilene ad alta densità formanti un circuito chiuso (senza emungimento da falda) in cui circola acqua o una miscela di acqua e refrigerante generalmente non tossico, che consente di assorbire calore dal terreno e di trasferirlo per mezzo della pompa di calore al sistema di condizionamento degli edifici.

Le sonde geotermiche verticali Scambiatori, di norma in polietilene, infissi nel terreno per mezzo di perforazioni verticali di lunghezza compresa tra 50 e 300 m (mediamente 100 150 m). Questo tipo di scambiatori consiste nel posizionare all'interno di perforazioni verticali in una o più coppie di tubazioni in polietilene unite al fondo a formare un circuito chiuso (un tubazione in andata ed una di ritorno ) all'interno dei quali circola un fluido termovettore. Le principali tipologie di sonde geotermiche verticali sono: 1. a tubo semplice di andata e ritorno; 2. a due tubi in andata e due in ritorno; 3. a tubi coassiali; 4. a fasci di tubi complessi (coassiali multipli). Sonde verticali: Costi maggiori Poco spazio necessario Elevata efficienza

Le sonde geotermiche orizzontali Le principali geometrie utilizzate negli scambiatori orizzontali sono a) a sviluppo lineare: - con un solo tubo; - con due o più tubi sovrapposti; b) a sviluppo lineare: - con due tubi affiancati; - con quattro tubi; c) a serpentine: - in serie; - in parallelo; d) a spirale (compatto); e) a pettine (compatto); f) inseriti nella platea di fondazione; g) a tubi alettati. Sonde orizzontali: Maggior spazio Meno costoso Piccoli edifici Temperature variabili

I pali energetici Sono delle geostrutture (principalmente pali) in calcestruzzo o calcestruzzo armato dalla duplice funzione: fungere da fondamenta ed, equipaggiate con scambiatori di calore, fornire calore all edificio che sostengono. All interno dei pali sono installati dei tubi in polietilene ad U (due o più a seconda del diametro del palo da 0.4 a 1.5 m). Un fluido portatore di calore circola nel circuito chiuso tra i pali e la pompa di calore. I pali energetici funzionano secondo un ciclo annuale, con un estrazione di calore dal terreno durante la stagione di riscaldamento ed un estrazione di freddo durante il periodo di climatizzazione.

Esempio di dimensionamento dell impianto VILLETTA UNIFAMILIARE DI 130 MQ La scelta della pompa di calore ed il dimensionamento delle sonde geotermiche, richiede la conoscenza di elementi quali: 1. le caratteristiche geologiche del sottosuolo; 2. la potenza termica prelevata dal terreno espressa in KWt; 3. la lunghezza della sonda geotermica; oltre alla documentazione tecnica dei costruttori. Ad esempio per una potenza di riscaldamento di 8 KW forniti dalla pompa di calore, 6 KW sono estratti dal terreno 2 rappresentano la potenza elettrica assorbita dal compressore in questo caso la profondità di perforazione deve raggiungere i 125 metri e la sonda geotermica per raccogliere 6 KW dal terreno deve essere collocata a 120 metri. La potenza specifica di una sonda è proporzionale alla conducibilità termica del terreno Potenza specifica (W/m)= calore scambiato tra le sonde e terreno / tempo * lunghezza tubi

Macchine perforatrici e installazione delle sonde Sonde orizzontali Sonde verticali

Salvaguardia dell ambiente Interconnessione degli acquiferi in fase di perforazione dei pozzi geotermici Valutazione dei rischi della interconnessione Inquinamento del terreno e/o delle falde a seguito di guasto o malfunzionamento del circuito di scambio termico. Eccessivo raffreddamento/riscaldamento del terreno e/o acquifero nel caso di uso intensivo di pompe di calore geotermiche nelle vicinanze o nella stessa area di prelievo.

Salvaguardia dell ambiente

Normativa Legge D.P.R. 395/1991 art.32 (Concessione di coltivazione). Il titolare del permesso di ricerca, ottenuto ai sensi dell art.6, scopre risorse geotermiche riconosciute di interesse nazionale, è concessa la coltivazione se la relativa capacità produttiva e gli altri elementi di valutazione geomineraria disponibili giustificano tecnicamente lo sviluppo del giacimento scoperto. L.9/1991 art.15 (Ricerca e coltivazione geotermica). Il permesso di ricerca di cui all art. 4 della L. 896/86 e la concessione di coltivazione di cui all art. 11 della medesima legge sono subordinati all effettuazione della rimessione in pristino dello stato originario dei luoghi a seguito di eventuale incidente o di sistemazione idrogeologica e di risanamento paesistico a seguito dei lavori. Garanzie patrimoniali reali o personali, in relazione all entità dei lavori programmati. D.Lgs. 112/1998 art.34 Le funzioni degli uffici centrali e periferici dello Stato relative alle concessioni di coltivazione delle risorse geotermiche sulla terraferma sono delegate alle regioni. Regolamento della Regione Lombardia (Delibera G.R. 3944/2006), basata sullo studio dell IRER.

Proposte Necessità di controllo sulle realizzazioni degli impianti di geoscambio tramite semplice comunicazione o richiesta di autorizzazione o N.O.? E a quale Ente? Sono necessari pareri di più Enti? Documentazione da presentare Prescrizioni differenziate in base alla localizzazione dell impianto sul conoide del Marecchia Dimensionamento dell impianto basato su programmi di calcolo del raggio di influenza termico Necessità del test di risposta termica locale (come avviene già in Svizzera) Redazione di linee guida Redazione carta di fattibilità territoriale

Proposte - Documentazione Relazione idro-geologica contenente anche: - descrizione della presenza di falde freatiche nella zona di interesse (in particolare se ci sono più falde sovrapposte e se utilizzate per l'estrazione di acqua potabile); - descrizione delle caratteristiche termo-fisiche del terreno per impianti superiori a 10 perforazioni; - descrizione dei possibili rischi: 1. rischio potenziale di inquinamento della falda freatica durante la perforazione ed il rinterro del foro da parte di additivi utilizzati; 2. rischio correlato alla messa in comunicazione di acquiferi superficiali con quelli profondi; 3. rischio d interferenza tra la sonde (o campo sonde) con l assetto idrogeologico locale, in relazione agli usi e alle utenze censite al momento della posa in opera della sonda in un intorno significativo; 4. rischio correlato alla dinamica dei versanti: valutazione del rischio di danneggiamento della sonda post operam in aree franose.

Proposte - Documentazione Relazione di dimensionamento dell'impianto di geoscambio contenente anche: - l analisi dei carichi termici e/o frigoriferi annuali della struttura e definizione della taglia nominale del geoscambiatore; - descrizione dei benefici ambientali e dei risparmi energetici in virtù dell'installazione del geoscambiatore per impianti superiori a 10 perforazioni (es. consumo annuale di gas evitato, tonnellate equivalenti di petrolio tep - risparmiate annualmente, tonnellate di CO2 non emesse annualmente); - definizione della localizzazione del campo di geoscambio e delle singole perforazioni previste; - descrizione delle caratteristiche del campo geotermico (es. estensione areale, diametro e profondità delle perforazioni, numero e interdistanza tra le geosonde); - descrizione dettagliate delle modalità di perforazione e delle caratteristiche delle geosonde; - descrizione delle caratteristiche termo-fisiche del fluido termoconvettore e certificazione di non tossicità del prodotto.

Proposte - Prescrizioni Durante la perforazione dovrà essere evitata qualsiasi conseguenza negativa per il suolo e sottosuolo. Dovranno essere implementate misure di sicurezza relative al rischio di perdite di olio della macchina perforatrice nonché perdite di prodotti specifici per la perforazione (es. carburanti, lubrificanti, olii idraulici, additivi). Occorrerà inoltre considerare che: il terreno sotto la perforatrice dovrà essere protetto mediante teli impermeabili e vasche di raccolta; in cantiere dovranno sempre essere a disposizione idonei prodotti olio assorbenti; l utilizzo di fluidi di perforazione non dovrà indurre alcune conseguenze negative per il sottosuolo e per l acqua di falda; additivi dovranno essere evitati, qualora venissero impiegati, dovranno essere completamente biodegradabili; acque e fanghi di perforazione dovranno essere smaltiti secondo la normativa vigente nel caso vengono utilizzati additivi; infiltrazioni di acque superficiali andranno impedite tramite una idonea strutturazione della zona attorno al foro di perforazione; la posizione della perforazione dovrà essere garantita per quanto riguarda eventuali sottoservizi interrati.

Proposte Carta di fattibilità territoriale (es. Svizzera) Nelle zone üb non c è una falda o non c è un interesse per un utilizzo delle acque sotterranee per motivi qualitativi o quantitativi. Si tratta del territorio al di fuori del fondovalle e lontano dalle captazioni esistenti. In queste zone è possibile l installazione di impianti geotermici. La zona di protezione delle acque sotterranee Au indica la presenza di una falda in qualità d acqua potabile. In questa zona le possibilità sono limitate. Le zone S1, S2 e S3 sono le zone di protezione delle captazioni ad uso potabile esistenti. Per le zone Area è concretamente prevista la captazione per uso potabile. In queste zone non è possibile l installazione di impianti geotermici.

Bibliografia IRER (Istituto Regionale di Ricerca della Lombardia) "Indirizzi per un'azione regionale per l'utilizzo e lo sviluppo delle risorse geotermiche rinnovabili a bassa entalpia in Regione Lombardia Regolamento della Regione Lombardia (Delibera G.R. 3944/2006), basata sullo studio dell IRER Maurizio Zaghini (Ordine dei Geologi dell Emilia-Romagna), Atti del Convegno Rischio Idrogeologico nel Riminese. 11 maggio 2001 Gabriele Matteucci (Istituto di Ricerca CSA, Rimini), Leonardo Marotta (Istituto di Ricerca CSA, Rimini), Patrizia Pari (Entropia SNC, Ancona), Atti del Convengo Geotermia a bassa entalpia. 7 novembre 2007 c/o Ecomondo-KeyEnergy Fabrizio Carbusano, Valentina Raccanelli (www.geologiweb.it), La qualità dell abitare in montagna: edilizia ed energia. Gruppo Trevi, I sistemi geotermici. La Terra sorgente di energia. Alessandro Ranieri, Convengo Fonti Rinnovabili di Energia. Potenzialità ed applicazioni in Provincia di Verona. 24 novembre 2004 Emanuela Kardos, Sergio Raccichini, Il problema energetico 19 gennaio 2008