DESCRIZIONE GENERALE DELL OPERA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DESCRIZIONE GENERALE DELL OPERA"

Transcript

1

2 PREMESSA La presente relazione è volta ad illustrare le ipotesi di calcolo e le verifiche degli elementi strutturali relativi al progetto di ampliamento dell Ex-Macello in via Dario Campana, sito nel Comune di Rimini. 1. DESCRIZIONE GENERALE DELL OPERA E CRITERI GENERALI DI PROGETTAZIONE, ANALISI E VERIFICA L intervento prevede la realizzazione di due corpi di ampliamento, laterali rispetto alla palazzina principale esistente, mantenuti separati dei fabbricati esistenti mediante la realizzazione di un giunto sismico di opportune dimensioni. I fabbricati verranno adibiti a laboratori di ricerca, stoccaggio materiali, spogliatoi e collegamento di distribuzione fra le diverse zone del complesso. Gli ampliamenti in progetto si sviluppano su un solo piano e risultano privi di regolarità, così come definita ai sensi del par del D.M. 14/01/2008. La struttura in elevazione, realizzata in carpenteria metallica, è riconducibile alla tipologia strutturale struttura con controventi concentrici con diagonale tesa attiva, b1) ai sensi del par del D.M. 14/01/2008. Il solaio di copertura verrà realizzato con lamiera grecata e soletta collaborante in calcestruzzo armato, per la zona dei laboratori e del collegamento distributivo, mentre verrà realizzato con un tavolato ligneo leggero per la porzione che realizza la pensilina a protezione della vetrata sul retro con aggetto di circa 50 cm. L impalcato, per quanto appena descritto, può essere considerato infinitamente rigido nel proprio piano. Le fondazioni sono di tipo superficiale, costituite da travi rovesce realizzate in conglomerato cementizio armato. 2. QUADRO NORMATIVO - D.M. 14 Gennaio 2008: Norme tecniche per le costruzioni. Testo normativo che raccoglie in forma unitaria le norme che disciplinano la progettazione, l esecuzione ed il collaudo delle costruzioni al fine di garantire, per stabiliti livelli sicurezza, la pubblica incolumità; - Circolare 2 Febbraio 2009, n. 617: Istruzioni per l applicazione delle Nuove norme tecniche per le costruzioni di cui al D.M. 14 gennaio Con le presenti istruzioni si è inteso fornire agli operatori indicazioni, elementi informativi ed integrazioni, per una più agevole ed univoca applicazione delle Nuove norme tecniche per le costruzioni. 3. AZIONI DI PROGETTO SULLE COSTRUZIONI Sono riportati in seguito i calcoli relativi alle valutazioni delle azioni di riferimento per il progetto della struttura. 3.1 Solai di Copertura Per le strutture di ampliamento si individuano le seguenti zone di copertura:

3 - TIPO 1-A: copertura con lamiera grecata e soletta collaborante (h = 16 cm), portante impianti e macchinari laboratori. COPERTURA TIPO 1-A Permanenti Strutturali (G 1) 3.63 kn/m 2 Permanenti Non Strutturali (G 2) (*) 4.55 kn/m 2 Totale Permanenti 8.18 kn/m 2 Carichi Variabili (CAT. H1) 0.50 kn/m 2 (*) I permanenti non strutturali G 2 risultano comprensivi del peso degli impianti che ammonta complessivamente a = 78.00kN, distribuiti su di una superficie di 4.60m 7.90m = 36.34m, per cui l incidenza degli impianti risulta pari a 78.00/36.34 = 2.15kN/m 2. Per i calcoli dei solai si assume, a favore di sicurezza, un valore di 2.80 kn/m 2. - TIPO 1-B: copertura con lamiera grecata e soletta collaborante (h = 16 cm). COPERTURA TIPO 1-B Permanenti Strutturali (G 1) 3.63 kn/m 2 Permanenti Non Strutturali (G 2) 1.75 kn/m 2 Totale Permanenti 5.38 kn/m 2 Carichi Variabili (CAT. H1) 0.50 kn/m 2 - TIPO 1-D: copertura con lamiera grecata e soletta collaborante (h = 12 cm). COPERTURA TIPO 1-D - TIPO 2: copertura leggera in tavolato. COPERTURA TIPO 3 Permanenti Strutturali (G 1) 2.51 kn/m 2 Permanenti Non Strutturali (G 2) 2.55 kn/m 2 Totale Permanenti 5.06 kn/m 2 Carichi Variabili (CAT. H1) 0.50 kn/m 2 Permanenti Strutturali (G 1) 0.30 kn/m 2 Permanenti Non Strutturali (G 2) 1.30 kn/m 2 Totale Permanenti 1.60 kn/m Azione della Neve Il carico della neve viene valutato seguendo le prescrizioni al par. 3.4 del D.M. 14/01/2008: dove: q sk valore caratteristico di riferimento del carico neve al suolo; il sito in costruzione è localizzato nella Provincia di Rimini (Zona I Mediterranea), ad una quota sul livello del mare inferiore ai 200m. Pertanto: µ i fattore di forma; la copertura sarà orizzontale, con angolo 0 < α < 30 ; si assume quindi: C E coefficiente di esposizione;

4 In base alla tabella 3.4.I, il sito di costruzione può essere definito Normale: aree su cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi. Si assume: C T coefficiente termico; in via cautelativa si assume: Il carico da neve risulta dunque: 3.3 Azione del Vento La pressione del vento viene valutata in accordo a quanto prescritto nel par. 3.3 del D.M. 14/01/2008: dove: q b pressione cinetica di riferimento; il sito in costruzione è localizzato in Emilia Romagna (Zona II), ad una quota sul livello del mare a s inferiore ad a 0. Pertanto v b = v b,0 = 25 m/s ; da cui: c e coefficiente di esposizione; il sito d interesse è localizzato ad una distanza compresa tra i 2 km ed i 10 km dalla costa. La classe di rugosità, in accordo con la Tab III, è B Aree urbane, suburbane, industriali e boschive, da cui si ricava una classe di esposizione del sito III. Con i parametri ottenuti dalla Tab. 3.3.II (k r =0.20 ; z 0 =0.1 ; z min =5.0) e considerando un coefficiente topografico c t unitario, si ricava il coefficiente di esposizione dall equazione: c d coefficiente dinamico; viene assunto cautelativamente pari ad 1,0. c p coefficiente di forma; con riferimento alla Circolare Applicativa al par , vengono ora esposti i valori dei coefficienti di forma (o aerodinamici) a seconda della porzione d interesse dei fabbricati: - superficie verticale sopravento: c p = + 0.8

5 - superficie verticale sottovento: c p = superficie orizzontale copertura: c p = pensilina orizzontale a sbalzo (α=0 ): c p = ± 1.2 Per al fine si ottiene: - superficie verticale sopravento: p = = 0.54 kn/m 2 - superficie verticale sottovento: p = = kn/m 2 - superficie orizzontale copertura: p = = kn/m 2 - pensilina orizzontale a sbalzo (α=0 ): p = ± = ± 0.65 kn/m 2 L azione del vento esercitata dalla vetrata di tamponamento sulle travi di bordo del solaio di copertura sarà pari a /2 = 0.85kN/m. 3.4 Azioni Sismiche Le azioni sismiche su ciascuna costruzione vengono valutate in accordo con il par. 3.2 del D.M. 14/01/2008, in relazione ad un periodo di riferimento V R che si ricava come: dove: V N vita nominale dell opera; la costruzione ricade nella categoria di Opera ordinaria, quindi con V N 50 anni. C U classe d uso; i fabbricati, ricadenti in Classe II, vengono considerati a favore di sicurezza ricadenti in Classe III: Costruzioni il cui uso preveda affollamenti significativi. Il coefficiente è dunque pari ad: C U =1.5 Il periodo di riferimento per il calcolo dell azione sismica risulta quindi: V R =75 anni. Nel D.M. 14/01/2008 la definizione della pericolosità sismica viene fatta mediante un approccio sito dipendente. Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla pericolosità sismica di base del sito di costruzione. Quest ultima è definita in termini di accelerazione orizzontale massima attesa a g e di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente S e (T), con riferimento a prefissate probabilità di eccedenza P VR nel periodo di riferimento V R. Le condizioni del sito di riferimento rigido in generale non corrispondono a quelle effettive. È necessario tenere conto delle condizioni stratigrafiche del volume di terreno interessato dall opera ed anche delle condizioni topografiche, poiché entrambi questi fattori concorrono a modificare l azione sismica in superficie. Categoria di sottosuolo dalle indagini geofisiche di micro-zonazione risulta una velocità

6 equivalente delle onde di taglio V S30 = m/s. Il terreno d interesse ricade in categoria C: Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità. Condizione topografica la superficie del piano campagna risulta orizzontale o comunque con inclinazione media 15. Il sito ricade dunque in categoria T1. Per il calcolo degli spettri elastici, relativi ai diversi stati limite considerati, ci si è avvalsi del software fornito dal sito del Consiglio Superiore dei Lavori Pubblici denominato Azioni sismiche - Spettri NTC ver Il programma effettua tutte 28 le operazioni di interpolazione sia geografica che temporale richieste per la valutazione dell azione sismica. Si espongono i risultati ottenuti grazie all utilizzo di tale software: Spettro elastico allo SLO Tale spettro di risposta è stato calcolato nel comune di Rimini per categoria di sottosuolo C e categoria topografica T1, con una probabilità di superamento P VR = 81% in una vita di riferimento V R = 75 anni e con un tempo di ritorno T R = 45 anni. Parametri Indipendenti Parametri Dipendenti a g g S F η T* C s T B s S S T C s C C T D s S T q 1.000

7 3.4.2 Spettro elastico allo SLD Tale spettro di risposta è stato calcolato nel comune di Rimini per categoria di sottosuolo C e categoria topografica T1, con una probabilità di superamento P VR = 63% in una vita di riferimento V R = 75 anni e con un tempo di ritorno T R = 75 anni. Parametri Indipendenti Parametri Dipendenti a g g S F η T* C s T B s S S T C s C C T D s S T q Spettro elastico allo SLD, η pari a 2/3 Come richiesto dalla Circolare Esplicativa al par. C7.1, per fabbricati ricadenti in classe d uso III è necessario effettuare una verifica, in termini di resistenza, con azione sismica corrispondente allo SLD attribuendo ad η il valore di 2/3 (par D.M. 14/01/2008). Tale spettro di risposta è stato calcolato nel comune di Rimini per categoria di sottosuolo C e categoria topografica T1, con una probabilità di superamento P VR = 63% in una vita di riferimento V R = 75 anni e con un tempo di ritorno T R = 75 anni.

8 Parametri Indipendenti Parametri Dipendenti a g g S F 0 η T* C s T B s S S T C s C C T D s S T q Spettro elastico allo SLV Tale spettro di risposta è stato calcolato nel comune di Rimini per categoria di sottosuolo C e categoria topografica T1, con una probabilità di superamento P VR = 10% in una vita di riferimento V R = 75 anni e con un tempo di ritorno T R = 712 anni.

9 Parametri Indipendenti Parametri Dipendenti a g g S F η T* C s T B s S S T C s C C T D s S T q Spettro di progetto allo SLV Tale spettro viene calcolato dividendo le ordinate dello spettro di risposta elastico allo SLV per il fattore di struttura q. Il valore del fattore di struttura q da utilizzare per ciascuna direzione dell azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità, dai criteri di progettazione adottati e prende in considerazione le non linearità dei materiali; esso può essere calcolato tramite la seguente espressione: dove: q 0 valore massimo del fattore di struttura; Le strutture in acciaio con diagonale tesa attiva (b1), in accordo con il par del D.M. 14/01/2008, hanno un valore di q 0 pari a 4, sia per strutture in CD A che strutture in CD B. K R fattore riduttivo funzione della regolarità in altezza;

10 I corpi di ampliamento non sono regolari in altezza, per cui K R = 0.8 Il fattore di struttura d interesse risulta: Parametri Indipendenti Parametri Dipendenti a g g S F η T* C s T B s S S T C s C C T D s S T q Accelerogrammi In accordo con il par del D.M. 14/01/2008, gli stati limite, ultimi e di esercizio, possono essere verificati attraverso l uso di accelerogrammi artificiali, simulati o naturali. Attraverso un indagine geognostica di microzonazione sismica del sito in esame, ed utilizzando i tre accelerogrammi forniti dalla regione Emilia Romagna, si sono ottenuti gli spettri di risposta (in termini di accelerazione e di spostamento) del piano campagna.

11 La procedura utilizzata per la determinazione degli spettri fa riferimento ad una sismicità di base caratterizzata da un periodo di ritorno di 475 anni, quindi non compatibile con la nostra struttura che, essendo in Classe III, si riferisce ad un tempo di ritorno di 712 anni allo SLV. Per poter comparare gli spettri di risposta derivanti dagli accelerogrammi e quelli elastici, è necessario scalare i primi in base alla differenza percentuale che intercorre tra lo spettro SLV con T R = 475 anni e lo spettro SLV T R = 712 anni. T R a g (g) F 0 T* C (s) (%) Osservando i tre parametri indipendenti fondamentali (a g, F 0 e T* C ), si desume che è l accelerazione al suolo a g a rappresentare la differenza fondamentale tra i due spettri studiati. Aumentando le ordinate degli spettri derivanti dagli accelerogrammi di (%) è possibile compararli con lo spettro elastico allo SLV ed utilizzarli per l analisi e la verifica delle strutture d ampliamento.

12

13 PREMESSA La presente relazione è volta ad illustrare le caratteristiche dei materiali ad uso strutturale impiegati nel progetto di ampliamento dell Ex-Macello in via Dario Campana, sito nel Comune di Rimini. 1. ELENCO DEI MATERIALI IMPIEGATI E LORO MODALITÀ DI POSA IN OPERA Vieni qui riportata una descrizione delle caratteristiche principali dei materiali da impiegare nel progetto di ampliamento. 1.1 CALCESTRUZZO Sono definite, per ogni tipologia strutturale in progetto, le caratteristiche dei calcestruzzi da adoperarsi in accordo le normative vigenti: - D.M. 14/01/2008 per le resistenze caratteristiche; - UNI 11104:2004 ed UNI EN 206-1:2006 per le prestazioni di durabilità; Il copriferro nominale, dimensionato in accordo con l Eurocodice 2, è inteso come la distanza tra la superficie di getto e la superficie esterna dell armatura Fondazioni Classe di esposizione XC2 Resistenza caratteristica minima C25/30 Dosaggio cemento 300 kg/m 3 Rapporto a/c 0.60 Copriferro nominale 30 mm Dimensione aggregato 32 mm Classe di consistenza S Soletta collaborante Classe di esposizione XC2 Resistenza caratteristica minima C25/30 Dosaggio cemento 300 kg/m 3 Rapporto a/c 0.60 Copriferro nominale 30 mm Dimensione aggregato 32 mm Classe di consistenza S3 1.2 ACCIAIO PER BARRE DI ARMATURA L acciaio delle barre di armatura del cemento armato dovrà essere del tipo B450C, come prescritto al paragrafo del D.M. 14/01/2008. Vengono ora riportate le principali caratteristiche meccaniche del materiale: Tipologia B450C f yk (tensione caratteristica di snervamento) 450 N/mm 2 (frattile 5%) f tk (tensione caratteristica di rottura) 540 N/mm 2 (frattile 5%) (f t/ f y) k 1.15; 1.35 (frattile 10%) (f t/ f y nom) k 1.25 (frattile 10%) (A gt) k (allungamento) 7.50 (frattile 10%) I (coeff. protezione sismica) ACCIAIO DI CARPENTERIA 3

14 L acciaio di carpenteria pesante è del tipo S235, conformi alla norma UNI EN (per i laminati) ed UNI EN (per i tubi saldati). Si riportano nel seguito le principali caratteristiche riportate al paragrafo del D.M. 14/01/2008. Tipologia S235 f yk (t 40 mm) 235 N/mm 2 f tk (t 40 mm) 360 N/mm 2 f yk (40 mm < t 80 mm) 215 N/mm 2 f tk (40 mm < t 80 mm) 360 N/mm 2 E (Modulo Elastico) N/mm 2 ν (coeff. Poisson) VALORI DI CALCOLO I valori di calcolo utilizzati per le analisi strutturali per i singoli materiali impiegati sono stati individuati seguendo le indicazioni riportate nel D.M. 14/08/2008, in base alle tipologie di materiale e di verifica. 4

15 Figura 1 3d Figura 2 nodi *** NODE DATA < Node > NO X Y Z TEMPERATURE

16 e

17 e e e e e e e e e e

18 e e e e e e e e e e e e e

19 e e e e e e e

20 e e e e e e e e e e

21 Figura 3 aste *** BEAM MEMBER DATA < Beam > NO NODAL CONNECTIVITY BEAM END RELEASE MATERIAL SECTION LENGTH I J I J C25/30 Cord_Fond C25/30 Cord_Fond C25/30 Cord_Fond C25/30 Cord_Fond C25/30 Cord_Fond C25/30 Cord_Fond C25/30 Cord_Fond S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret aste S235 - ret aste 1.595

22 S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 HEB S235 HEB S235 HEB S235 HEB S235 HEB OFFSET HEB200 - pil OFFSET HEB200 - pil S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 HEA S235 HEA S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEA S235 HEA S235 HEB S235 HEA S235 HEB S235 HEA S235 HEB S235 HEA S235 HEA S235 HEB S235 HEA S235 HEB S235 HEB S235 HEA

23 S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 HEA S235 UPN S235 UPN S235 UPN S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEB S235 HEB S235 HEB S235 HEB S235 HEB S235 HEA S235 HEA S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEB S235 HEA S235 HEA S235 HEB S235 HEB S235 HEA

24 S235 HEA S235 HEA S235 HEB S235 HEA S235 HEA S235 HEB S235 HEA S235 HEB S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEA S235 HEA S235 HEB S235 HEB S235 doppioheb S235 HEA S235 HEB S235 HEB S235 HEA S235 HEA S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret tiranti S235 - ret tiranti S235 - ret tiranti S235 - ret tiranti S235 - ret tiranti S235 - ret tiranti S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste OFFSET offset OFFSET offset OFFSET offset OFFSET offset OFFSET offset S235 HEB S235 HEB S235 HEB S235 HEB

25 S235 HEB S235 HEB S235 HEB S235 HEA S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 HEB S235 HEB S235 HEB S235 HEB S235 HEB S235 HEA S235 HEB S235 HEA S235 HEA S235 HEA S235 HEA S235 doppioheb S235 offset S235 offset 0.5 *** TRUSS MEMBER DATA < Truss > NO NODAL CONNECTIVITY MATERIAL SECTION TENSION / SECTION AREA LENGTH I J COMPRESSION I J S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N Tabella 1 1 : HEA140 z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m)

26 Tabella 2 2 : HEB200 z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m) Tabella 3 3 : HEB200 - pil z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m) Tabella 4 4 : offset z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m)

27 Tabella 5 5 : HEB160 z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m) Tabella 6 6 : piatti_controventi z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m) Tabella 7 7 : UPN140 z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m)

28 Tabella 8 8 : pilastri z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m) Tabella 9 9 : aste z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m) Tabella : tiranti z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m)

29 Tabella : doppioheb140 z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m) Tabella : HEB220 z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m) Tabella : Cord_Fond z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m) Figura 4 vincoliest

30 Figura 5 vincoliint < Floor Diaphragm/Rigid Link > *** FLOOR DIAPHRAGM / RIGID LINK DATA MASTER DDDRRR NODES OF SAME DISPLACEMENT F Floor Diaphragm 345to to to to to to to to to ** SUPPORT / SPECIFIED DISPLACEMENT < Boundary > NODE SUPPORT SPECIFIED DISPLACEMENT DDDRRR Dx Dy Dz Rx Ry Rz

31

32

33

34 Tabella 14 Kw (winkler) Element Type Distributed Type Face Spring Type Modulus of Subgrade Reaction (kgf/cm^3) 1 PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear 2.00

35 57 PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear 2.00

36 *** LOAD CASE DATA < Static Loadcase > - NO NAME TYPE SELF WEIGHT FACTOR DESCRIPTION X Y Z G1 D G2 D Qk,neve S Qk,copertura LR VENTO X W VENTO Y W VENTO Z W Tabella 15 Floor Load No Sno Name Desc Load case1 Load1 Load Sub1 (kn/m^2) case2 Load2 Load Sub2 (kn/m^2) case3 Load3 Load Sub3 (kn/m^2) case4 TIPO 1- laboratori A -impianti G X G X Qk,ne X ve TIPO 1- laboratori G X G X B Qk,ne ve X TIPO 1- corridoioimpianti G X G X Qk,ne C X ve TIPO 1- corridoio G X G X D 5 5 TIPO 2 pensilina G X G X 6 6 LUCERNA I 7 7 VENTO Z G2 VENTO Z O Qk,ne ve Qk,ne ve Qk,ne ve X X Load4 (kn/m^2) Sub4 Qk,cop ertura X Qk,cop ertura X Qk,cop ertura Qk,cop ertura Qk,cop ertura X NONE X NONE X O NONE X NONE X NONE X X X X Tabella 16 Flld1 No Load Type Distribution Type Load Angle ([deg]) Sub Beam No Sub Beam Angle ([deg]) Load Direction 1 LUCERNAI Two Way Global Z 2 TIPO 1-A One Way Global Z 3 TIPO 1-A One Way Global Z 4 TIPO 1-A One Way Global Z 5 TIPO 1-A One Way Global Z 6 TIPO 1-A One Way Global Z 7 TIPO 1-A One Way Global Z 8 TIPO 1-A One Way Global Z 9 TIPO 1-A One Way Global Z 10 TIPO 1-A One Way Global Z 11 TIPO 1-A One Way Global Z 12 TIPO 1-A One Way Global Z 13 TIPO 1-B One Way Global Z 14 TIPO 1-B One Way Global Z 15 TIPO 1-B One Way Global Z 16 TIPO 1-B One Way Global Z 17 TIPO 1-B One Way Global Z 18 TIPO 1-B One Way Global Z Nodes for Loading Area 350, 356, 357, , 350, 352, , 357, 358, , 348, 349, , 353, 355, , 363, 364, , 362, 363, , 361, 362, , 365, 366, , 366, 367, , 368, 369, , 369, 370, , 372, 375, , 371, 372, , 401, 402, , 382, 383, , 383, 384, , 404, 405, TIPO 1-B One Way Global Z 392, 403, 404,

37 TIPO 1-A One Way Global Z 391, 402, 403, TIPO 1-B One Way Global Z 401, 406, 407, TIPO 1-B One Way Global Z 402, 407, 408, TIPO 1-B One Way Global Z 407, 418, 419, TIPO 1-B One Way Global Z 418, 421, 424, TIPO 1-B One Way Global Z 423, 448, 449, TIPO 1-B One Way Global Z 446, 462, 463, TIPO 1-B One Way Global Z 462, 487, 488, TIPO 1-B One Way Global Z 487, 492, 493, TIPO 1-B One Way Global Z 492, 496, 498, TIPO 1-D One Way Global Z 376, 385, 386, TIPO 1-D One Way Global Z 378, 387, 388, TIPO 1-C One Way Global Z 380, 389, 390, LUCERNAI Two Way Global Z 353, 359, 360, TIPO 1-D One Way Global Z 395, 410, 411, TIPO 1-D One Way Global Z 396, 411, 412, TIPO 1-D One Way Global Z 397, 412, 413, TIPO 1-D One Way Global Z 398, 413, 414, TIPO 1-D One Way Global Z 399, 414, 415, TIPO 1-D One Way Global Z 400, 415, 416, TIPO 1-B One Way Global Z 406, 417, 418, TIPO 1-B One Way Global Z 417, 431, 432, TIPO 1-B One Way Global Z 431, 461, 462, TIPO 1-B One Way Global Z 461, 486, 487, TIPO 1-B One Way Global Z 486, 491, 492, TIPO 1-B One Way Global Z 491, 495, 496, TIPO 1-D One Way Global Z 389, 399, 400, TIPO 1-D One Way Global Z 387, 397, 398, TIPO 1-D One Way Global Z 385, 395, 396, LUCERNAI Two Way Global Z 382, 391, 392, LUCERNAI Two Way Global Z 383, 392, 393, LUCERNAI Two Way Global Z 421, 446, 447, LUCERNAI Two Way Global Z 422, 447, 448, TIPO 1-D One Way Global Z 394, 537, 410, TIPO 2 One Way Global Z 537, 523, 524, TIPO 2 One Way Global Z 410, 524, 525, TIPO 2 One Way Global Z 411, 525, 526, TIPO 2 One Way Global Z 412, 526, 527,

38 TIPO 2 One Way Global Z 413, 527, 528, TIPO 2 One Way Global Z 414, 528, 529, TIPO 2 One Way Global Z 415, 529, 536, TIPO 2 One Way Global Z 535, 534, 431, TIPO 2 One Way Global Z 534, 533, 461, TIPO 2 One Way Global Z 533, 532, 486, TIPO 2 One Way Global Z 532, 531, 491, TIPO 2 One Way Global Z 531, 530, 495, VENTO Z Two Way Global Z 394, 537, 410, VENTO Z Two Way Global Z 395, 410, 411, VENTO Z Two Way Global Z 385, 395, 396, VENTO Z Two Way Global Z 376, 385, 386, VENTO Z Two Way Global Z 396, 411, 412, VENTO Z Two Way Global Z 397, 412, 413, VENTO Z Two Way Global Z 387, 397, 398, VENTO Z Two Way Global Z 378, 387, 388, VENTO Z Two Way Global Z 398, 413, 414, VENTO Z Two Way Global Z 389, 399, 400, VENTO Z Two Way Global Z 380, 389, 390, VENTO Z Two Way Global Z 399, 414, 415, VENTO Z Two Way Global Z 400, 415, 416, VENTO Z Two Way Global Z 345, 350, 352, VENTO Z Two Way Global Z 350, 356, 357, VENTO Z Two Way Global Z 351, 357, 358, VENTO Z Two Way Global Z 356, 361, 362, VENTO Z Two Way Global Z 346, 348, 349, VENTO Z Two Way Global Z 348, 353, 355, VENTO Z Two Way Global Z 353, 359, 360, VENTO Z Two Way Global Z 359, 362, 363, VENTO Z Two Way Global Z 354, 363, 364, VENTO Z Two Way Global Z 361, 365, 366, VENTO Z Two Way Global Z 362, 366, 367, VENTO Z Two Way Global Z 365, 368, 369, VENTO Z Two Way Global Z 366, 369, 370, VENTO Z Two Way Global Z 368, 371, 372, VENTO Z Two Way Global Z 369, 372, 375, VENTO Z Two Way Global Z 372, 382, 383, VENTO Z Two Way Global Z 373, 383, 384,

39 103 VENTO Z Two Way Global Z 104 VENTO Z Two Way Global Z 105 VENTO Z Two Way Global Z 106 VENTO Z Two Way Global Z 107 VENTO Z Two Way Global Z 108 VENTO Z Two Way Global Z 109 VENTO Z Two Way Global Z 110 VENTO Z Two Way Global Z 111 VENTO Z Two Way Global Z 112 VENTO Z Two Way Global Z 113 VENTO Z Two Way Global Z 114 VENTO Z Two Way Global Z 115 VENTO Z Two Way Global Z 116 VENTO Z Two Way Global Z 117 VENTO Z Two Way Global Z 118 VENTO Z Two Way Global Z 119 VENTO Z Two Way Global Z 120 VENTO Z Two Way Global Z 121 VENTO Z Two Way Global Z 122 VENTO Z Two Way Global Z 123 VENTO Z Two Way Global Z 124 VENTO Z Two Way Global Z 125 VENTO Z Two Way Global Z , 404, 405, , 392, 393, , 391, 392, , 402, 403, , 403, 404, , 401, 402, , 406, 407, , 407, 408, , 417, 418, , 418, 419, , 421, 424, , 431, 432, , 446, 447, , 447, 448, , 448, 449, , 462, 463, , 461, 462, , 486, 487, , 487, 488, , 491, 492, , 492, 493, , 495, 496, , 496, 498, 493 Tabella 17 Bmld1 Element BM LD Type Load Case Load Type Direction D1 D2 P1 P2 Unit 313 Beam Load VENTO X Distributed Forces Global X kn/m 314 Beam Load VENTO X Distributed Forces Global X kn/m 315 Beam Load VENTO X Distributed Forces Global X kn/m 316 Beam Load VENTO X Distributed Forces Global X kn/m 317 Beam Load VENTO X Distributed Forces Global X kn/m 435 Beam Load VENTO Y Distributed Forces Global Y kn/m 436 Beam Load VENTO Y Distributed Forces Global Y kn/m 437 Beam Load VENTO Y Distributed Forces Global Y kn/m 438 Beam Load VENTO Y Distributed Forces Global Y kn/m 439 Beam Load VENTO Y Distributed Forces Global Y kn/m 440 Beam Load VENTO Y Distributed Forces Global Y kn/m 549 Beam Load VENTO Y Distributed Forces Global Y kn/m 550 Beam Load VENTO Y Distributed Forces Global Y kn/m 551 Beam Load VENTO Y Distributed Forces Global Y kn/m 635 Beam Load VENTO Y Distributed Forces Global Y kn/m [ LOAD CASE : G1 ] < Self Weight > ; X=0, Y=0, Z=-1

40 < Weight/Volume/Surface area of all member > *** TOTAL WEIGHT / VOLUME / SURFACE AREA SUMMARY SECTION SECION SURFACE AREA VOLUMN WEIGHT FRAME TRUSS NO NAME NUMBER NUMBER HEA HEB HEB200 - pil offset HEB piatti_controv~ UPN pilastri aste tiranti doppioheb UPN pilastro_obl HEB Cord_Fond Pilastrino Figura 6 SLD

41 Figura 7 SLV Figura 8 SLD eta 2/3

42 Figura 9 SP1 Figura 10 SP2

43 Figura 11 SP3 < Load Combination > ** GENERAL NO NAME TYPE ACTIVE DESCRIPTION glcb1 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))+0.3(1.00)(si... 2 glcb2 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))+0.3(1.00)(si... 3 glcb3 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))-0.3(1.00)(si... 4 glcb4 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))-0.3(1.00)(si... 5 glcb5 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))+0.3(1.00)(si... 6 glcb6 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))+0.3(1.00)(si... 7 glcb7 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))-0.3(1.00)(si... 8 glcb8 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))-0.3(1.00)(si... 9 glcb9 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es).. 10 glcb10 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es).. 11 glcb11 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es).. 12 glcb12 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es).. 13 glcb13 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es).. 14 glcb14 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es).. 15 glcb15 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es).. 16 glcb16 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es).. 17 glcb17 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))+0.3( glcb18 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))+0.3( glcb19 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))-0.3( glcb20 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))-0.3( glcb21 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(

44 sisma_y_sp_1(rs)+sisma_y_sp_1(es))+0.3( glcb22 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))+0.3( glcb23 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))-0.3( glcb24 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))-0.3( glcb25 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))+0.3( glcb26 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))+0.3( glcb27 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))-0.3( glcb28 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))-0.3( glcb29 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))+0.3( glcb30 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))+0.3( glcb31 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))-0.3( glcb32 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))-0.3( glcb33 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))+0.3( glcb34 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))+0.3( glcb35 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))-0.3( glcb36 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))-0.3( glcb37 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))+0.3( glcb38 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))+0.3( glcb39 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))-0.3( glcb40 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))-0.3( glcb41 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))+0.3(1.00)(si glcb42 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))+0.3(1.00)(si glcb43 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))-0.3(1.00)(si glcb44 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))-0.3(1.00)(si glcb45 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))+0.3(1.00)(si glcb46 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))+0.3(1.00)(si glcb47 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))-0.3(1.00)(si glcb48 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))-0.3(1.00)(si glcb49 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es).. 50 glcb50 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es).. 51 glcb51 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es).. 52 glcb52 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es).. 53 glcb53 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es).. 54 glcb54 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es).. 55 glcb55 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es).. 56 glcb56 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es).. 57 glcb57 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))+0.3( glcb58 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))+0.3( glcb59 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))-0.3( glcb60 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))-0.3( glcb61 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))+0.3( glcb62 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))+0.3( glcb63 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))-0.3(1.00..

45 64 glcb64 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))-0.3( glcb65 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))+0.3( glcb66 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))+0.3( glcb67 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))-0.3( glcb68 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))-0.3( glcb69 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))+0.3( glcb70 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))+0.3( glcb71 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))-0.3( glcb72 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))-0.3( glcb73 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))+0.3( glcb74 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))+0.3( glcb75 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))-0.3( glcb76 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))-0.3( glcb77 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))+0.3( glcb78 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))+0.3( glcb79 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))-0.3( glcb80 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))-0.3( glcb81 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))+0.3(1.00)(si glcb82 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))+0.3(1.00)(si glcb83 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))-0.3(1.00)(si glcb84 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))-0.3(1.00)(si glcb85 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))+0.3(1.00)(si glcb86 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))+0.3(1.00)(si glcb87 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))-0.3(1.00)(si glcb88 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))-0.3(1.00)(si glcb89 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es).. 90 glcb90 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es).. 91 glcb91 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es).. 92 glcb92 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es).. 93 glcb93 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es).. 94 glcb94 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es).. 95 glcb95 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es).. 96 glcb96 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es).. 97 glcb97 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))+0.3( glcb98 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))+0.3( glcb99 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))-0.3( glcb100 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))-0.3( glcb101 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))+0.3( glcb102 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))+0.3( glcb103 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))-0.3( glcb104 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))-0.3( glcb105 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))+0.3( glcb106 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(

46 sisma_x_sp_2(rs)-sisma_x_sp_2(es))+0.3( glcb107 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))-0.3( glcb108 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))-0.3( glcb109 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))+0.3( glcb110 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))+0.3( glcb111 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))-0.3( glcb112 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))-0.3( glcb113 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))+0.3( glcb114 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))+0.3( glcb115 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))-0.3( glcb116 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))-0.3( glcb117 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))+0.3( glcb118 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))+0.3( glcb119 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))-0.3( glcb120 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))-0.3( glcb121 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))+0.3(1.00)(si glcb122 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))+0.3(1.00)(si glcb123 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))-0.3(1.00)(si glcb124 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))-0.3(1.00)(si glcb125 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))+0.3(1.00)(si glcb126 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))+0.3(1.00)(si glcb127 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))-0.3(1.00)(si glcb128 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))-0.3(1.00)(si glcb129 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es) glcb130 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es) glcb131 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es) glcb132 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es) glcb133 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es) glcb134 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es) glcb135 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es) glcb136 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es) glcb137 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))+0.3( glcb138 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))+0.3( glcb139 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))-0.3( glcb140 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))-0.3( glcb141 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))+0.3( glcb142 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))+0.3( glcb143 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))-0.3( glcb144 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))-0.3( glcb145 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))+0.3( glcb146 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))+0.3( glcb147 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))-0.3( glcb148 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))-0.3(1.00..

47 149 glcb149 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))+0.3( glcb150 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))+0.3( glcb151 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))-0.3( glcb152 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))-0.3( glcb153 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))+0.3( glcb154 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))+0.3( glcb155 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))-0.3( glcb156 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))-0.3( glcb157 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))+0.3( glcb158 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))+0.3( glcb159 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))-0.3( glcb160 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))-0.3( RC SB01_S~ Envelope ACTIVE Seismic Sub Envelope(001) - Strength 162 RC SB02_S~ Envelope ACTIVE Seismic Sub Envelope(002) - Strength 163 RC ENV_S~ Envelope ACTIVE Seismic Strength Envelope 164 SLU Neve Add ACTIVE 1.3G G (1.0Neve + 0.0Copertura) 165 SLU Coper~ Add ACTIVE 1.3G G (0.5Neve + 1.0Copertura) 166 SLE Rara ~ Add ACTIVE 1.0G G Neve + 0.0Copertura 167 SLE Rara ~ Add ACTIVE 1.0G G Neve + 1.0Copertura 168 SLE Frequ~ Add ACTIVE 1.0G G Neve 169 SLE Q. Pe~ Add ACTIVE 1.0G G2 170 SLU NEVE ~ Add ACTIVE 171 SLU NEVE ~ Add ACTIVE 172 SLU VENTO~ Add ACTIVE 173 SLU VENTO~ Add ACTIVE 174 SLE Rara ~ Add ACTIVE 175 SLE Rara ~ Add ACTIVE 176 SLE Rara ~ Add ACTIVE 177 SLE Rara ~ Add ACTIVE 178 SLU Envel~ Envelope ACTIVE 179 SLE Rara Envelope ACTIVE 180 SLV Fonda~ Add ACTIVE ** STEEL DESIGN NO NAME TYPE ACTIVE DESCRIPTION glcb1 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))+0.3(1.00)(si... 2 glcb2 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))+0.3(1.00)(si... 3 glcb3 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))-0.3(1.00)(si... 4 glcb4 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))-0.3(1.00)(si... 5 glcb5 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))+0.3(1.00)(si... 6 glcb6 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))+0.3(1.00)(si... 7 glcb7 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))-0.3(1.00)(si... 8 glcb8 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))-0.3(1.00)(si... 9 glcb9 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es).. 10 glcb10 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es).. 11 glcb11 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es).. 12 glcb12 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es).. 13 glcb13 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es).. 14 glcb14 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es).. 15 glcb15 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es).. 16 glcb16 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es).. 17 glcb17 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))+0.3( glcb18 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))+0.3( glcb19 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))-0.3(1.00..

48 20 glcb20 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))-0.3( glcb21 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))+0.3( glcb22 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))+0.3( glcb23 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))-0.3( glcb24 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))-0.3( glcb25 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))+0.3( glcb26 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))+0.3( glcb27 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))-0.3( glcb28 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))-0.3( glcb29 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))+0.3( glcb30 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))+0.3( glcb31 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))-0.3( glcb32 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))-0.3( glcb33 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))+0.3( glcb34 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))+0.3( glcb35 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))-0.3( glcb36 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))-0.3( glcb37 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))+0.3( glcb38 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))+0.3( glcb39 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))-0.3( glcb40 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))-0.3( glcb41 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))+0.3(1.00)(si glcb42 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))+0.3(1.00)(si glcb43 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))-0.3(1.00)(si glcb44 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))-0.3(1.00)(si glcb45 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))+0.3(1.00)(si glcb46 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))+0.3(1.00)(si glcb47 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))-0.3(1.00)(si glcb48 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))-0.3(1.00)(si glcb49 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es).. 50 glcb50 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es).. 51 glcb51 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es).. 52 glcb52 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es).. 53 glcb53 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es).. 54 glcb54 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es).. 55 glcb55 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es).. 56 glcb56 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es).. 57 glcb57 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))+0.3( glcb58 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))+0.3( glcb59 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))-0.3( glcb60 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))-0.3( glcb61 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))+0.3( glcb62 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)(

49 sisma_y_sp_1(rs)-sisma_y_sp_1(es))+0.3( glcb63 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))-0.3( glcb64 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))-0.3( glcb65 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))+0.3( glcb66 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))+0.3( glcb67 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))-0.3( glcb68 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))-0.3( glcb69 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))+0.3( glcb70 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))+0.3( glcb71 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))-0.3( glcb72 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))-0.3( glcb73 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))+0.3( glcb74 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))+0.3( glcb75 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))-0.3( glcb76 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))-0.3( glcb77 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))+0.3( glcb78 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))+0.3( glcb79 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))-0.3( glcb80 Add ACTIVE 1.0D + 1.0(0.0)L + 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))-0.3( glcb81 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))+0.3(1.00)(si glcb82 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))+0.3(1.00)(si glcb83 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))-0.3(1.00)(si glcb84 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))-0.3(1.00)(si glcb85 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))+0.3(1.00)(si glcb86 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))+0.3(1.00)(si glcb87 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))-0.3(1.00)(si glcb88 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))-0.3(1.00)(si glcb89 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es).. 90 glcb90 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es).. 91 glcb91 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es).. 92 glcb92 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es).. 93 glcb93 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es).. 94 glcb94 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es).. 95 glcb95 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es).. 96 glcb96 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es).. 97 glcb97 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))+0.3( glcb98 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))+0.3( glcb99 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))-0.3( glcb100 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))-0.3( glcb101 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))+0.3( glcb102 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))+0.3( glcb103 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))-0.3( glcb104 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))-0.3(1.00..

50 105 glcb105 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))+0.3( glcb106 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))+0.3( glcb107 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))-0.3( glcb108 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))-0.3( glcb109 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))+0.3( glcb110 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))+0.3( glcb111 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))-0.3( glcb112 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))-0.3( glcb113 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))+0.3( glcb114 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))+0.3( glcb115 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))-0.3( glcb116 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))-0.3( glcb117 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))+0.3( glcb118 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))+0.3( glcb119 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))-0.3( glcb120 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))-0.3( glcb121 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))+0.3(1.00)(si glcb122 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))+0.3(1.00)(si glcb123 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)+sisma_X_SV(ES))-0.3(1.00)(si glcb124 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_X_SV( RS)-sisma_X_SV(ES))-0.3(1.00)(si glcb125 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))+0.3(1.00)(si glcb126 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))+0.3(1.00)(si glcb127 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)+sisma_Y_SV(ES))-0.3(1.00)(si glcb128 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(sisma_Y_SV( RS)-sisma_Y_SV(ES))-0.3(1.00)(si glcb129 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es) glcb130 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es) glcb131 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)+sisma_x_sd_eta2/3(es) glcb132 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sd_eta2/3(rs)-sisma_x_sd_eta2/3(es) glcb133 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es) glcb134 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es) glcb135 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)+sisma_y_sd_eta2/3(es) glcb136 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sd_eta2/3(rs)-sisma_y_sd_eta2/3(es) glcb137 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))+0.3( glcb138 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))+0.3( glcb139 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)+sisma_x_sp_1(es))-0.3( glcb140 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_1(rs)-sisma_x_sp_1(es))-0.3( glcb141 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))+0.3( glcb142 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))+0.3( glcb143 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)+sisma_y_sp_1(es))-0.3( glcb144 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_1(rs)-sisma_y_sp_1(es))-0.3( glcb145 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)+sisma_x_sp_2(es))+0.3( glcb146 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))+0.3( glcb147 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)(

51 sisma_x_sp_2(rs)+sisma_x_sp_2(es))-0.3( glcb148 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_2(rs)-sisma_x_sp_2(es))-0.3( glcb149 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))+0.3( glcb150 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))+0.3( glcb151 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)+sisma_y_sp_2(es))-0.3( glcb152 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_2(rs)-sisma_y_sp_2(es))-0.3( glcb153 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))+0.3( glcb154 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))+0.3( glcb155 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)+sisma_x_sp_3(es))-0.3( glcb156 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_x_sp_3(rs)-sisma_x_sp_3(es))-0.3( glcb157 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))+0.3( glcb158 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))+0.3( glcb159 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)+sisma_y_sp_3(es))-0.3( glcb160 Add ACTIVE 1.0D + 1.0(0.0)L - 1.0(1.0(1.00)( sisma_y_sp_3(rs)-sisma_y_sp_3(es))-0.3( SLU Neve Add ACTIVE 1.3G G (1.0Neve + 0.0Copertura) 162 SLU Coper~ Add ACTIVE 1.3G G (0.5Neve + 1.0Copertura) 163 SLE Rara ~ Add SERVICE 1.0G G Neve + 0.0Copertura 164 SLE Rara ~ Add SERVICE 1.0G G Neve + 1.0Copertura 165 SLE Frequ~ Add SERVICE 1.0G G Neve 166 SLE Q. Pe~ Add SERVICE 1.0G G2 167 SLU NEVE ~ Add ACTIVE 168 SLU NEVE ~ Add ACTIVE 169 SLU VENTO~ Add ACTIVE 170 SLU VENTO~ Add ACTIVE 171 SLE Rara ~ Add SERVICE 172 SLE Rara ~ Add SERVICE 173 SLE Rara ~ Add SERVICE 174 SLE Rara ~ Add SERVICE

52 Mode No Frequency Period (rad/sec) (cycle/sec) (sec) 1 6,2098 0,9883 1, ,4025 1,019 0, ,9616 1,108 0, ,701 1,3848 0, ,7011 1,3848 0, ,2156 1,4667 0, ,4439 1,503 0, ,1366 1,9316 0, ,9694 2,5416 0, ,0298 2,7104 0, ,5048 2,9451 0, ,5058 3,9002 0, ,2477 4,0183 0, ,6871 4,4065 0, ,9755 4,6116 0, ,6078 5,1897 0, ,8621 5,2302 0, ,0226 5,4149 0, ,2351 5,767 0, ,3359 5,9422 0, ,7976 6,4931 0, ,8961 6,5088 0, ,5949 6,7792 0, ,5994 6,7799 0, ,5994 6,7799 0, ,5994 6,7799 0, ,5994 6,7799 0, ,5995 6,7799 0, ,7279 6,9595 0, ,9067 6,988 0, ,1589 7,1873 0, ,1938 7,352 0,136 Mode No TRAN-X TRAN-Y TRAN-Z ROTN-Z MASS(%) SUM(%) MASS(%) SUM(%) MASS(%) SUM(%) MASS(%) SUM(%) 1 0,0291 0, ,1172 0,1172 0,0027 0, ,0291 0,0358 0, ,1172 0,0086 0, ,0291 0,0347 0, ,1172 0,0086 0, ,0291 0,041 0, ,1172 0,0135 0, ,0291 0,0014 0, ,1172 0,0051 0, ,1 0, ,1129 0,1184 0,2357 0,0007 0, ,025 0, , ,2357 0,0196 0, ,1541 0,0714 0, ,2357 0,0338 0, ,0095 0,1636 0,0001 0,1844 0,0005 0,2362 0,0117 0, ,02 0, ,1844 0,0148 0,2509 0,0007 0, ,0001 0, ,1844 0,0234 0,2743 0,0017 0, ,0072 4,1909 0,0049 0,1893 0,0052 0,2795 0,0011 0, ,493 98,6838 0,2415 0,4308 0,0007 0,2803 0,5395 0, , ,7197 0,0038 0,4347 0,012 0,2923 0,0228 0, ,7197 0,0021 0,4367 0,0463 0,3385 0,009 0, , , , ,8881 0,0008 0, , , , ,3193 0, ,8917 0,0093 0,3486 0, , , ,8917 0,0007 0, , , ,327 0, ,9019 0,2348 0,5841 0, , , ,3274 0, ,902 0,0221 0, , , ,328 0, ,9155 0,014 0,6203 0, ,4995

53 22 0, ,3292 0, ,9173 0,0042 0,6245 0, , , ,3296 0, , ,6245 0, , , , , , , , , , , , , , , , , , ,3296 0, , ,6245 0, , , ,982 0,0001 0, , ,3296 0,005 79,9869 0,0036 0,6282 0, , , ,3312 0,014 80,0009 0,0071 0,6353 0, , , , , ,4396 0,0008 0, , ,4996 Figura 1 Mode13

54 Figura 2 Mode13 Vista dall alto Figura 3 Mode16 Vista dall alto

55 Figura 4 Mode32 Vista dall alto Tabella 1 DispRARA Node Load DX (cm) DY (cm) DZ (cm) RX ([rad]) RY ([rad]) RZ ([rad]) 313 SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve

56 347 SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve

57 408 SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Neve SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura

58 351 SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura

59 413 SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Copertura SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent

60 355 SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent

61 417 SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent

62 359 SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent

63 423 SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Neve + Vent SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N

64 363 SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N

65 447 SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento X + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N

66 367 SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N

67 503 SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N SLE Rara Vento Y + N Figura 5 DeformRARANEVE Tabella 2 Inter Story Drift SLD Tabella 3 Beam Force Story Height (cm) Allowable Story Drift Ratio Load Case Story Story Story Remark Drift Drift sisma_x_sld(rs) 1F OK sisma_y_sld(rs) 1F OK sisma_x_sld(es) 1F OK sisma_y_sld(es) 1F OK Elem Load Part Axial Shear-y Shear-z Torsion Moment-y Moment-z 207 RC ENV_STR(all) I[232] RC ENV_STR(all) J[233] RC ENV_STR(all) I[233] RC ENV_STR(all) J[234] RC ENV_STR(all) I[251] RC ENV_STR(all) J[252] RC ENV_STR(all) I[255] RC ENV_STR(all) J[256] RC ENV_STR(all) I[259] RC ENV_STR(all) J[260] RC ENV_STR(all) I[268] RC ENV_STR(all) J[269] RC ENV_STR(all) I[269]

68 217 RC ENV_STR(all) J[270] RC ENV_STR(all) I[303] RC ENV_STR(all) J[315] RC ENV_STR(all) I[304] RC ENV_STR(all) J[316] RC ENV_STR(all) I[305] RC ENV_STR(all) J[317] RC ENV_STR(all) I[306] RC ENV_STR(all) J[318] RC ENV_STR(all) I[307] RC ENV_STR(all) J[319] RC ENV_STR(all) I[308] RC ENV_STR(all) J[320] RC ENV_STR(all) I[309] RC ENV_STR(all) J[321] RC ENV_STR(all) I[310] RC ENV_STR(all) J[322] RC ENV_STR(all) I[311] RC ENV_STR(all) J[323] RC ENV_STR(all) I[312] RC ENV_STR(all) J[324] RC ENV_STR(all) I[313] RC ENV_STR(all) J[325] RC ENV_STR(all) I[314] RC ENV_STR(all) J[326] RC ENV_STR(all) I[315] RC ENV_STR(all) J[321] RC ENV_STR(all) I[316] RC ENV_STR(all) J[322] RC ENV_STR(all) I[317] RC ENV_STR(all) J[323] RC ENV_STR(all) I[318] RC ENV_STR(all) J[324] RC ENV_STR(all) I[319] RC ENV_STR(all) J[325] RC ENV_STR(all) I[320] RC ENV_STR(all) J[326] RC ENV_STR(all) I[315] RC ENV_STR(all) J[327] RC ENV_STR(all) I[316] RC ENV_STR(all) J[328] RC ENV_STR(all) I[317] RC ENV_STR(all) J[329] RC ENV_STR(all) I[318] RC ENV_STR(all) J[330] RC ENV_STR(all) I[319] RC ENV_STR(all) J[331] RC ENV_STR(all) I[320] RC ENV_STR(all) J[332] RC ENV_STR(all) I[268] RC ENV_STR(all) J[333] RC ENV_STR(all) I[286] RC ENV_STR(all) J[338] RC ENV_STR(all) I[209] RC ENV_STR(all) J[345] RC ENV_STR(all) I[214] RC ENV_STR(all) J[346] RC ENV_STR(all) I[219]

69 265 RC ENV_STR(all) J[347] RC ENV_STR(all) I[226] RC ENV_STR(all) J[361] RC ENV_STR(all) I[228] RC ENV_STR(all) J[364] RC ENV_STR(all) I[232] RC ENV_STR(all) J[371] RC ENV_STR(all) I[233] RC ENV_STR(all) J[372] RC ENV_STR(all) I[234] RC ENV_STR(all) J[375] RC ENV_STR(all) I[269] RC ENV_STR(all) J[418] RC ENV_STR(all) I[270] RC ENV_STR(all) J[419] RC ENV_STR(all) I[291] RC ENV_STR(all) J[496] RC ENV_STR(all) I[293] RC ENV_STR(all) J[497] RC ENV_STR(all) I[296] RC ENV_STR(all) J[498] RC ENV_STR(all) I[321] RC ENV_STR(all) J[327] RC ENV_STR(all) I[322] RC ENV_STR(all) J[328] RC ENV_STR(all) I[323] RC ENV_STR(all) J[329] RC ENV_STR(all) I[324] RC ENV_STR(all) J[330] RC ENV_STR(all) I[325] RC ENV_STR(all) J[331] RC ENV_STR(all) I[326] RC ENV_STR(all) J[332] RC ENV_STR(all) I[321] RC ENV_STR(all) J[339] RC ENV_STR(all) I[322] RC ENV_STR(all) J[340] RC ENV_STR(all) I[323] RC ENV_STR(all) J[341] RC ENV_STR(all) I[324] RC ENV_STR(all) J[342] RC ENV_STR(all) I[325] RC ENV_STR(all) J[343] RC ENV_STR(all) I[326] RC ENV_STR(all) J[344] RC ENV_STR(all) I[327] RC ENV_STR(all) J[339] RC ENV_STR(all) I[328] RC ENV_STR(all) J[340] RC ENV_STR(all) I[329] RC ENV_STR(all) J[341] RC ENV_STR(all) I[330] RC ENV_STR(all) J[342] RC ENV_STR(all) I[331] RC ENV_STR(all) J[343] RC ENV_STR(all) I[332] RC ENV_STR(all) J[344] RC ENV_STR(all) I[327]

70 307 RC ENV_STR(all) J[385] RC ENV_STR(all) I[328] RC ENV_STR(all) J[386] RC ENV_STR(all) I[329] RC ENV_STR(all) J[387] RC ENV_STR(all) I[330] RC ENV_STR(all) J[388] RC ENV_STR(all) I[331] RC ENV_STR(all) J[389] RC ENV_STR(all) I[332] RC ENV_STR(all) J[390] RC ENV_STR(all) I[333] RC ENV_STR(all) J[334] RC ENV_STR(all) I[334] RC ENV_STR(all) J[335] RC ENV_STR(all) I[335] RC ENV_STR(all) J[336] RC ENV_STR(all) I[336] RC ENV_STR(all) J[337] RC ENV_STR(all) I[337] RC ENV_STR(all) J[338] RC ENV_STR(all) I[333] RC ENV_STR(all) J[417] RC ENV_STR(all) I[338] RC ENV_STR(all) J[495] RC ENV_STR(all) I[339] RC ENV_STR(all) J[395] RC ENV_STR(all) I[340] RC ENV_STR(all) J[396] RC ENV_STR(all) I[341] RC ENV_STR(all) J[397] RC ENV_STR(all) I[342] RC ENV_STR(all) J[398] RC ENV_STR(all) I[343] RC ENV_STR(all) J[399] RC ENV_STR(all) I[344] RC ENV_STR(all) J[400] RC ENV_STR(all) I[345] RC ENV_STR(all) J[346] RC ENV_STR(all) I[346] RC ENV_STR(all) J[347] RC ENV_STR(all) I[347] RC ENV_STR(all) J[349] RC ENV_STR(all) I[350] RC ENV_STR(all) J[345] RC ENV_STR(all) I[348] RC ENV_STR(all) J[349] RC ENV_STR(all) I[350] RC ENV_STR(all) J[351] RC ENV_STR(all) I[351] RC ENV_STR(all) J[352] RC ENV_STR(all) I[349] RC ENV_STR(all) J[355] RC ENV_STR(all) I[353] RC ENV_STR(all) J[352] RC ENV_STR(all) I[353] RC ENV_STR(all) J[354] RC ENV_STR(all) I[354]

71 342 RC ENV_STR(all) J[355] RC ENV_STR(all) I[356] RC ENV_STR(all) J[350] RC ENV_STR(all) I[351] RC ENV_STR(all) J[357] RC ENV_STR(all) I[358] RC ENV_STR(all) J[353] RC ENV_STR(all) I[354] RC ENV_STR(all) J[360] RC ENV_STR(all) I[364] RC ENV_STR(all) J[355] RC ENV_STR(all) I[357] RC ENV_STR(all) J[356] RC ENV_STR(all) I[358] RC ENV_STR(all) J[357] RC ENV_STR(all) I[359] RC ENV_STR(all) J[358] RC ENV_STR(all) I[359] RC ENV_STR(all) J[360] RC ENV_STR(all) I[361] RC ENV_STR(all) J[356] RC ENV_STR(all) I[362] RC ENV_STR(all) J[359] RC ENV_STR(all) I[360] RC ENV_STR(all) J[363] RC ENV_STR(all) I[361] RC ENV_STR(all) J[362] RC ENV_STR(all) I[362] RC ENV_STR(all) J[363] RC ENV_STR(all) I[363] RC ENV_STR(all) J[364] RC ENV_STR(all) I[365] RC ENV_STR(all) J[361] RC ENV_STR(all) I[366] RC ENV_STR(all) J[362] RC ENV_STR(all) I[367] RC ENV_STR(all) J[364] RC ENV_STR(all) I[365] RC ENV_STR(all) J[366] RC ENV_STR(all) I[366] RC ENV_STR(all) J[367] RC ENV_STR(all) I[368] RC ENV_STR(all) J[365] RC ENV_STR(all) I[369] RC ENV_STR(all) J[366] RC ENV_STR(all) I[370] RC ENV_STR(all) J[367] RC ENV_STR(all) I[368] RC ENV_STR(all) J[369] RC ENV_STR(all) I[369] RC ENV_STR(all) J[370] RC ENV_STR(all) I[371] RC ENV_STR(all) J[368] RC ENV_STR(all) I[372] RC ENV_STR(all) J[369] RC ENV_STR(all) I[375] RC ENV_STR(all) J[370] RC ENV_STR(all) I[371]

72 371 RC ENV_STR(all) J[372] RC ENV_STR(all) I[372] RC ENV_STR(all) J[373] RC ENV_STR(all) I[373] RC ENV_STR(all) J[374] RC ENV_STR(all) I[374] RC ENV_STR(all) J[375] RC ENV_STR(all) I[376] RC ENV_STR(all) J[377] RC ENV_STR(all) I[378] RC ENV_STR(all) J[379] RC ENV_STR(all) I[380] RC ENV_STR(all) J[381] RC ENV_STR(all) I[373] RC ENV_STR(all) J[383] RC ENV_STR(all) I[374] RC ENV_STR(all) J[384] RC ENV_STR(all) I[376] RC ENV_STR(all) J[385] RC ENV_STR(all) I[377] RC ENV_STR(all) J[386] RC ENV_STR(all) I[378] RC ENV_STR(all) J[387] RC ENV_STR(all) I[379] RC ENV_STR(all) J[388] RC ENV_STR(all) I[380] RC ENV_STR(all) J[389] RC ENV_STR(all) I[381] RC ENV_STR(all) J[390] RC ENV_STR(all) I[382] RC ENV_STR(all) J[383] RC ENV_STR(all) I[383] RC ENV_STR(all) J[384] RC ENV_STR(all) I[386] RC ENV_STR(all) J[385] RC ENV_STR(all) I[388] RC ENV_STR(all) J[387] RC ENV_STR(all) I[390] RC ENV_STR(all) J[389] RC ENV_STR(all) I[371] RC ENV_STR(all) J[401] RC ENV_STR(all) I[405] RC ENV_STR(all) J[375] RC ENV_STR(all) I[383] RC ENV_STR(all) J[392] RC ENV_STR(all) I[384] RC ENV_STR(all) J[393] RC ENV_STR(all) I[385] RC ENV_STR(all) J[395] RC ENV_STR(all) I[386] RC ENV_STR(all) J[396] RC ENV_STR(all) I[387] RC ENV_STR(all) J[397] RC ENV_STR(all) I[388] RC ENV_STR(all) J[398] RC ENV_STR(all) I[389] RC ENV_STR(all) J[399] RC ENV_STR(all) I[390]

73 402 RC ENV_STR(all) J[400] RC ENV_STR(all) I[391] RC ENV_STR(all) J[392] RC ENV_STR(all) I[392] RC ENV_STR(all) J[393] RC ENV_STR(all) I[392] RC ENV_STR(all) J[403] RC ENV_STR(all) I[393] RC ENV_STR(all) J[404] RC ENV_STR(all) I[395] RC ENV_STR(all) J[394] RC ENV_STR(all) I[396] RC ENV_STR(all) J[395] RC ENV_STR(all) I[397] RC ENV_STR(all) J[396] RC ENV_STR(all) I[398] RC ENV_STR(all) J[397] RC ENV_STR(all) I[399] RC ENV_STR(all) J[398] RC ENV_STR(all) I[400] RC ENV_STR(all) J[399] RC ENV_STR(all) I[400] RC ENV_STR(all) J[401] RC ENV_STR(all) I[401] RC ENV_STR(all) J[402] RC ENV_STR(all) I[402] RC ENV_STR(all) J[403] RC ENV_STR(all) I[403] RC ENV_STR(all) J[404] RC ENV_STR(all) I[404] RC ENV_STR(all) J[405] RC ENV_STR(all) I[401] RC ENV_STR(all) J[406] RC ENV_STR(all) I[408] RC ENV_STR(all) J[405] RC ENV_STR(all) I[395] RC ENV_STR(all) J[410] RC ENV_STR(all) I[396] RC ENV_STR(all) J[411] RC ENV_STR(all) I[397] RC ENV_STR(all) J[412] RC ENV_STR(all) I[398] RC ENV_STR(all) J[413] RC ENV_STR(all) I[399] RC ENV_STR(all) J[414] RC ENV_STR(all) I[400] RC ENV_STR(all) J[415] RC ENV_STR(all) I[406] RC ENV_STR(all) J[407] RC ENV_STR(all) I[407] RC ENV_STR(all) J[408] RC ENV_STR(all) I[406] RC ENV_STR(all) J[416] RC ENV_STR(all) I[419] RC ENV_STR(all) J[408] RC ENV_STR(all) I[411] RC ENV_STR(all) J[410] RC ENV_STR(all) I[412]

74 436 RC ENV_STR(all) J[411] RC ENV_STR(all) I[413] RC ENV_STR(all) J[412] RC ENV_STR(all) I[414] RC ENV_STR(all) J[413] RC ENV_STR(all) I[415] RC ENV_STR(all) J[414] RC ENV_STR(all) I[415] RC ENV_STR(all) J[535] RC ENV_STR(all) I[416] RC ENV_STR(all) J[417] RC ENV_STR(all) I[417] RC ENV_STR(all) J[418] RC ENV_STR(all) I[418] RC ENV_STR(all) J[419] RC ENV_STR(all) I[421] RC ENV_STR(all) J[418] RC ENV_STR(all) I[424] RC ENV_STR(all) J[419] RC ENV_STR(all) I[421] RC ENV_STR(all) J[422] RC ENV_STR(all) I[422] RC ENV_STR(all) J[423] RC ENV_STR(all) I[423] RC ENV_STR(all) J[424] RC ENV_STR(all) I[432] RC ENV_STR(all) J[421] RC ENV_STR(all) I[422] RC ENV_STR(all) J[447] RC ENV_STR(all) I[423] RC ENV_STR(all) J[448] RC ENV_STR(all) I[449] RC ENV_STR(all) J[424] RC ENV_STR(all) I[431] RC ENV_STR(all) J[432] RC ENV_STR(all) I[446] RC ENV_STR(all) J[432] RC ENV_STR(all) I[446] RC ENV_STR(all) J[447] RC ENV_STR(all) I[447] RC ENV_STR(all) J[448] RC ENV_STR(all) I[448] RC ENV_STR(all) J[449] RC ENV_STR(all) I[462] RC ENV_STR(all) J[446] RC ENV_STR(all) I[463] RC ENV_STR(all) J[449] RC ENV_STR(all) I[461] RC ENV_STR(all) J[462] RC ENV_STR(all) I[462] RC ENV_STR(all) J[463] RC ENV_STR(all) I[487] RC ENV_STR(all) J[462] RC ENV_STR(all) I[488] RC ENV_STR(all) J[463] RC ENV_STR(all) I[486] RC ENV_STR(all) J[487] RC ENV_STR(all) I[487]

75 536 RC ENV_STR(all) J[488] RC ENV_STR(all) I[492] RC ENV_STR(all) J[487] RC ENV_STR(all) I[493] RC ENV_STR(all) J[488] RC ENV_STR(all) I[491] RC ENV_STR(all) J[492] RC ENV_STR(all) I[492] RC ENV_STR(all) J[493] RC ENV_STR(all) I[496] RC ENV_STR(all) J[492] RC ENV_STR(all) I[498] RC ENV_STR(all) J[493] RC ENV_STR(all) I[495] RC ENV_STR(all) J[496] RC ENV_STR(all) I[496] RC ENV_STR(all) J[497] RC ENV_STR(all) I[497] RC ENV_STR(all) J[498] RC ENV_STR(all) I[395] RC ENV_STR(all) J[499] RC ENV_STR(all) I[396] RC ENV_STR(all) J[500] RC ENV_STR(all) I[397] RC ENV_STR(all) J[501] RC ENV_STR(all) I[398] RC ENV_STR(all) J[502] RC ENV_STR(all) I[399] RC ENV_STR(all) J[503] RC ENV_STR(all) I[400] RC ENV_STR(all) J[504] RC ENV_STR(all) I[385] RC ENV_STR(all) J[505] RC ENV_STR(all) I[386] RC ENV_STR(all) J[506] RC ENV_STR(all) I[387] RC ENV_STR(all) J[507] RC ENV_STR(all) I[388] RC ENV_STR(all) J[508] RC ENV_STR(all) I[389] RC ENV_STR(all) J[509] RC ENV_STR(all) I[390] RC ENV_STR(all) J[510] RC ENV_STR(all) I[499] RC ENV_STR(all) J[505] RC ENV_STR(all) I[500] RC ENV_STR(all) J[506] RC ENV_STR(all) I[501] RC ENV_STR(all) J[507] RC ENV_STR(all) I[502] RC ENV_STR(all) J[508] RC ENV_STR(all) I[503] RC ENV_STR(all) J[509] RC ENV_STR(all) I[504] RC ENV_STR(all) J[510] RC ENV_STR(all) I[410] RC ENV_STR(all) J[517] RC ENV_STR(all) I[411]

76 571 RC ENV_STR(all) J[518] RC ENV_STR(all) I[412] RC ENV_STR(all) J[519] RC ENV_STR(all) I[413] RC ENV_STR(all) J[520] RC ENV_STR(all) I[414] RC ENV_STR(all) J[521] RC ENV_STR(all) I[415] RC ENV_STR(all) J[522] RC ENV_STR(all) I[499] RC ENV_STR(all) J[517] RC ENV_STR(all) I[500] RC ENV_STR(all) J[518] RC ENV_STR(all) I[501] RC ENV_STR(all) J[519] RC ENV_STR(all) I[502] RC ENV_STR(all) J[520] RC ENV_STR(all) I[503] RC ENV_STR(all) J[521] RC ENV_STR(all) I[504] RC ENV_STR(all) J[522] RC ENV_STR(all) I[505] RC ENV_STR(all) J[511] RC ENV_STR(all) I[506] RC ENV_STR(all) J[512] RC ENV_STR(all) I[507] RC ENV_STR(all) J[513] RC ENV_STR(all) I[508] RC ENV_STR(all) J[514] RC ENV_STR(all) I[509] RC ENV_STR(all) J[515] RC ENV_STR(all) I[510] RC ENV_STR(all) J[516] RC ENV_STR(all) I[505] RC ENV_STR(all) J[517] RC ENV_STR(all) I[506] RC ENV_STR(all) J[518] RC ENV_STR(all) I[507] RC ENV_STR(all) J[519] RC ENV_STR(all) I[508] RC ENV_STR(all) J[520] RC ENV_STR(all) I[509] RC ENV_STR(all) J[521] RC ENV_STR(all) I[510] RC ENV_STR(all) J[522] RC ENV_STR(all) I[511] RC ENV_STR(all) J[517] RC ENV_STR(all) I[512] RC ENV_STR(all) J[518] RC ENV_STR(all) I[513] RC ENV_STR(all) J[519] RC ENV_STR(all) I[514] RC ENV_STR(all) J[520] RC ENV_STR(all) I[515] RC ENV_STR(all) J[521] RC ENV_STR(all) I[516] RC ENV_STR(all) J[522] RC ENV_STR(all) I[495]

77 603 RC ENV_STR(all) J[491] RC ENV_STR(all) I[491] RC ENV_STR(all) J[486] RC ENV_STR(all) I[486] RC ENV_STR(all) J[461] RC ENV_STR(all) I[461] RC ENV_STR(all) J[431] RC ENV_STR(all) I[431] RC ENV_STR(all) J[417] RC ENV_STR(all) I[352] RC ENV_STR(all) J[348] RC ENV_STR(all) I[348] RC ENV_STR(all) J[346] RC ENV_STR(all) I[418] RC ENV_STR(all) J[407] RC ENV_STR(all) I[407] RC ENV_STR(all) J[402] RC ENV_STR(all) I[402] RC ENV_STR(all) J[391] RC ENV_STR(all) I[391] RC ENV_STR(all) J[382] RC ENV_STR(all) I[382] RC ENV_STR(all) J[372] RC ENV_STR(all) I[535] RC ENV_STR(all) J[416] RC ENV_STR(all) I[530] RC ENV_STR(all) J[531] RC ENV_STR(all) I[531] RC ENV_STR(all) J[532] RC ENV_STR(all) I[532] RC ENV_STR(all) J[533] RC ENV_STR(all) I[533] RC ENV_STR(all) J[534] RC ENV_STR(all) I[534] RC ENV_STR(all) J[536] RC ENV_STR(all) I[536] RC ENV_STR(all) J[535] RC ENV_STR(all) I[523] RC ENV_STR(all) J[524] RC ENV_STR(all) I[524] RC ENV_STR(all) J[525] RC ENV_STR(all) I[525] RC ENV_STR(all) J[526] RC ENV_STR(all) I[526] RC ENV_STR(all) J[527] RC ENV_STR(all) I[527] RC ENV_STR(all) J[528] RC ENV_STR(all) I[528] RC ENV_STR(all) J[529] RC ENV_STR(all) I[529] RC ENV_STR(all) J[536] RC ENV_STR(all) I[410] RC ENV_STR(all) J[524] RC ENV_STR(all) I[411] RC ENV_STR(all) J[525] RC ENV_STR(all) I[412] RC ENV_STR(all) J[526] RC ENV_STR(all) I[413]

78 633 RC ENV_STR(all) J[527] RC ENV_STR(all) I[414] RC ENV_STR(all) J[528] RC ENV_STR(all) I[537] RC ENV_STR(all) J[410] RC ENV_STR(all) I[415] RC ENV_STR(all) J[529] RC ENV_STR(all) I[531] RC ENV_STR(all) J[491] RC ENV_STR(all) I[533] RC ENV_STR(all) J[461] RC ENV_STR(all) I[534] RC ENV_STR(all) J[431] RC ENV_STR(all) I[530] RC ENV_STR(all) J[495] RC ENV_STR(all) I[532] RC ENV_STR(all) J[486] RC ENV_STR(all) I[394] RC ENV_STR(all) J[537] RC ENV_STR(all) I[537] RC ENV_STR(all) J[523] SLU Envelope(all) I[232] SLU Envelope(all) J[233] SLU Envelope(all) I[233] SLU Envelope(all) J[234] SLU Envelope(all) I[251] SLU Envelope(all) J[252] SLU Envelope(all) I[255] SLU Envelope(all) J[256] SLU Envelope(all) I[259] SLU Envelope(all) J[260] SLU Envelope(all) I[268] SLU Envelope(all) J[269] SLU Envelope(all) I[269] SLU Envelope(all) J[270] SLU Envelope(all) I[303] SLU Envelope(all) J[315] SLU Envelope(all) I[304] SLU Envelope(all) J[316] SLU Envelope(all) I[305] SLU Envelope(all) J[317] SLU Envelope(all) I[306] SLU Envelope(all) J[318] SLU Envelope(all) I[307] SLU Envelope(all) J[319] SLU Envelope(all) I[308] SLU Envelope(all) J[320] SLU Envelope(all) I[309] SLU Envelope(all) J[321] SLU Envelope(all) I[310] SLU Envelope(all) J[322] SLU Envelope(all) I[311] SLU Envelope(all) J[323] SLU Envelope(all) I[312] SLU Envelope(all) J[324] SLU Envelope(all) I[313] SLU Envelope(all) J[325] SLU Envelope(all) I[314]

79 244 SLU Envelope(all) J[326] SLU Envelope(all) I[315] SLU Envelope(all) J[321] SLU Envelope(all) I[316] SLU Envelope(all) J[322] SLU Envelope(all) I[317] SLU Envelope(all) J[323] SLU Envelope(all) I[318] SLU Envelope(all) J[324] SLU Envelope(all) I[319] SLU Envelope(all) J[325] SLU Envelope(all) I[320] SLU Envelope(all) J[326] SLU Envelope(all) I[315] SLU Envelope(all) J[327] SLU Envelope(all) I[316] SLU Envelope(all) J[328] SLU Envelope(all) I[317] SLU Envelope(all) J[329] SLU Envelope(all) I[318] SLU Envelope(all) J[330] SLU Envelope(all) I[319] SLU Envelope(all) J[331] SLU Envelope(all) I[320] SLU Envelope(all) J[332] SLU Envelope(all) I[268] SLU Envelope(all) J[333] SLU Envelope(all) I[286] SLU Envelope(all) J[338] SLU Envelope(all) I[209] SLU Envelope(all) J[345] SLU Envelope(all) I[214] SLU Envelope(all) J[346] SLU Envelope(all) I[219] SLU Envelope(all) J[347] SLU Envelope(all) I[226] SLU Envelope(all) J[361] SLU Envelope(all) I[228] SLU Envelope(all) J[364] SLU Envelope(all) I[232] SLU Envelope(all) J[371] SLU Envelope(all) I[233] SLU Envelope(all) J[372] SLU Envelope(all) I[234] SLU Envelope(all) J[375] SLU Envelope(all) I[269] SLU Envelope(all) J[418] SLU Envelope(all) I[270] SLU Envelope(all) J[419] SLU Envelope(all) I[291] SLU Envelope(all) J[496] SLU Envelope(all) I[293] SLU Envelope(all) J[497] SLU Envelope(all) I[296] SLU Envelope(all) J[498] SLU Envelope(all) I[321] SLU Envelope(all) J[327] SLU Envelope(all) I[322]

80 290 SLU Envelope(all) J[328] SLU Envelope(all) I[323] SLU Envelope(all) J[329] SLU Envelope(all) I[324] SLU Envelope(all) J[330] SLU Envelope(all) I[325] SLU Envelope(all) J[331] SLU Envelope(all) I[326] SLU Envelope(all) J[332] SLU Envelope(all) I[321] SLU Envelope(all) J[339] SLU Envelope(all) I[322] SLU Envelope(all) J[340] SLU Envelope(all) I[323] SLU Envelope(all) J[341] SLU Envelope(all) I[324] SLU Envelope(all) J[342] SLU Envelope(all) I[325] SLU Envelope(all) J[343] SLU Envelope(all) I[326] SLU Envelope(all) J[344] SLU Envelope(all) I[327] SLU Envelope(all) J[339] SLU Envelope(all) I[328] SLU Envelope(all) J[340] SLU Envelope(all) I[329] SLU Envelope(all) J[341] SLU Envelope(all) I[330] SLU Envelope(all) J[342] SLU Envelope(all) I[331] SLU Envelope(all) J[343] SLU Envelope(all) I[332] SLU Envelope(all) J[344] SLU Envelope(all) I[327] SLU Envelope(all) J[385] SLU Envelope(all) I[328] SLU Envelope(all) J[386] SLU Envelope(all) I[329] SLU Envelope(all) J[387] SLU Envelope(all) I[330] SLU Envelope(all) J[388] SLU Envelope(all) I[331] SLU Envelope(all) J[389] SLU Envelope(all) I[332] SLU Envelope(all) J[390] SLU Envelope(all) I[333] SLU Envelope(all) J[334] SLU Envelope(all) I[334] SLU Envelope(all) J[335] SLU Envelope(all) I[335] SLU Envelope(all) J[336] SLU Envelope(all) I[336] SLU Envelope(all) J[337] SLU Envelope(all) I[337] SLU Envelope(all) J[338] SLU Envelope(all) I[333] SLU Envelope(all) J[417] SLU Envelope(all) I[338]

81 323 SLU Envelope(all) J[495] SLU Envelope(all) I[339] SLU Envelope(all) J[395] SLU Envelope(all) I[340] SLU Envelope(all) J[396] SLU Envelope(all) I[341] SLU Envelope(all) J[397] SLU Envelope(all) I[342] SLU Envelope(all) J[398] SLU Envelope(all) I[343] SLU Envelope(all) J[399] SLU Envelope(all) I[344] SLU Envelope(all) J[400] SLU Envelope(all) I[345] SLU Envelope(all) J[346] SLU Envelope(all) I[346] SLU Envelope(all) J[347] SLU Envelope(all) I[347] SLU Envelope(all) J[349] SLU Envelope(all) I[350] SLU Envelope(all) J[345] SLU Envelope(all) I[348] SLU Envelope(all) J[349] SLU Envelope(all) I[350] SLU Envelope(all) J[351] SLU Envelope(all) I[351] SLU Envelope(all) J[352] SLU Envelope(all) I[349] SLU Envelope(all) J[355] SLU Envelope(all) I[353] SLU Envelope(all) J[352] SLU Envelope(all) I[353] SLU Envelope(all) J[354] SLU Envelope(all) I[354] SLU Envelope(all) J[355] SLU Envelope(all) I[356] SLU Envelope(all) J[350] SLU Envelope(all) I[351] SLU Envelope(all) J[357] SLU Envelope(all) I[358] SLU Envelope(all) J[353] SLU Envelope(all) I[354] SLU Envelope(all) J[360] SLU Envelope(all) I[364] SLU Envelope(all) J[355] SLU Envelope(all) I[357] SLU Envelope(all) J[356] SLU Envelope(all) I[358] SLU Envelope(all) J[357] SLU Envelope(all) I[359] SLU Envelope(all) J[358] SLU Envelope(all) I[359] SLU Envelope(all) J[360] SLU Envelope(all) I[361] SLU Envelope(all) J[356] SLU Envelope(all) I[362] SLU Envelope(all) J[359] SLU Envelope(all) I[360]

82 354 SLU Envelope(all) J[363] SLU Envelope(all) I[361] SLU Envelope(all) J[362] SLU Envelope(all) I[362] SLU Envelope(all) J[363] SLU Envelope(all) I[363] SLU Envelope(all) J[364] SLU Envelope(all) I[365] SLU Envelope(all) J[361] SLU Envelope(all) I[366] SLU Envelope(all) J[362] SLU Envelope(all) I[367] SLU Envelope(all) J[364] SLU Envelope(all) I[365] SLU Envelope(all) J[366] SLU Envelope(all) I[366] SLU Envelope(all) J[367] SLU Envelope(all) I[368] SLU Envelope(all) J[365] SLU Envelope(all) I[369] SLU Envelope(all) J[366] SLU Envelope(all) I[370] SLU Envelope(all) J[367] SLU Envelope(all) I[368] SLU Envelope(all) J[369] SLU Envelope(all) I[369] SLU Envelope(all) J[370] SLU Envelope(all) I[371] SLU Envelope(all) J[368] SLU Envelope(all) I[372] SLU Envelope(all) J[369] SLU Envelope(all) I[375] SLU Envelope(all) J[370] SLU Envelope(all) I[371] SLU Envelope(all) J[372] SLU Envelope(all) I[372] SLU Envelope(all) J[373] SLU Envelope(all) I[373] SLU Envelope(all) J[374] SLU Envelope(all) I[374] SLU Envelope(all) J[375] SLU Envelope(all) I[376] SLU Envelope(all) J[377] SLU Envelope(all) I[378] SLU Envelope(all) J[379] SLU Envelope(all) I[380] SLU Envelope(all) J[381] SLU Envelope(all) I[373] SLU Envelope(all) J[383] SLU Envelope(all) I[374] SLU Envelope(all) J[384] SLU Envelope(all) I[376] SLU Envelope(all) J[385] SLU Envelope(all) I[377] SLU Envelope(all) J[386] SLU Envelope(all) I[378] SLU Envelope(all) J[387] SLU Envelope(all) I[379]

83 384 SLU Envelope(all) J[388] SLU Envelope(all) I[380] SLU Envelope(all) J[389] SLU Envelope(all) I[381] SLU Envelope(all) J[390] SLU Envelope(all) I[382] SLU Envelope(all) J[383] SLU Envelope(all) I[383] SLU Envelope(all) J[384] SLU Envelope(all) I[386] SLU Envelope(all) J[385] SLU Envelope(all) I[388] SLU Envelope(all) J[387] SLU Envelope(all) I[390] SLU Envelope(all) J[389] SLU Envelope(all) I[371] SLU Envelope(all) J[401] SLU Envelope(all) I[405] SLU Envelope(all) J[375] SLU Envelope(all) I[383] SLU Envelope(all) J[392] SLU Envelope(all) I[384] SLU Envelope(all) J[393] SLU Envelope(all) I[385] SLU Envelope(all) J[395] SLU Envelope(all) I[386] SLU Envelope(all) J[396] SLU Envelope(all) I[387] SLU Envelope(all) J[397] SLU Envelope(all) I[388] SLU Envelope(all) J[398] SLU Envelope(all) I[389] SLU Envelope(all) J[399] SLU Envelope(all) I[390] SLU Envelope(all) J[400] SLU Envelope(all) I[391] SLU Envelope(all) J[392] SLU Envelope(all) I[392] SLU Envelope(all) J[393] SLU Envelope(all) I[392] SLU Envelope(all) J[403] SLU Envelope(all) I[393] SLU Envelope(all) J[404] SLU Envelope(all) I[395] SLU Envelope(all) J[394] SLU Envelope(all) I[396] SLU Envelope(all) J[395] SLU Envelope(all) I[397] SLU Envelope(all) J[396] SLU Envelope(all) I[398] SLU Envelope(all) J[397] SLU Envelope(all) I[399] SLU Envelope(all) J[398] SLU Envelope(all) I[400] SLU Envelope(all) J[399] SLU Envelope(all) I[400] SLU Envelope(all) J[401] SLU Envelope(all) I[401]

84 415 SLU Envelope(all) J[402] SLU Envelope(all) I[402] SLU Envelope(all) J[403] SLU Envelope(all) I[403] SLU Envelope(all) J[404] SLU Envelope(all) I[404] SLU Envelope(all) J[405] SLU Envelope(all) I[401] SLU Envelope(all) J[406] SLU Envelope(all) I[408] SLU Envelope(all) J[405] SLU Envelope(all) I[395] SLU Envelope(all) J[410] SLU Envelope(all) I[396] SLU Envelope(all) J[411] SLU Envelope(all) I[397] SLU Envelope(all) J[412] SLU Envelope(all) I[398] SLU Envelope(all) J[413] SLU Envelope(all) I[399] SLU Envelope(all) J[414] SLU Envelope(all) I[400] SLU Envelope(all) J[415] SLU Envelope(all) I[406] SLU Envelope(all) J[407] SLU Envelope(all) I[407] SLU Envelope(all) J[408] SLU Envelope(all) I[406] SLU Envelope(all) J[416] SLU Envelope(all) I[419] SLU Envelope(all) J[408] SLU Envelope(all) I[411] SLU Envelope(all) J[410] SLU Envelope(all) I[412] SLU Envelope(all) J[411] SLU Envelope(all) I[413] SLU Envelope(all) J[412] SLU Envelope(all) I[414] SLU Envelope(all) J[413] SLU Envelope(all) I[415] SLU Envelope(all) J[414] SLU Envelope(all) I[415] SLU Envelope(all) J[535] SLU Envelope(all) I[416] SLU Envelope(all) J[417] SLU Envelope(all) I[417] SLU Envelope(all) J[418] SLU Envelope(all) I[418] SLU Envelope(all) J[419] SLU Envelope(all) I[421] SLU Envelope(all) J[418] SLU Envelope(all) I[424] SLU Envelope(all) J[419] SLU Envelope(all) I[421] SLU Envelope(all) J[422] SLU Envelope(all) I[422] SLU Envelope(all) J[423] SLU Envelope(all) I[423]

85 452 SLU Envelope(all) J[424] SLU Envelope(all) I[432] SLU Envelope(all) J[421] SLU Envelope(all) I[422] SLU Envelope(all) J[447] SLU Envelope(all) I[423] SLU Envelope(all) J[448] SLU Envelope(all) I[449] SLU Envelope(all) J[424] SLU Envelope(all) I[431] SLU Envelope(all) J[432] SLU Envelope(all) I[446] SLU Envelope(all) J[432] SLU Envelope(all) I[446] SLU Envelope(all) J[447] SLU Envelope(all) I[447] SLU Envelope(all) J[448] SLU Envelope(all) I[448] SLU Envelope(all) J[449] SLU Envelope(all) I[462] SLU Envelope(all) J[446] SLU Envelope(all) I[463] SLU Envelope(all) J[449] SLU Envelope(all) I[461] SLU Envelope(all) J[462] SLU Envelope(all) I[462] SLU Envelope(all) J[463] SLU Envelope(all) I[487] SLU Envelope(all) J[462] SLU Envelope(all) I[488] SLU Envelope(all) J[463] SLU Envelope(all) I[486] SLU Envelope(all) J[487] SLU Envelope(all) I[487] SLU Envelope(all) J[488] SLU Envelope(all) I[492] SLU Envelope(all) J[487] SLU Envelope(all) I[493] SLU Envelope(all) J[488] SLU Envelope(all) I[491] SLU Envelope(all) J[492] SLU Envelope(all) I[492] SLU Envelope(all) J[493] SLU Envelope(all) I[496] SLU Envelope(all) J[492] SLU Envelope(all) I[498] SLU Envelope(all) J[493] SLU Envelope(all) I[495] SLU Envelope(all) J[496] SLU Envelope(all) I[496] SLU Envelope(all) J[497] SLU Envelope(all) I[497] SLU Envelope(all) J[498] SLU Envelope(all) I[395] SLU Envelope(all) J[499] SLU Envelope(all) I[396] SLU Envelope(all) J[500] SLU Envelope(all) I[397]

86 554 SLU Envelope(all) J[501] SLU Envelope(all) I[398] SLU Envelope(all) J[502] SLU Envelope(all) I[399] SLU Envelope(all) J[503] SLU Envelope(all) I[400] SLU Envelope(all) J[504] SLU Envelope(all) I[385] SLU Envelope(all) J[505] SLU Envelope(all) I[386] SLU Envelope(all) J[506] SLU Envelope(all) I[387] SLU Envelope(all) J[507] SLU Envelope(all) I[388] SLU Envelope(all) J[508] SLU Envelope(all) I[389] SLU Envelope(all) J[509] SLU Envelope(all) I[390] SLU Envelope(all) J[510] SLU Envelope(all) I[499] SLU Envelope(all) J[505] SLU Envelope(all) I[500] SLU Envelope(all) J[506] SLU Envelope(all) I[501] SLU Envelope(all) J[507] SLU Envelope(all) I[502] SLU Envelope(all) J[508] SLU Envelope(all) I[503] SLU Envelope(all) J[509] SLU Envelope(all) I[504] SLU Envelope(all) J[510] SLU Envelope(all) I[410] SLU Envelope(all) J[517] SLU Envelope(all) I[411] SLU Envelope(all) J[518] SLU Envelope(all) I[412] SLU Envelope(all) J[519] SLU Envelope(all) I[413] SLU Envelope(all) J[520] SLU Envelope(all) I[414] SLU Envelope(all) J[521] SLU Envelope(all) I[415] SLU Envelope(all) J[522] SLU Envelope(all) I[499] SLU Envelope(all) J[517] SLU Envelope(all) I[500] SLU Envelope(all) J[518] SLU Envelope(all) I[501] SLU Envelope(all) J[519] SLU Envelope(all) I[502] SLU Envelope(all) J[520] SLU Envelope(all) I[503] SLU Envelope(all) J[521] SLU Envelope(all) I[504] SLU Envelope(all) J[522] SLU Envelope(all) I[505] SLU Envelope(all) J[511] SLU Envelope(all) I[506]

87 583 SLU Envelope(all) J[512] SLU Envelope(all) I[507] SLU Envelope(all) J[513] SLU Envelope(all) I[508] SLU Envelope(all) J[514] SLU Envelope(all) I[509] SLU Envelope(all) J[515] SLU Envelope(all) I[510] SLU Envelope(all) J[516] SLU Envelope(all) I[505] SLU Envelope(all) J[517] SLU Envelope(all) I[506] SLU Envelope(all) J[518] SLU Envelope(all) I[507] SLU Envelope(all) J[519] SLU Envelope(all) I[508] SLU Envelope(all) J[520] SLU Envelope(all) I[509] SLU Envelope(all) J[521] SLU Envelope(all) I[510] SLU Envelope(all) J[522] SLU Envelope(all) I[511] SLU Envelope(all) J[517] SLU Envelope(all) I[512] SLU Envelope(all) J[518] SLU Envelope(all) I[513] SLU Envelope(all) J[519] SLU Envelope(all) I[514] SLU Envelope(all) J[520] SLU Envelope(all) I[515] SLU Envelope(all) J[521] SLU Envelope(all) I[516] SLU Envelope(all) J[522] SLU Envelope(all) I[495] SLU Envelope(all) J[491] SLU Envelope(all) I[491] SLU Envelope(all) J[486] SLU Envelope(all) I[486] SLU Envelope(all) J[461] SLU Envelope(all) I[461] SLU Envelope(all) J[431] SLU Envelope(all) I[431] SLU Envelope(all) J[417] SLU Envelope(all) I[352] SLU Envelope(all) J[348] SLU Envelope(all) I[348] SLU Envelope(all) J[346] SLU Envelope(all) I[418] SLU Envelope(all) J[407] SLU Envelope(all) I[407] SLU Envelope(all) J[402] SLU Envelope(all) I[402] SLU Envelope(all) J[391] SLU Envelope(all) I[391] SLU Envelope(all) J[382] SLU Envelope(all) I[382] SLU Envelope(all) J[372] SLU Envelope(all) I[535]

88 616 SLU Envelope(all) J[416] SLU Envelope(all) I[530] SLU Envelope(all) J[531] SLU Envelope(all) I[531] SLU Envelope(all) J[532] SLU Envelope(all) I[532] SLU Envelope(all) J[533] SLU Envelope(all) I[533] SLU Envelope(all) J[534] SLU Envelope(all) I[534] SLU Envelope(all) J[536] SLU Envelope(all) I[536] SLU Envelope(all) J[535] SLU Envelope(all) I[523] SLU Envelope(all) J[524] SLU Envelope(all) I[524] SLU Envelope(all) J[525] SLU Envelope(all) I[525] SLU Envelope(all) J[526] SLU Envelope(all) I[526] SLU Envelope(all) J[527] SLU Envelope(all) I[527] SLU Envelope(all) J[528] SLU Envelope(all) I[528] SLU Envelope(all) J[529] SLU Envelope(all) I[529] SLU Envelope(all) J[536] SLU Envelope(all) I[410] SLU Envelope(all) J[524] SLU Envelope(all) I[411] SLU Envelope(all) J[525] SLU Envelope(all) I[412] SLU Envelope(all) J[526] SLU Envelope(all) I[413] SLU Envelope(all) J[527] SLU Envelope(all) I[414] SLU Envelope(all) J[528] SLU Envelope(all) I[537] SLU Envelope(all) J[410] SLU Envelope(all) I[415] SLU Envelope(all) J[529] SLU Envelope(all) I[531] SLU Envelope(all) J[491] SLU Envelope(all) I[533] SLU Envelope(all) J[461] SLU Envelope(all) I[534] SLU Envelope(all) J[431] SLU Envelope(all) I[530] SLU Envelope(all) J[495] SLU Envelope(all) I[532] SLU Envelope(all) J[486] SLU Envelope(all) I[394] SLU Envelope(all) J[537] SLU Envelope(all) I[537] SLU Envelope(all) J[523]

89 Tabella 4 TFORCE Elem Load Force-I (kn) Force-J (kn) 260 RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) RC ENV_STR(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all) SLU Envelope(all)

90 Figura 6 MySLU Figura 7 FzSLU

91 Figura 8 FxSLU Figura 9 FxSLV

92 Figura 10 soilpressureslv Figura 11 soilpressureslu

93

94 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== +============================================================+ MIDAS(Modeling, Integrated Design & Analysis Software) midas Gen - Design & checking system for windows +============================================================+ Steel Member Applicable Code Checking Based On Eurocode3:05, Eurocode3, AISC(13th)-LRFD05, AISC(13th)-ASD05, AISC-LRFD2K, AISC-LRFD93, AISC-ASD89, AISI-CFSD86, CSA-S16-01, BS (c)since ============================================================+ MIDAS Information Technology Co.,Ltd. (MIDAS IT) MIDAS IT Design Development Team +============================================================+ HomePage : +============================================================+ Gen ============================================================+ *. DEFINITION OF LOAD COMBINATIONS WITH SCALING UP FACTORS LCB C Loadcase Name(Factor) + Loadcase Name(Factor) + Loadcase Name(Factor) G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)( 1.000) +sisma_x_slv(es)( 1.000) +sisma_y_slv(rs)( 0.300) +sisma_y_slv(es)( 0.300) 2 1 G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)( 1.000) +sisma_x_slv(es)(-1.000) +sisma_y_slv(rs)( 0.300) +sisma_y_slv(es)(-0.300) 3 1 G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)( 1.000) +sisma_x_slv(es)( 1.000) +sisma_y_slv(rs)(-0.300) +sisma_y_slv(es)(-0.300) 4 1 G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)( 1.000) +sisma_x_slv(es)(-1.000) +sisma_y_slv(rs)(-0.300) +sisma_y_slv(es)( 0.300) 5 1 G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)( 1.000) +sisma_y_slv(es)( 1.000) +sisma_x_slv(rs)( 0.300) +sisma_x_slv(es)( 0.300) 6 1 G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)( 1.000) +sisma_y_slv(es)(-1.000) +sisma_x_slv(rs)( 0.300) +sisma_x_slv(es)(-0.300) 7 1 G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)( 1.000) +sisma_y_slv(es)( 1.000) +sisma_x_slv(rs)(-0.300) +sisma_x_slv(es)(-0.300) 8 1 G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)( 1.000) +sisma_y_slv(es)(-1.000) +sisma_x_slv(rs)(-0.300) +sisma_x_slv(es)( 0.300) 9 1 G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)( 1.000) +sisma_x_sld_eta2/3(es)( 1.000) +sisma_y_sld_eta2/3(rs)( 0.300) +sisma_y_sld_eta2/3(es)( ) 10 1 G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)( 1.000) +sisma_x_sld_eta2/3(es)(-1.000) +sisma_y_sld_eta2/3(rs)( 0.300) +sisma_y_sld_eta2/3(es)( ) 11 1 G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)( 1.000) +sisma_x_sld_eta2/3(es)( 1.000) +sisma_y_sld_eta2/3(rs)(-0.300) +sisma_y_sld_eta2/3(es)( ) 12 1 G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)( 1.000) +sisma_x_sld_eta2/3(es)(-1.000) +sisma_y_sld_eta2/3(rs)(-0.300) +sisma_y_sld_eta2/3(es)( ) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-1 / 58 -

95 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== 00) 00) 00) 00) 13 1 G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)( 1.000) +sisma_y_sld_eta2/3(es)( 1.000) +sisma_x_sld_eta2/3(rs)( 0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)( 1.000) +sisma_y_sld_eta2/3(es)(-1.000) +sisma_x_sld_eta2/3(rs)( 0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)( 1.000) +sisma_y_sld_eta2/3(es)( 1.000) +sisma_x_sld_eta2/3(rs)(-0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)( 1.000) +sisma_y_sld_eta2/3(es)(-1.000) +sisma_x_sld_eta2/3(rs)(-0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)( 1.000) +sisma_x_sp_1(es)( 1.000) +sisma_y_sp_1(rs)( 0.300) +sisma_y_sp_1(es)( 0.300) 18 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)( 1.000) +sisma_x_sp_1(es)(-1.000) +sisma_y_sp_1(rs)( 0.300) +sisma_y_sp_1(es)(-0.300) 19 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)( 1.000) +sisma_x_sp_1(es)( 1.000) +sisma_y_sp_1(rs)(-0.300) +sisma_y_sp_1(es)(-0.300) 20 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)( 1.000) +sisma_x_sp_1(es)(-1.000) +sisma_y_sp_1(rs)(-0.300) +sisma_y_sp_1(es)( 0.300) 21 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)( 1.000) +sisma_y_sp_1(es)( 1.000) +sisma_x_sp_1(rs)( 0.300) +sisma_x_sp_1(es)( 0.300) 22 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)( 1.000) +sisma_y_sp_1(es)(-1.000) +sisma_x_sp_1(rs)( 0.300) +sisma_x_sp_1(es)(-0.300) 23 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)( 1.000) +sisma_y_sp_1(es)( 1.000) +sisma_x_sp_1(rs)(-0.300) +sisma_x_sp_1(es)(-0.300) 24 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)( 1.000) +sisma_y_sp_1(es)(-1.000) +sisma_x_sp_1(rs)(-0.300) +sisma_x_sp_1(es)( 0.300) 25 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)( 1.000) +sisma_x_sp_2(es)( 1.000) +sisma_y_sp_2(rs)( 0.300) +sisma_y_sp_2(es)( 0.300) 26 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)( 1.000) +sisma_x_sp_2(es)(-1.000) +sisma_y_sp_2(rs)( 0.300) +sisma_y_sp_2(es)(-0.300) 27 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)( 1.000) +sisma_x_sp_2(es)( 1.000) +sisma_y_sp_2(rs)(-0.300) +sisma_y_sp_2(es)(-0.300) 28 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)( 1.000) +sisma_x_sp_2(es)(-1.000) +sisma_y_sp_2(rs)(-0.300) +sisma_y_sp_2(es)( 0.300) 29 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)( 1.000) +sisma_y_sp_2(es)( 1.000) +sisma_x_sp_2(rs)( 0.300) +sisma_x_sp_2(es)( 0.300) 30 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)( 1.000) +sisma_y_sp_2(es)(-1.000) +sisma_x_sp_2(rs)( 0.300) +sisma_x_sp_2(es)(-0.300) 31 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)( 1.000) +sisma_y_sp_2(es)( 1.000) +sisma_x_sp_2(rs)(-0.300) +sisma_x_sp_2(es)(-0.300) 32 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)( 1.000) +sisma_y_sp_2(es)(-1.000) +sisma_x_sp_2(rs)(-0.300) +sisma_x_sp_2(es)( 0.300) 33 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)( 1.000) +sisma_x_sp_3(es)( 1.000) +sisma_y_sp_3(rs)( 0.300) +sisma_y_sp_3(es)( 0.300) 34 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)( 1.000) +sisma_x_sp_3(es)(-1.000) +sisma_y_sp_3(rs)( 0.300) +sisma_y_sp_3(es)(-0.300) 35 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)( 1.000) +sisma_x_sp_3(es)( 1.000) +sisma_y_sp_3(rs)(-0.300) +sisma_y_sp_3(es)(-0.300) 36 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)( 1.000) +sisma_x_sp_3(es)(-1.000) +sisma_y_sp_3(rs)(-0.300) +sisma_y_sp_3(es)( 0.300) 37 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)( 1.000) +sisma_y_sp_3(es)( 1.000) +sisma_x_sp_3(rs)( 0.300) +sisma_x_sp_3(es)( 0.300) 38 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)( 1.000) +sisma_y_sp_3(es)(-1.000) +sisma_x_sp_3(rs)( 0.300) +sisma_x_sp_3(es)(-0.300) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-2 / 58 -

96 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== 00) 00) 00) 00) 00) 00) 00) 00) 39 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)( 1.000) +sisma_y_sp_3(es)( 1.000) +sisma_x_sp_3(rs)(-0.300) +sisma_x_sp_3(es)(-0.300) 40 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)( 1.000) +sisma_y_sp_3(es)(-1.000) +sisma_x_sp_3(rs)(-0.300) +sisma_x_sp_3(es)( 0.300) 41 1 G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)( 1.000) +sisma_x_slv(es)( 1.000) +sisma_y_slv(rs)( 0.300) +sisma_y_slv(es)(-0.300) 42 1 G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)( 1.000) +sisma_x_slv(es)(-1.000) +sisma_y_slv(rs)( 0.300) +sisma_y_slv(es)( 0.300) 43 1 G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)( 1.000) +sisma_x_slv(es)( 1.000) +sisma_y_slv(rs)(-0.300) +sisma_y_slv(es)( 0.300) 44 1 G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)( 1.000) +sisma_x_slv(es)(-1.000) +sisma_y_slv(rs)(-0.300) +sisma_y_slv(es)(-0.300) 45 1 G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)( 1.000) +sisma_y_slv(es)( 1.000) +sisma_x_slv(rs)( 0.300) +sisma_x_slv(es)(-0.300) 46 1 G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)( 1.000) +sisma_y_slv(es)(-1.000) +sisma_x_slv(rs)( 0.300) +sisma_x_slv(es)( 0.300) 47 1 G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)( 1.000) +sisma_y_slv(es)( 1.000) +sisma_x_slv(rs)(-0.300) +sisma_x_slv(es)( 0.300) 48 1 G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)( 1.000) +sisma_y_slv(es)(-1.000) +sisma_x_slv(rs)(-0.300) +sisma_x_slv(es)(-0.300) 49 1 G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)( 1.000) +sisma_x_sld_eta2/3(es)( 1.000) +sisma_y_sld_eta2/3(rs)( 0.300) +sisma_y_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)( 1.000) +sisma_x_sld_eta2/3(es)(-1.000) +sisma_y_sld_eta2/3(rs)( 0.300) +sisma_y_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)( 1.000) +sisma_x_sld_eta2/3(es)( 1.000) +sisma_y_sld_eta2/3(rs)(-0.300) +sisma_y_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)( 1.000) +sisma_x_sld_eta2/3(es)(-1.000) +sisma_y_sld_eta2/3(rs)(-0.300) +sisma_y_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)( 1.000) +sisma_y_sld_eta2/3(es)( 1.000) +sisma_x_sld_eta2/3(rs)( 0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)( 1.000) +sisma_y_sld_eta2/3(es)(-1.000) +sisma_x_sld_eta2/3(rs)( 0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)( 1.000) +sisma_y_sld_eta2/3(es)( 1.000) +sisma_x_sld_eta2/3(rs)(-0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)( 1.000) +sisma_y_sld_eta2/3(es)(-1.000) +sisma_x_sld_eta2/3(rs)(-0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)( 1.000) +sisma_x_sp_1(es)( 1.000) +sisma_y_sp_1(rs)( 0.300) +sisma_y_sp_1(es)(-0.300) 58 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)( 1.000) +sisma_x_sp_1(es)(-1.000) +sisma_y_sp_1(rs)( 0.300) +sisma_y_sp_1(es)( 0.300) 59 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)( 1.000) +sisma_x_sp_1(es)( 1.000) +sisma_y_sp_1(rs)(-0.300) +sisma_y_sp_1(es)( 0.300) 60 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)( 1.000) +sisma_x_sp_1(es)(-1.000) +sisma_y_sp_1(rs)(-0.300) +sisma_y_sp_1(es)(-0.300) 61 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)( 1.000) +sisma_y_sp_1(es)( 1.000) +sisma_x_sp_1(rs)( 0.300) +sisma_x_sp_1(es)(-0.300) 62 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)( 1.000) +sisma_y_sp_1(es)(-1.000) +sisma_x_sp_1(rs)( 0.300) +sisma_x_sp_1(es)( 0.300) 63 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)( 1.000) +sisma_y_sp_1(es)( 1.000) +sisma_x_sp_1(rs)(-0.300) +sisma_x_sp_1(es)( 0.300) 64 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)( 1.000) +sisma_y_sp_1(es)(-1.000) +sisma_x_sp_1(rs)(-0.300) +sisma_x_sp_1(es)(-0.300) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-3 / 58 -

97 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== 00) 00) 65 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)( 1.000) +sisma_x_sp_2(es)( 1.000) +sisma_y_sp_2(rs)( 0.300) +sisma_y_sp_2(es)(-0.300) 66 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)( 1.000) +sisma_x_sp_2(es)(-1.000) +sisma_y_sp_2(rs)( 0.300) +sisma_y_sp_2(es)( 0.300) 67 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)( 1.000) +sisma_x_sp_2(es)( 1.000) +sisma_y_sp_2(rs)(-0.300) +sisma_y_sp_2(es)( 0.300) 68 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)( 1.000) +sisma_x_sp_2(es)(-1.000) +sisma_y_sp_2(rs)(-0.300) +sisma_y_sp_2(es)(-0.300) 69 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)( 1.000) +sisma_y_sp_2(es)( 1.000) +sisma_x_sp_2(rs)( 0.300) +sisma_x_sp_2(es)(-0.300) 70 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)( 1.000) +sisma_y_sp_2(es)(-1.000) +sisma_x_sp_2(rs)( 0.300) +sisma_x_sp_2(es)( 0.300) 71 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)( 1.000) +sisma_y_sp_2(es)( 1.000) +sisma_x_sp_2(rs)(-0.300) +sisma_x_sp_2(es)( 0.300) 72 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)( 1.000) +sisma_y_sp_2(es)(-1.000) +sisma_x_sp_2(rs)(-0.300) +sisma_x_sp_2(es)(-0.300) 73 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)( 1.000) +sisma_x_sp_3(es)( 1.000) +sisma_y_sp_3(rs)( 0.300) +sisma_y_sp_3(es)(-0.300) 74 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)( 1.000) +sisma_x_sp_3(es)(-1.000) +sisma_y_sp_3(rs)( 0.300) +sisma_y_sp_3(es)( 0.300) 75 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)( 1.000) +sisma_x_sp_3(es)( 1.000) +sisma_y_sp_3(rs)(-0.300) +sisma_y_sp_3(es)( 0.300) 76 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)( 1.000) +sisma_x_sp_3(es)(-1.000) +sisma_y_sp_3(rs)(-0.300) +sisma_y_sp_3(es)(-0.300) 77 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)( 1.000) +sisma_y_sp_3(es)( 1.000) +sisma_x_sp_3(rs)( 0.300) +sisma_x_sp_3(es)(-0.300) 78 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)( 1.000) +sisma_y_sp_3(es)(-1.000) +sisma_x_sp_3(rs)( 0.300) +sisma_x_sp_3(es)( 0.300) 79 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)( 1.000) +sisma_y_sp_3(es)( 1.000) +sisma_x_sp_3(rs)(-0.300) +sisma_x_sp_3(es)( 0.300) 80 1 G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)( 1.000) +sisma_y_sp_3(es)(-1.000) +sisma_x_sp_3(rs)(-0.300) +sisma_x_sp_3(es)(-0.300) 81 1 G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)(-1.000) +sisma_x_slv(es)(-1.000) +sisma_y_slv(rs)(-0.300) +sisma_y_slv(es)(-0.300) 82 1 G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)(-1.000) +sisma_x_slv(es)( 1.000) +sisma_y_slv(rs)(-0.300) +sisma_y_slv(es)( 0.300) 83 1 G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)(-1.000) +sisma_x_slv(es)(-1.000) +sisma_y_slv(rs)( 0.300) +sisma_y_slv(es)( 0.300) 84 1 G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)(-1.000) +sisma_x_slv(es)( 1.000) +sisma_y_slv(rs)( 0.300) +sisma_y_slv(es)(-0.300) 85 1 G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)(-1.000) +sisma_y_slv(es)(-1.000) +sisma_x_slv(rs)(-0.300) +sisma_x_slv(es)(-0.300) 86 1 G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)(-1.000) +sisma_y_slv(es)( 1.000) +sisma_x_slv(rs)(-0.300) +sisma_x_slv(es)( 0.300) 87 1 G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)(-1.000) +sisma_y_slv(es)(-1.000) +sisma_x_slv(rs)( 0.300) +sisma_x_slv(es)( 0.300) 88 1 G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)(-1.000) +sisma_y_slv(es)( 1.000) +sisma_x_slv(rs)( 0.300) +sisma_x_slv(es)(-0.300) 89 1 G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)(-1.000) +sisma_x_sld_eta2/3(es)(-1.000) +sisma_y_sld_eta2/3(rs)(-0.300) +sisma_y_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)(-1.000) +sisma_x_sld_eta2/3(es)( 1.000) +sisma_y_sld_eta2/3(rs)(-0.300) +sisma_y_sld_eta2/3(es)( 0.3 Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-4 / 58 -

98 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== 00) 00) 00) 00) 00) 00) 91 1 G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)(-1.000) +sisma_x_sld_eta2/3(es)(-1.000) +sisma_y_sld_eta2/3(rs)( 0.300) +sisma_y_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)(-1.000) +sisma_x_sld_eta2/3(es)( 1.000) +sisma_y_sld_eta2/3(rs)( 0.300) +sisma_y_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)(-1.000) +sisma_y_sld_eta2/3(es)(-1.000) +sisma_x_sld_eta2/3(rs)(-0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)(-1.000) +sisma_y_sld_eta2/3(es)( 1.000) +sisma_x_sld_eta2/3(rs)(-0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)(-1.000) +sisma_y_sld_eta2/3(es)(-1.000) +sisma_x_sld_eta2/3(rs)( 0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)(-1.000) +sisma_y_sld_eta2/3(es)( 1.000) +sisma_x_sld_eta2/3(rs)( 0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)(-1.000) +sisma_x_sp_1(es)(-1.000) +sisma_y_sp_1(rs)(-0.300) +sisma_y_sp_1(es)(-0.300) 98 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)(-1.000) +sisma_x_sp_1(es)( 1.000) +sisma_y_sp_1(rs)(-0.300) +sisma_y_sp_1(es)( 0.300) 99 1 G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)(-1.000) +sisma_x_sp_1(es)(-1.000) +sisma_y_sp_1(rs)( 0.300) +sisma_y_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)(-1.000) +sisma_x_sp_1(es)( 1.000) +sisma_y_sp_1(rs)( 0.300) +sisma_y_sp_1(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)(-1.000) +sisma_y_sp_1(es)(-1.000) +sisma_x_sp_1(rs)(-0.300) +sisma_x_sp_1(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)(-1.000) +sisma_y_sp_1(es)( 1.000) +sisma_x_sp_1(rs)(-0.300) +sisma_x_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)(-1.000) +sisma_y_sp_1(es)(-1.000) +sisma_x_sp_1(rs)( 0.300) +sisma_x_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)(-1.000) +sisma_y_sp_1(es)( 1.000) +sisma_x_sp_1(rs)( 0.300) +sisma_x_sp_1(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)(-1.000) +sisma_x_sp_2(es)(-1.000) +sisma_y_sp_2(rs)(-0.300) +sisma_y_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)(-1.000) +sisma_x_sp_2(es)( 1.000) +sisma_y_sp_2(rs)(-0.300) +sisma_y_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)(-1.000) +sisma_x_sp_2(es)(-1.000) +sisma_y_sp_2(rs)( 0.300) +sisma_y_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)(-1.000) +sisma_x_sp_2(es)( 1.000) +sisma_y_sp_2(rs)( 0.300) +sisma_y_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)(-1.000) +sisma_y_sp_2(es)(-1.000) +sisma_x_sp_2(rs)(-0.300) +sisma_x_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)(-1.000) +sisma_y_sp_2(es)( 1.000) +sisma_x_sp_2(rs)(-0.300) +sisma_x_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)(-1.000) +sisma_y_sp_2(es)(-1.000) +sisma_x_sp_2(rs)( 0.300) +sisma_x_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)(-1.000) +sisma_y_sp_2(es)( 1.000) +sisma_x_sp_2(rs)( 0.300) +sisma_x_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)(-1.000) +sisma_x_sp_3(es)(-1.000) +sisma_y_sp_3(rs)(-0.300) +sisma_y_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)(-1.000) +sisma_x_sp_3(es)( 1.000) +sisma_y_sp_3(rs)(-0.300) +sisma_y_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)(-1.000) +sisma_x_sp_3(es)(-1.000) +sisma_y_sp_3(rs)( 0.300) +sisma_y_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)(-1.000) +sisma_x_sp_3(es)( 1.000) +sisma_y_sp_3(rs)( 0.300) +sisma_y_sp_3(es)(-0.300) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-5 / 58 -

99 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== 00) 00) 00) 00) 00) 00) 00) 00) G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)(-1.000) +sisma_y_sp_3(es)(-1.000) +sisma_x_sp_3(rs)(-0.300) +sisma_x_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)(-1.000) +sisma_y_sp_3(es)( 1.000) +sisma_x_sp_3(rs)(-0.300) +sisma_x_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)(-1.000) +sisma_y_sp_3(es)(-1.000) +sisma_x_sp_3(rs)( 0.300) +sisma_x_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)(-1.000) +sisma_y_sp_3(es)( 1.000) +sisma_x_sp_3(rs)( 0.300) +sisma_x_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)(-1.000) +sisma_x_slv(es)(-1.000) +sisma_y_slv(rs)(-0.300) +sisma_y_slv(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)(-1.000) +sisma_x_slv(es)( 1.000) +sisma_y_slv(rs)(-0.300) +sisma_y_slv(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)(-1.000) +sisma_x_slv(es)(-1.000) +sisma_y_slv(rs)( 0.300) +sisma_y_slv(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_slv(rs)(-1.000) +sisma_x_slv(es)( 1.000) +sisma_y_slv(rs)( 0.300) +sisma_y_slv(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)(-1.000) +sisma_y_slv(es)(-1.000) +sisma_x_slv(rs)(-0.300) +sisma_x_slv(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)(-1.000) +sisma_y_slv(es)( 1.000) +sisma_x_slv(rs)(-0.300) +sisma_x_slv(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)(-1.000) +sisma_y_slv(es)(-1.000) +sisma_x_slv(rs)( 0.300) +sisma_x_slv(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_y_slv(rs)(-1.000) +sisma_y_slv(es)( 1.000) +sisma_x_slv(rs)( 0.300) +sisma_x_slv(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)(-1.000) +sisma_x_sld_eta2/3(es)(-1.000) +sisma_y_sld_eta2/3(rs)(-0.300) +sisma_y_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)(-1.000) +sisma_x_sld_eta2/3(es)( 1.000) +sisma_y_sld_eta2/3(rs)(-0.300) +sisma_y_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)(-1.000) +sisma_x_sld_eta2/3(es)(-1.000) +sisma_y_sld_eta2/3(rs)( 0.300) +sisma_y_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_x_sld_eta2/3(rs)(-1.000) +sisma_x_sld_eta2/3(es)( 1.000) +sisma_y_sld_eta2/3(rs)( 0.300) +sisma_y_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)(-1.000) +sisma_y_sld_eta2/3(es)(-1.000) +sisma_x_sld_eta2/3(rs)(-0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)(-1.000) +sisma_y_sld_eta2/3(es)( 1.000) +sisma_x_sld_eta2/3(rs)(-0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)(-1.000) +sisma_y_sld_eta2/3(es)(-1.000) +sisma_x_sld_eta2/3(rs)( 0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_y_sld_eta2/3(rs)(-1.000) +sisma_y_sld_eta2/3(es)( 1.000) +sisma_x_sld_eta2/3(rs)( 0.300) +sisma_x_sld_eta2/3(es)( G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)(-1.000) +sisma_x_sp_1(es)(-1.000) +sisma_y_sp_1(rs)(-0.300) +sisma_y_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)(-1.000) +sisma_x_sp_1(es)( 1.000) +sisma_y_sp_1(rs)(-0.300) +sisma_y_sp_1(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)(-1.000) +sisma_x_sp_1(es)(-1.000) +sisma_y_sp_1(rs)( 0.300) +sisma_y_sp_1(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_1(rs)(-1.000) +sisma_x_sp_1(es)( 1.000) +sisma_y_sp_1(rs)( 0.300) +sisma_y_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)(-1.000) +sisma_y_sp_1(es)(-1.000) +sisma_x_sp_1(rs)(-0.300) +sisma_x_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)(-1.000) +sisma_y_sp_1(es)( 1.000) +sisma_x_sp_1(rs)(-0.300) +sisma_x_sp_1(es)(-0.300) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-6 / 58 -

100 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)(-1.000) +sisma_y_sp_1(es)(-1.000) +sisma_x_sp_1(rs)( 0.300) +sisma_x_sp_1(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_1(rs)(-1.000) +sisma_y_sp_1(es)( 1.000) +sisma_x_sp_1(rs)( 0.300) +sisma_x_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)(-1.000) +sisma_x_sp_2(es)(-1.000) +sisma_y_sp_2(rs)(-0.300) +sisma_y_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)(-1.000) +sisma_x_sp_2(es)( 1.000) +sisma_y_sp_2(rs)(-0.300) +sisma_y_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)(-1.000) +sisma_x_sp_2(es)(-1.000) +sisma_y_sp_2(rs)( 0.300) +sisma_y_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_2(rs)(-1.000) +sisma_x_sp_2(es)( 1.000) +sisma_y_sp_2(rs)( 0.300) +sisma_y_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)(-1.000) +sisma_y_sp_2(es)(-1.000) +sisma_x_sp_2(rs)(-0.300) +sisma_x_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)(-1.000) +sisma_y_sp_2(es)( 1.000) +sisma_x_sp_2(rs)(-0.300) +sisma_x_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)(-1.000) +sisma_y_sp_2(es)(-1.000) +sisma_x_sp_2(rs)( 0.300) +sisma_x_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_2(rs)(-1.000) +sisma_y_sp_2(es)( 1.000) +sisma_x_sp_2(rs)( 0.300) +sisma_x_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)(-1.000) +sisma_x_sp_3(es)(-1.000) +sisma_y_sp_3(rs)(-0.300) +sisma_y_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)(-1.000) +sisma_x_sp_3(es)( 1.000) +sisma_y_sp_3(rs)(-0.300) +sisma_y_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)(-1.000) +sisma_x_sp_3(es)(-1.000) +sisma_y_sp_3(rs)( 0.300) +sisma_y_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_x_sp_3(rs)(-1.000) +sisma_x_sp_3(es)( 1.000) +sisma_y_sp_3(rs)( 0.300) +sisma_y_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)(-1.000) +sisma_y_sp_3(es)(-1.000) +sisma_x_sp_3(rs)(-0.300) +sisma_x_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)(-1.000) +sisma_y_sp_3(es)( 1.000) +sisma_x_sp_3(rs)(-0.300) +sisma_x_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)(-1.000) +sisma_y_sp_3(es)(-1.000) +sisma_x_sp_3(rs)( 0.300) +sisma_x_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +sisma_y_sp_3(rs)(-1.000) +sisma_y_sp_3(es)( 1.000) +sisma_x_sp_3(rs)( 0.300) +sisma_x_sp_3(es)( 0.300) G1( 1.300) + G2( 1.500) + Qk,neve( 1.500) G1( 1.300) + G2( 1.500) + Qk,neve( 0.750) + Qk,copertura( 1.500) G1( 1.000) + G2( 1.000) + Qk,neve( 1.000) G1( 1.000) + G2( 1.000) + Qk,neve( 0.500) + Qk,copertura( 1.000) G1( 1.000) + G2( 1.000) + Qk,neve( 0.500) G1( 1.000) + G2( 1.000) G1( 1.300) + G2( 1.500) + Qk,neve( 1.500) + VENTO X(-0.900) + VENTO Y(-0.450) + VENTO Z( 0.450) G1( 1.300) + G2( 1.500) + Qk,neve( 1.500) + VENTO X(-0.450) + VENTO Y(-0.900) + VENTO Z( 0.450) G1( 1.300) + G2( 1.500) + Qk,neve( 0.750) + VENTO X(-1.500) + VENTO Y(-0.750) + VENTO Z( 0.750) G1( 1.300) + G2( 1.500) + Qk,neve( 0.750) + VENTO X(-0.750) + VENTO Y(-1.500) + VENTO Z( 0.750) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-7 / 58 -

101 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== G1( 1.000) + G2( 1.000) + Qk,neve( 1.000) + VENTO X(-0.600) + VENTO Y(-0.300) + VENTO Z( 0.300) G1( 1.000) + G2( 1.000) + Qk,neve( 1.000) + VENTO X(-0.300) + VENTO Y(-0.600) + VENTO Z( 0.300) G1( 1.000) + G2( 1.000) + Qk,neve( 0.500) + VENTO X(-1.000) + VENTO Y(-0.500) + VENTO Z( 0.500) G1( 1.000) + G2( 1.000) + Qk,neve( 0.500) + VENTO X(-0.500) + VENTO Y(-1.000) + VENTO Z( 0.500) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-8 / 58 -

102 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 338, ELEMENT TYPE = Beam *. LOADCOMB NO = 161, MATERIAL NO = 1, SECTION NO = 1 *. UNIT SYSTEM : kn, cm *. SECTION PROPERTIES : Designation = HEA140 Shape = I - Section. (Rolled) Depth = , Top F Width = , Bot.F Width = Web Thick = 0.550, Top F Thick = 0.850, Bot.F Thick = Area = e+001, Avy = e+001, Avz = e+001 Ybar = e+000, Zbar = e+000, Qyb = e+002, Qzb = e+001 Wely = e+002, Welz = e+001, Wply = e+002, Wplz = e+001 Iyy = e+003, Izz = e+002, Iyz = e+000 iy = e+000, iz = e+000 J = e+000, Cwp = e+004 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+002, Lz = e+002, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+001, Es = e+004, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (1/4) POINT : Axial Force Fxx = e+000 Shear Forces Fyy = e+000, Fzz = e-001 Bending Moments My = e+003, Mz = e+000 End Moments Myi = e+003, Myj = e+000 (for Lb) Myi = e+003, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY LEFT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-9 / 58 -

103 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY RIGHT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY LEFT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY RIGHT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY WEB OF SECTION (HTR). ( ). Determine classification of bending Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. HTR < 72*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-10 / 58 -

104 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial tension member (l/i). [ Eurocode3: ] -. l/i = 71.9 < > O.K. ( ). Calculate parameters for combined resistance. -. Lambda1 = Pi * SQRT(Es/fy) = Lambda_bz = (KLz/iz) / Lambda1 = ( ). Calculate axial tensile resistance (Nt_Rd). [ Eurocode3: ] -. Nt_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nt_Rd). N_Ed = = < > O.K. Nt_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. eta = 1.2 (Fy < 460 MPa.) -. r = cm. -. Avy = Area - hw*tw = cm^2. -. Avz1 = eta*hw*tw = cm^2. -. Avz2 = Area - 2*B*tf + (tw + 2*r)*tf = cm^2. -. Avz = MAX[ Avz1, Avz2 ] = cm^2. ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-11 / 58 -

105 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 161, POS = J ) -. Applied shear force : V_Edz = kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = cm^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = cm^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-cm. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-cm. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-12 / 58 -

106 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = a = MIN[ (Area-2b*tf)/Area, 0.5 ] = Alpha = Beta = MAX[ 5*n, 1.0 ] = N_Ed < 0.25*Npl_Rd = kn. -. N_Ed < 0.5*hw*tw*fy/Gamma_M0 = kn. Therefore, No allowance for the effect of axial force. -. Mny_Rd = Mply_Rd = kn-cm. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. N_Ed < hw*tw*fy/gamma_m0 = kn. Therefore, No allowance for the effect of axial force. -. Mnz_Rd = Mplz_Rd = kn-cm. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. -. Rmax = MAX[ Rmax1, Rmax2 ] = < > O.K. [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Position = cm From i-end(node 351). -. Def = * DAF = cm (Golbal Z) -. Def_Lim = 1.265cm Def < Def_Lim ---> O.K! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-13 / 58 -

107 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 369, ELEMENT TYPE = Beam *. LOADCOMB NO = 161, MATERIAL NO = 1, SECTION NO = 2 *. UNIT SYSTEM : kn, cm *. SECTION PROPERTIES : Designation = HEB200 Shape = I - Section. (Rolled) Depth = , Top F Width = , Bot.F Width = Web Thick = 0.900, Top F Thick = 1.500, Bot.F Thick = Area = e+001, Avy = e+001, Avz = e+001 Ybar = e+001, Zbar = e+001, Qyb = e+002, Qzb = e+001 Wely = e+002, Welz = e+002, Wply = e+002, Wplz = e+002 Iyy = e+003, Izz = e+003, Iyz = e+000 iy = e+000, iz = e+000 J = e+001, Cwp = e+005 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+002, Lz = e+001, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+001, Es = e+004, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (1/2) POINT : Axial Force Fxx = e+000 Shear Forces Fyy = e+000, Fzz = e-001 Bending Moments My = e+004, Mz = e+000 End Moments Myi = e+004, Myj = e+004 (for Lb) Myi = e+004, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY LEFT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-14 / 58 -

108 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY RIGHT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY LEFT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY RIGHT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY WEB OF SECTION (HTR). ( ). Determine classification of bending Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. HTR < 72*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-15 / 58 -

109 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial tension member (l/i). [ Eurocode3: ] -. l/i = 75.5 < > O.K. ( ). Calculate parameters for combined resistance. -. Lambda1 = Pi * SQRT(Es/fy) = Lambda_bz = (KLz/iz) / Lambda1 = ( ). Calculate axial tensile resistance (Nt_Rd). [ Eurocode3: ] -. Nt_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nt_Rd). N_Ed = = < > O.K. Nt_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. eta = 1.2 (Fy < 460 MPa.) -. r = cm. -. Avy = Area - hw*tw = cm^2. -. Avz1 = eta*hw*tw = cm^2. -. Avz2 = Area - 2*B*tf + (tw + 2*r)*tf = cm^2. -. Avz = MAX[ Avz1, Avz2 ] = cm^2. ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-16 / 58 -

110 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 161, POS = I ) -. Applied shear force : V_Edz = kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = cm^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = > > Not Acceptable! Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = cm^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz > 0.5 (equal flanges) -. Rho = { 2*(V_Edz/Vpl_Rdz) - 1 }^2 =9.769e My.V_Rd1= [ Wply - {Rho*Aw^2/(4*tw)} ]*fy / Gamma_M0 = kn-cm. -. My_Rd = MIN [ My.V_Rdy1, Mc_Rdy ] = kn-cm. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-cm. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-17 / 58 -

111 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = > > Not Acceptable! ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = a = MIN[ (Area-2b*tf)/Area, 0.5 ] = Alpha = Beta = MAX[ 5*n, 1.0 ] = N_Ed < 0.25*Npl_Rd = kn. -. N_Ed < 0.5*hw*tw*fy/Gamma_M0 = kn. Therefore, No allowance for the effect of axial force. -. Mny_Rd = Mply_Rd = kn-cm. -. Rmaxy = M_Edy / Mny_Rd = > > Not Acceptable! -. N_Ed < hw*tw*fy/gamma_m0 = kn. Therefore, No allowance for the effect of axial force. -. Mnz_Rd = Mplz_Rd = kn-cm. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = > > Not Acceptable! -. Rmax = MAX[ Rmax1, Rmax2 ] = > > Not Acceptable! [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Position = cm From i-end(node 372). -. Def = * DAF = cm (Golbal Z) -. Def_Lim = 3.225cm Def > Def_Lim ---> Not Acceptable!!! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-18 / 58 -

112 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 277, ELEMENT TYPE = Beam *. LOADCOMB NO = 161, MATERIAL NO = 1, SECTION NO = 3 *. UNIT SYSTEM : kn, cm *. SECTION PROPERTIES : Designation = HEB200 - pil, HEB200 Shape = I - Section. (Rolled) Depth = , Top F Width = , Bot.F Width = Web Thick = 0.900, Top F Thick = 1.500, Bot.F Thick = Area = e+001, Avy = e+001, Avz = e+001 Ybar = e+001, Zbar = e+001, Qyb = e+002, Qzb = e+001 Wely = e+002, Welz = e+002, Wply = e+002, Wplz = e+002 Iyy = e+003, Izz = e+003, Iyz = e+000 iy = e+000, iz = e+000 J = e+001, Cwp = e+005 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+002, Lz = e+002, Lu = e+002 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+001, Es = e+004, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (I) POINT : Axial Force Fxx = e+002 Shear Forces Fyy = e-003, Fzz = e+000 Bending Moments My = e+000, Mz = e+000 End Moments Myi = e+000, Myj = e+000 (for Lb) Myi = e+000, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e-004 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY LEFT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-19 / 58 -

113 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY RIGHT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY LEFT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY RIGHT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY WEB OF SECTION (HTR). ( ). Determine classification of compression Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. HTR < 33*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-20 / 58 -

114 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial compression member (Kl/i). [ Eurocode3: ] -. Kl/i = 77.3 < > O.K. ( ). Calculate axial compressive resistance (Nc_Rd). [ Eurocode3:05 6.1, ] -. Nc_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nc_Rd). N_Ed = = < > O.K. Nc_Rd ( ). Calculate buckling resistance of compression member (Nb_Rdy, Nb_Rdz). [ Eurocode3: , ] -. Beta_A = Aeff / Area = Lambda1 = Pi * SQRT(Es/fy) = Lambda_by = {(KLy/iy)/Lambda1} * SQRT(Beta_A) = Ncry = Pi^2*Es*Ryy / KLy^2 = kn. -. Lambda_by < 0.2 or N_Ed/Ncry < > No need to check. -. Lambda_bz = {(KLz/iz)/Lambda1} * SQRT(Beta_A) = Ncrz = Pi^2*Es*Rzz / KLz^2 = kn. -. Lambda_bz > 0.2 and N_Ed/Ncrz > > Need to check. -. Alphaz = Phiz = 0.5 * [ 1 + Alphaz*(Lambda_bz-0.2) + Lambda_bz^2 ] = Xiz = MIN [ 1 / [Phiz + SQRT(Phiz^2 - Lambda_bz^2)], 1.0 ] = Nb_Rdz = Xiz*Beta_A*Area*fy / Gamma_M1 = kn. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-21 / 58 -

115 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check ratio of buckling resistance (N_Ed/Nb_Rd). -. Nb_Rd = MIN[ Nb_Rdy, Nb_Rdz ] = kn. N_Ed = = < > O.K. Nb_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. eta = 1.2 (Fy < 460 MPa.) -. r = cm. -. Avy = Area - hw*tw = cm^2. -. Avz1 = eta*hw*tw = cm^2. -. Avz2 = Area - 2*B*tf + (tw + 2*r)*tf = cm^2. -. Avz = MAX[ Avz1, Avz2 ] = cm^2. ( ). Calculate plastic shear resistance in local-y direction (Vpl_Rdy). [ Eurocode3:05 6.1, ] -. Vpl_Rdy = [ Avy*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Check ratio of shear resistance (V_Edy/Vpl_Rdy). ( LCB = 97, POS = J ) -. Applied shear force : V_Edy = 0.97 kn. V_Edy = = < > O.K. Vpl_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = cm^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-22 / 58 -

116 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = cm^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = =3.168e-004 < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-cm. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-cm. ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = a = MIN[ (Area-2b*tf)/Area, 0.5 ] = Alpha = Beta = MAX[ 5*n, 1.0 ] = N_Ed < 0.25*Npl_Rd = kn. -. N_Ed > 0.5*hw*tw*fy/Gamma_M0 = kn. Therefore, Allowance for the effect of axial force. -. Mny_Rd = MIN[ Mply_Rd*(1-n)/(1-0.5*a), Mply_Rd ] = kn-cm. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. N_Ed < hw*tw*fy/gamma_m0 = kn. Therefore, No allowance for the effect of axial force. -. Mnz_Rd = Mplz_Rd = kn-cm. -. Rmaxz = M_Edz / Mnz_Rd =3.168e-004 < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] =3.168e-004 < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-23 / 58 -

117 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check interaction ratio of bending and axial compression member. [ Eurocode3: , (6.61, 6.62), Annex A ] -. N_Ed = kn. -. M_Edy = 0.00 kn-cm. -. M_Edz = kn-cm. -. kyy = kyz = kzy = kzz = Xiy = Xiz = XiLT = N_Rk = A*fy = kn. -. My_Rk = Wply*fy = kn-cm. -. Mz_Rk = Wplz*fy = kn-cm. -. N_Ed*eNy = 0.0 (Not Slender) -. N_Ed*eNZ = 0.0 (Not Slender) N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT1 = kyy * kyz * Xiy*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT2 = kzy * kzz * Xiz*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. -. Rmax = MAX[ MAX(Rmax1, Rmax2), MAX(Rmax_LT1, Rmax_LT2) ] = < > O.K. [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Def = * DAF = 0.031cm (Golbal Y) -. Def_Lim = 1.307cm Def < Def_Lim ---> O.K! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-24 / 58 -

118 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 632, ELEMENT TYPE = Beam *. LOADCOMB NO = 161, MATERIAL NO = 1, SECTION NO = 5 *. UNIT SYSTEM : kn, cm *. SECTION PROPERTIES : Designation = HEB160 Shape = I - Section. (Rolled) Depth = , Top F Width = , Bot.F Width = Web Thick = 0.800, Top F Thick = 1.300, Bot.F Thick = Area = e+001, Avy = e+001, Avz = e+001 Ybar = e+000, Zbar = e+000, Qyb = e+002, Qzb = e+001 Wely = e+002, Welz = e+002, Wply = e+002, Wplz = e+002 Iyy = e+003, Izz = e+002, Iyz = e+000 iy = e+000, iz = e+000 J = e+001, Cwp = e+004 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+001, Lz = e+001, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+001, Es = e+004, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (I) POINT : Axial Force Fxx = e+000 Shear Forces Fyy = e+000, Fzz = e+000 Bending Moments My = e+002, Mz = e+000 End Moments Myi = e+002, Myj = e+000 (for Lb) Myi = e+002, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY LEFT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY RIGHT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-25 / 58 -

119 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY LEFT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY RIGHT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY WEB OF SECTION (HTR). ( ). Determine classification of bending Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. HTR < 72*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-26 / 58 -

120 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial tension member (l/i). [ Eurocode3: ] -. l/i = 12.3 < > O.K. ( ). Calculate parameters for combined resistance. -. Lambda1 = Pi * SQRT(Es/fy) = Lambda_bz = (KLz/iz) / Lambda1 = ( ). Calculate axial tensile resistance (Nt_Rd). [ Eurocode3: ] -. Nt_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nt_Rd). N_Ed = = < > O.K. Nt_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. eta = 1.2 (Fy < 460 MPa.) -. r = cm. -. Avy = Area - hw*tw = cm^2. -. Avz1 = eta*hw*tw = cm^2. -. Avz2 = Area - 2*B*tf + (tw + 2*r)*tf = cm^2. -. Avz = MAX[ Avz1, Avz2 ] = cm^2. ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-27 / 58 -

121 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 168, POS = I ) -. Applied shear force : V_Edz = 3.99 kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = cm^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = cm^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-cm. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-cm. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-28 / 58 -

122 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = a = MIN[ (Area-2b*tf)/Area, 0.5 ] = Alpha = Beta = MAX[ 5*n, 1.0 ] = N_Ed < 0.25*Npl_Rd = kn. -. N_Ed < 0.5*hw*tw*fy/Gamma_M0 = kn. Therefore, No allowance for the effect of axial force. -. Mny_Rd = Mply_Rd = kn-cm. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. N_Ed < hw*tw*fy/gamma_m0 = kn. Therefore, No allowance for the effect of axial force. -. Mnz_Rd = Mplz_Rd = kn-cm. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. -. Rmax = MAX[ Rmax1, Rmax2 ] = < > O.K. [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Position = cm From i-end(node 412). -. Def = 3.741e-004 * DAF =3.741e-004cm (Golbal Z) -. Def_Lim = 0.200cm Def < Def_Lim ---> O.K! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-29 / 58 -

123 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 283, ELEMENT TYPE = Truss *. LOADCOMB NO = 60, MATERIAL NO = 4, SECTION NO = 6 *. UNIT SYSTEM : kn, cm *. SECTION PROPERTIES : Designation = piatti_controventi, BSB 80x16x0/0 Shape = SB - Section. (Built-up) Depth = 8.000, Width = Area = e+001, Avy = e+001, Avz = e+001 Ybar = e-001, Zbar = e+000, Qyb = e+000, Qzb = e-001 Wely = e+001, Welz = e+000, Wply = e+001, Wplz = e+000 Iyy = e+001, Izz = e+000, Iyz = e+000 iy = e+000, iz = e-001 J = e+000, Cwp = e+028 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+002, Lz = e+002, Lu = e+002 Ky = e-002, Kz = e-002 *. MATERIAL PROPERTIES : Fy = e+001, Es = e+004, MATERIAL NAME = S235 - c *. FORCES AND MOMENTS AT (I) POINT : Axial Force Fxx = e+001 Shear Forces Fyy = e+000, Fzz = e+000 Bending Moments My = e+000, Mz = e+000 End Moments Myi = e+000, Myj = e+000 (for Lb) Myi = e+000, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. HTR < 33*e ( Class 1 : Plastic ). Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-30 / 58 -

124 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. HTR < 33*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY LEFT WEB OF SECTION (HTR). ( ). Determine classification of compression Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. HTR < 33*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial compression member (Kl/i). [ Eurocode3: ] -. Kl/i = 12.3 < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-31 / 58 -

125 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate axial compressive resistance (Nc_Rd). [ Eurocode3:05 6.1, ] -. Nc_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nc_Rd). N_Ed = = < > O.K. Nc_Rd ( ). Calculate buckling resistance of compression member (Nb_Rdy, Nb_Rdz). [ Eurocode3: , ] -. Beta_A = Aeff / Area = Lambda1 = Pi * SQRT(Es/fy) = Lambda_by = {(KLy/iy)/Lambda1} * SQRT(Beta_A) = Ncry = Pi^2*Es*Ryy / KLy^2 = kn. -. Lambda_by < 0.2 or N_Ed/Ncry < > No need to check. -. Lambda_bz = {(KLz/iz)/Lambda1} * SQRT(Beta_A) = Ncrz = Pi^2*Es*Rzz / KLz^2 = kn. -. Lambda_bz < 0.2 or N_Ed/Ncrz < > No need to check. [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = cm^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = cm^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-32 / 58 -

126 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-cm. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-cm. ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = Alpha = *n^3 = Beta = *n^3 = N_Ed > 0.25*Npl_Rd = kn. Therefore, Allowance for the effect of axial force. -. ay = MIN[ (Area-2b*tf)/Area, 0.5 ] = Mny_Rd = MIN[ Mply_Rd*(1-n)/(1-0.5*ay), Mply_Rd ] = kn-cm. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. N_Ed > 0.25*Npl_Rd = kn. Therefore, Allowance for the effect of axial force. -. az = MIN[ (Area-2h*tw)/Area, 0.5 ] = Mnz_Rd = MIN[ Mplz_Rd*(1-n)/(1-0.5*az), Mplz_Rd ] = kn-cm. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-33 / 58 -

127 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check interaction ratio of bending and axial compression member. [ Eurocode3: , (6.61, 6.62), Annex A ] -. N_Ed = kn. -. M_Edy = 0.00 kn-cm. -. M_Edz = 0.00 kn-cm. -. kyy = kyz = kzy = kzz = Xiy = Xiz = XiLT = N_Rk = A*fy = kn. -. My_Rk = Wply*fy = kn-cm. -. Mz_Rk = Wplz*fy = kn-cm. -. N_Ed*eNy = 0.0 (Not Slender) -. N_Ed*eNZ = 0.0 (Not Slender) N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT1 = kyy * kyz * Xiy*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT2 = kzy * kzz * Xiz*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. -. Rmax = MAX[ MAX(Rmax1, Rmax2), MAX(Rmax_LT1, Rmax_LT2) ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-34 / 58 -

128 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 377, ELEMENT TYPE = Beam *. LOADCOMB NO = 161, MATERIAL NO = 1, SECTION NO = 7 *. UNIT SYSTEM : kn, cm *. SECTION PROPERTIES : Designation = UPN140 Shape = C - Section. (Rolled) Depth = , Top F Width = 6.000, Bot.F Width = Web Thick = 0.700, Top F Thick = 1.000, Bot.F Thick = Area = e+001, Avy = e+001, Avz = e+001 Ybar = e+000, Zbar = e+000, Qyb = e+001, Qzb = e+000 Wely = e+001, Welz = e+001, Wply = e+002, Wplz = e+001 Iyy = e+002, Izz = e+001, Iyz = e+000 iy = e+000, iz = e+000 J = e+000, Cwp = e+003 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+002, Lz = e+002, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+001, Es = e+004, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (1/2) POINT : Axial Force Fxx = e+000 Shear Forces Fyy = e+000, Fzz = e+000 Bending Moments My = e+002, Mz = e+000 End Moments Myi = e+000, Myj = e+000 (for Lb) Myi = e+000, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-35 / 58 -

129 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY WEB OF SECTION (HTR). ( ). Determine classification of bending Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. HTR < 72*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial tension member (l/i). [ Eurocode3: ] -. l/i = < > O.K. ( ). Calculate parameters for combined resistance. -. Lambda1 = Pi * SQRT(Es/fy) = Lambda_bz = (KLz/iz) / Lambda1 = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-36 / 58 -

130 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate axial tensile resistance (Nt_Rd). [ Eurocode3: ] -. Nt_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nt_Rd). N_Ed = = < > O.K. Nt_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. r = cm. -. Avy = Area - hw*tw = cm^2. -. Avz = Area - 2*B*tf + (tw+r)*tf = cm^2. ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 161, POS = J ) -. Applied shear force : V_Edz = 4.48 kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = cm^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-37 / 58 -

131 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = cm^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-cm. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-cm. ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = a = MIN[ (Area-2b*tf)/Area, 0.5 ] = Alpha = Beta = MAX[ 5*n, 1.0 ] = Mny_Rd = MIN[ Mply_Rd*(1-n)/(1-0.5*a), Mply_Rd ] = kn-cm. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. In case of n < a -. Mnz_Rd = Mplz_Rd = kn-cm. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. -. Rmax = MAX[ Rmax1, Rmax2 ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-38 / 58 -

132 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Position = cm From i-end(node 380). -. Def = * DAF = cm (Golbal Z) -. Def_Lim = 1.310cm Def < Def_Lim ---> O.K! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-39 / 58 -

133 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 239, ELEMENT TYPE = Beam *. LOADCOMB NO = 6, MATERIAL NO = 3, SECTION NO = 8 *. UNIT SYSTEM : kn, cm *. SECTION PROPERTIES : Designation = pilastri Shape = P - Section. (Built-up) Outer Dia. = , Wall Thick = Area = e+001, Avy = e+001, Avz = e+001 Ybar = e+000, Zbar = e+000, Qyb = e+001, Qzb = e+001 Wely = e+002, Welz = e+002, Wply = e+002, Wplz = e+002 Iyy = e+002, Izz = e+002, Iyz = e+000 iy = e+000, iz = e+000 J = e+003, Cwp = e+028 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+002, Lz = e+002, Lu = e+002 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+001, Es = e+004, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (I) POINT : Axial Force Fxx = e+002 Shear Forces Fyy = e-001, Fzz = e-002 Bending Moments My = e+000, Mz = e+000 End Moments Myi = e+000, Myj = e+000 (for Lb) Myi = e+000, Myj = e-001 (for Ly) Mzi = e+000, Mzj = e+001 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. ( ). Determine classification of tublar section(hollow pipe). [ Eurocode3:05 Table 5.2 (Sheet 3 of 3) ] -. e = SQRT( 235/fy ) = d/t = DTR = DTR < 50*e^2 ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-40 / 58 -

134 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== -. Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial compression member (Kl/i). [ Eurocode3: ] -. Kl/i = 74.4 < > O.K. ( ). Calculate axial compressive resistance (Nc_Rd). [ Eurocode3:05 6.1, ] -. Nc_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nc_Rd). N_Ed = = < > O.K. Nc_Rd ( ). Calculate buckling resistance of compression member (Nb_Rdy, Nb_Rdz). [ Eurocode3: , ] -. Beta_A = Aeff / Area = Lambda1 = Pi * SQRT(Es/fy) = Lambda_by = {(KLy/iy)/Lambda1} * SQRT(Beta_A) = Ncry = Pi^2*Es*Ryy / KLy^2 = kn. -. Lambda_by > 0.2 and N_Ed/Ncry > > Need to check. -. Alphay = Phiy = 0.5 * [ 1 + Alphay*(Lambda_by-0.2) + Lambda_by^2 ] = Xiy = MIN [ 1 / [Phiy + SQRT(Phiy^2 - Lambda_by^2)], 1.0 ] = Nb_Rdy = Xiy*Beta_A*Area*fy / Gamma_M1 = kn. -. Lambda_bz = {(KLz/iz)/Lambda1} * SQRT(Beta_A) = Ncrz = Pi^2*Es*Rzz / KLz^2 = kn. -. Lambda_bz < 0.2 or N_Ed/Ncrz < > No need to check. ( ). Check ratio of buckling resistance (N_Ed/Nb_Rd). -. Nb_Rd = MIN[ Nb_Rdy, Nb_Rdz ] = kn. N_Ed = = < > O.K. Nb_Rd [[[*]]] CHECK SHEAR RESISTANCE. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-41 / 58 -

135 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. Avy = 2*Area/Pi = cm^2. -. Avz = 2*Area/Pi = cm^2. ( ). Calculate plastic shear resistance in local-y direction (Vpl_Rdy). [ Eurocode3:05 6.1, ] -. Vpl_Rdy = [ Avy*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Check ratio of shear resistance (V_Edy/Vpl_Rdy). ( LCB = 6, POS = J ) -. Applied shear force : V_Edy = kn. V_Edy = = < > O.K. Vpl_Rdy ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 97, POS = J ) -. Applied shear force : V_Edz = 0.24 kn. V_Edz = =7.227e-004 < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = cm^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-42 / 58 -

136 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = cm^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-cm. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-cm. ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. Alpha = Beta = N_Ed < 0.25*Npl_Rd = kn. Therefore, No allowance for the effect of axial force. -. Mny_Rd = Mply_Rd = kn-cm. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. Mnz_Rd = Mplz_Rd = kn-cm. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-43 / 58 -

137 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check interaction ratio of bending and axial compression member. [ Eurocode3: , (6.61, 6.62), Annex A ] -. N_Ed = kn. -. M_Edy = kn-cm. -. M_Edz = kn-cm. -. kyy = kyz = kzy = kzz = Xiy = Xiz = XiLT = N_Rk = A*fy = kn. -. My_Rk = Wply*fy = kn-cm. -. Mz_Rk = Wplz*fy = kn-cm. -. N_Ed*eNy = 0.0 (Not Slender) -. N_Ed*eNZ = 0.0 (Not Slender) N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT1 = kyy * kyz * Xiy*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT2 = kzy * kzz * Xiz*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. -. Rmax = MAX[ MAX(Rmax1, Rmax2), MAX(Rmax_LT1, Rmax_LT2) ] = < > O.K. [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Def = * DAF = 0.115cm (Golbal Y) -. Def_Lim = 1.140cm Def < Def_Lim ---> O.K! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-44 / 58 -

138 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 565, ELEMENT TYPE = Beam *. LOADCOMB NO = 161, MATERIAL NO = 3, SECTION NO = 9 *. UNIT SYSTEM : kn, cm *. SECTION PROPERTIES : Designation = aste Shape = P - Section. (Built-up) Outer Dia. = 8.890, Wall Thick = Area = e+001, Avy = e+000, Avz = e+000 Ybar = e+000, Zbar = e+000, Qyb = e+001, Qzb = e+001 Wely = e+001, Welz = e+001, Wply = e+001, Wplz = e+001 Iyy = e+002, Izz = e+002, Iyz = e+000 iy = e+000, iz = e+000 J = e+002, Cwp = e+028 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+002, Lz = e+002, Lu = e+002 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+001, Es = e+004, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (I) POINT : Axial Force Fxx = e+001 Shear Forces Fyy = e-003, Fzz = e-001 Bending Moments My = e+001, Mz = e-001 End Moments Myi = e+001, Myj = e+001 (for Lb) Myi = e+001, Myj = e+001 (for Ly) Mzi = e-001, Mzj = e-002 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. ( ). Determine classification of tublar section(hollow pipe). [ Eurocode3:05 Table 5.2 (Sheet 3 of 3) ] -. e = SQRT( 235/fy ) = d/t = DTR = DTR < 50*e^2 ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-45 / 58 -

139 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== -. Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial compression member (Kl/i). [ Eurocode3: ] -. Kl/i = 48.9 < > O.K. ( ). Calculate axial compressive resistance (Nc_Rd). [ Eurocode3:05 6.1, ] -. Nc_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nc_Rd). N_Ed = = < > O.K. Nc_Rd ( ). Calculate buckling resistance of compression member (Nb_Rdy, Nb_Rdz). [ Eurocode3: , ] -. Beta_A = Aeff / Area = Lambda1 = Pi * SQRT(Es/fy) = Lambda_by = {(KLy/iy)/Lambda1} * SQRT(Beta_A) = Ncry = Pi^2*Es*Ryy / KLy^2 = kn. -. Lambda_by > 0.2 and N_Ed/Ncry > > Need to check. -. Alphay = Phiy = 0.5 * [ 1 + Alphay*(Lambda_by-0.2) + Lambda_by^2 ] = Xiy = MIN [ 1 / [Phiy + SQRT(Phiy^2 - Lambda_by^2)], 1.0 ] = Nb_Rdy = Xiy*Beta_A*Area*fy / Gamma_M1 = kn. -. Lambda_bz = {(KLz/iz)/Lambda1} * SQRT(Beta_A) = Ncrz = Pi^2*Es*Rzz / KLz^2 = kn. -. Lambda_bz > 0.2 and N_Ed/Ncrz > > Need to check. -. Alphaz = Phiz = 0.5 * [ 1 + Alphaz*(Lambda_bz-0.2) + Lambda_bz^2 ] = Xiz = MIN [ 1 / [Phiz + SQRT(Phiz^2 - Lambda_bz^2)], 1.0 ] = Nb_Rdz = Xiz*Beta_A*Area*fy / Gamma_M1 = kn. ( ). Check ratio of buckling resistance (N_Ed/Nb_Rd). -. Nb_Rd = MIN[ Nb_Rdy, Nb_Rdz ] = kn. N_Ed = = < > O.K. Nb_Rd Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-46 / 58 -

140 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. Avy = 2*Area/Pi = cm^2. -. Avz = 2*Area/Pi = cm^2. ( ). Calculate plastic shear resistance in local-y direction (Vpl_Rdy). [ Eurocode3:05 6.1, ] -. Vpl_Rdy = [ Avy*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Check ratio of shear resistance (V_Edy/Vpl_Rdy). ( LCB = 97, POS = J ) -. Applied shear force : V_Edy = 0.01 kn. V_Edy = =1.175e-004 < > O.K. Vpl_Rdy ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 161, POS = I ) -. Applied shear force : V_Edz = 0.78 kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = cm^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-47 / 58 -

141 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = cm^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = =3.064e-004 < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-cm. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-cm. ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. Alpha = Beta = N_Ed < 0.25*Npl_Rd = kn. Therefore, No allowance for the effect of axial force. -. Mny_Rd = Mply_Rd = kn-cm. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. Mnz_Rd = Mplz_Rd = kn-cm. -. Rmaxz = M_Edz / Mnz_Rd =3.064e-004 < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-48 / 58 -

142 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [ M_Edy ^(Alpha) M_Edz ^(Beta) ] -. Rmax2 = [ ] [ Mny_Rd Mnz_Rd ] = < > O.K. ( ). Check interaction ratio of bending and axial compression member. [ Eurocode3: , (6.61, 6.62), Annex A ] -. N_Ed = kn. -. M_Edy = kn-cm. -. M_Edz = kn-cm. -. kyy = kyz = kzy = kzz = Xiy = Xiz = XiLT = N_Rk = A*fy = kn. -. My_Rk = Wply*fy = kn-cm. -. Mz_Rk = Wplz*fy = kn-cm. -. N_Ed*eNy = 0.0 (Not Slender) -. N_Ed*eNZ = 0.0 (Not Slender) N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT1 = kyy * kyz * Xiy*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT2 = kzy * kzz * Xiz*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. -. Rmax = MAX[ MAX(Rmax1, Rmax2), MAX(Rmax_LT1, Rmax_LT2) ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-49 / 58 -

143 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 574, ELEMENT TYPE = Beam *. LOADCOMB NO = 161, MATERIAL NO = 3, SECTION NO = 10 *. UNIT SYSTEM : kn, cm *. SECTION PROPERTIES : Designation = tiranti Shape = P - Section. (Built-up) Outer Dia. = 7.610, Wall Thick = Area = e+001, Avy = e+000, Avz = e+000 Ybar = e+000, Zbar = e+000, Qyb = e+001, Qzb = e+001 Wely = e+001, Welz = e+001, Wply = e+001, Wplz = e+001 Iyy = e+001, Izz = e+001, Iyz = e+000 iy = e+000, iz = e+000 J = e+002, Cwp = e+028 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+002, Lz = e+002, Lu = e+002 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+001, Es = e+004, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (1/2) POINT : Axial Force Fxx = e+001 Shear Forces Fyy = e-004, Fzz = e+000 Bending Moments My = e+000, Mz = e-002 End Moments Myi = e+000, Myj = e+000 (for Lb) Myi = e+000, Myj = e+000 (for Ly) Mzi = e-003, Mzj = e-002 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. ( ). Determine classification of tublar section(hollow pipe). [ Eurocode3:05 Table 5.2 (Sheet 3 of 3) ] -. e = SQRT( 235/fy ) = d/t = DTR = DTR < 50*e^2 ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-50 / 58 -

144 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== -. Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial tension member (l/i). [ Eurocode3: ] -. l/i = < > O.K. ( ). Calculate parameters for combined resistance. -. Lambda1 = Pi * SQRT(Es/fy) = Lambda_bz = (KLz/iz) / Lambda1 = ( ). Calculate axial tensile resistance (Nt_Rd). [ Eurocode3: ] -. Nt_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nt_Rd). N_Ed = = < > O.K. Nt_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. Avy = 2*Area/Pi = cm^2. -. Avz = 2*Area/Pi = cm^2. ( ). Calculate plastic shear resistance in local-y direction (Vpl_Rdy). [ Eurocode3:05 6.1, ] -. Vpl_Rdy = [ Avy*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Check ratio of shear resistance (V_Edy/Vpl_Rdy). ( LCB = 85, POS = 3/4 ) -. Applied shear force : V_Edy = 0.02 kn. V_Edy = =2.124e-004 < > O.K. Vpl_Rdy Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-51 / 58 -

145 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 170, POS = J ) -. Applied shear force : V_Edz = 0.14 kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = cm^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = cm^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = =4.412e-005 < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-cm. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-52 / 58 -

146 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-cm. ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. Alpha = Beta = N_Ed > 0.25*Npl_Rd = kn. Therefore, Allowance for the effect of axial force. -. n = N_Ed / Npl_Rd = Mny_Rd = MIN[ 1.04 * Mply_Rd*(1-n^1.7), Mply_Rd ] = kn-cm. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. Mnz_Rd = MIN[ 1.04 * Mplz_Rd*(1-n^1.7), Mplz_Rd ] = kn-cm. -. Rmaxz = M_Edz / Mnz_Rd =4.856e-005 < > O.K. [ M_Edy ^(Alpha) M_Edz ^(Beta) ] -. Rmax2 = [ ] [ Mny_Rd Mnz_Rd ] =3.772e-004 < > O.K. -. Rmax = MAX[ Rmax1, Rmax2 ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-53 / 58 -

147 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 634, ELEMENT TYPE = Beam *. LOADCOMB NO = 168, MATERIAL NO = 1, SECTION NO = 14 *. UNIT SYSTEM : kn, cm *. SECTION PROPERTIES : Designation = HEB220 Shape = I - Section. (Rolled) Depth = , Top F Width = , Bot.F Width = Web Thick = 0.950, Top F Thick = 1.600, Bot.F Thick = Area = e+001, Avy = e+001, Avz = e+001 Ybar = e+001, Zbar = e+001, Qyb = e+002, Qzb = e+001 Wely = e+002, Welz = e+002, Wply = e+002, Wplz = e+002 Iyy = e+003, Izz = e+003, Iyz = e+000 iy = e+000, iz = e+000 J = e+001, Cwp = e+005 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+001, Lz = e+001, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+001, Es = e+004, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (I) POINT : Axial Force Fxx = e+000 Shear Forces Fyy = e+000, Fzz = e+000 Bending Moments My = e+002, Mz = e+000 End Moments Myi = e+002, Myj = e+000 (for Lb) Myi = e+002, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY LEFT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY RIGHT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-54 / 58 -

148 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY LEFT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY RIGHT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY WEB OF SECTION (HTR). ( ). Determine classification of bending Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = kn/cm^2. -. sigma2 = kn/cm^2. -. HTR < 72*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-55 / 58 -

149 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial tension member (l/i). [ Eurocode3: ] -. l/i = 8.9 < > O.K. ( ). Calculate parameters for combined resistance. -. Lambda1 = Pi * SQRT(Es/fy) = Lambda_bz = (KLz/iz) / Lambda1 = ( ). Calculate axial tensile resistance (Nt_Rd). [ Eurocode3: ] -. Nt_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nt_Rd). N_Ed = = < > O.K. Nt_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. eta = 1.2 (Fy < 460 MPa.) -. r = cm. -. Avy = Area - hw*tw = cm^2. -. Avz1 = eta*hw*tw = cm^2. -. Avz2 = Area - 2*B*tf + (tw + 2*r)*tf = cm^2. -. Avz = MAX[ Avz1, Avz2 ] = cm^2. ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-56 / 58 -

150 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 168, POS = I ) -. Applied shear force : V_Edz = 4.17 kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = cm^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = cm^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-cm. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-cm. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-cm. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-57 / 58 -

151 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = a = MIN[ (Area-2b*tf)/Area, 0.5 ] = Alpha = Beta = MAX[ 5*n, 1.0 ] = N_Ed < 0.25*Npl_Rd = kn. -. N_Ed < 0.5*hw*tw*fy/Gamma_M0 = kn. Therefore, No allowance for the effect of axial force. -. Mny_Rd = Mply_Rd = kn-cm. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. N_Ed < hw*tw*fy/gamma_m0 = kn. Therefore, No allowance for the effect of axial force. -. Mnz_Rd = Mplz_Rd = kn-cm. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. -. Rmax = MAX[ Rmax1, Rmax2 ] = < > O.K. [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Position = cm From i-end(node 414). -. Def = 1.086e-004 * DAF =1.086e-004cm (Golbal Z) -. Def_Lim = 0.200cm Def < Def_Lim ---> O.K! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :29-58 / 58 -

152 midas Gen Steel Checking Result Company Project Title Author 1. Design Information Alberto Dellavalle File Name C:\...amento_EST_pensilina-RID.mgb z Design Code : Eurocode3: Unit System : kn, cm Member No : 338 Material : S235 (No:1) (Fy = , Es = ) y Section Name : HEA140 (No:1) 7.00 (Rolled : HEA140). 14 Member Length : Member Forces Axial Force Fxx = (LCB: 161, POS:1/4) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 161, POS:J) Depth Web Thick Top F Width Top F Thick Bot.F Width Bot.F Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio L/r = < (Memb:330, LCB: 1)... O.K Axial Resistance N_Ed/Nt_Rd = 0.000/ = < O.K Bending Resistance M_Edy/M_Rdy = / = < O.K M_Edz/M_Rdz = 0.00/ = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rmax = MAX[ RNRd, (Rcom+Rbend) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results L/ = > (Memb:415, LCB: 163, POS: 206.0cm, Dir-Z)... O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :31

153 midas Gen Steel Checking Result Company Project Title Author 1. Design Information Alberto Dellavalle File Name C:\...amento_EST_pensilina-RID.mgb z Design Code : Eurocode3: Unit System : kn, cm Member No : 369 Material : S235 (No:1) (Fy = , Es = ) y Section Name : HEB200 (No:2) (Rolled : HEB200). Member Length : Member Forces Axial Force Fxx = (LCB: 161, POS:1/2) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 161, POS:I) Depth Web Thick Top F Width Top F Thick Bot.F Width Bot.F Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio KL/r = < (Memb:313, LCB: 1)... O.K Axial Resistance N_Ed/Nt_Rd = 0.00/ = < O.K Bending Resistance M_Edy/M_Rdy = / = > N.G M_Edz/M_Rdz = 0.00/ = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rmax = MAX[ RNRd, (Rcom+Rbend) ] = > N.G Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results L/ = < (Memb:369, LCB: 163, POS: 246.9cm, Dir-Z)... N.G Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :31

154 midas Gen Steel Checking Result Company Project Title Author 1. Design Information Alberto Dellavalle File Name C:\...amento_EST_pensilina-RID.mgb z Design Code : Eurocode3: Unit System : kn, cm Member No : 277 Material : S235 (No:1) (Fy = , Es = ) y Section Name : HEB200 - pil (No:3) (Rolled : HEB200). Member Length : Member Forces Axial Force Fxx = (LCB: 161, POS:I) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 97, POS:J) Fzz = (LCB: 160, POS:I) Depth Web Thick Top F Width Top F Thick Bot.F Width Bot.F Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 0.85, Cmz = 0.85, CmLT = Checking Results Slenderness Ratio KL/r = 77.3 < (Memb:277, LCB: 161)... O.K Axial Resistance N_Ed/Nc_Rd = / = < O.K Bending Resistance M_Edy/M_Rdy = 0.0/ = < O.K M_Edz/M_Rdz = 2.15/ = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rc_LT1 = N_Ed/(Xiy*A*fy/Gamma_M1) Rb_LT1 = (kyy*m_edy)/(xi_lt*wply*fy/gamma_m1) + (kyz*msdz)/(wplz*fy/gamma_m1) Rc_LT2 = N_Ed/(Xiz*A*fy/Gamma_M1) Rb_LT2 = (Kzy*M_Edy)/(Xi_LT*Wply*fy/Gamma_M1) + (Kzz*Msdz)/(Wplz*fy/Gamma_M1) Rmax = MAX[ RNRd, (Rcom+Rbend), MAX(Rc_LT1+Rb_LT1, Rc_LT2+Rb_LT2) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results Story Hight/ = > (Memb:276, LCB: 163, Dir-Y)... O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :31

155 midas Gen Steel Checking Result Company Project Title Author 1. Design Information Alberto Dellavalle File Name C:\...amento_EST_pensilina-RID.mgb z Design Code : Eurocode3: Unit System : kn, cm Member No : 632 Material : S235 (No:1) (Fy = , Es = ) y Section Name : HEB160 (No:5) (Rolled : HEB160). Member Length : Member Forces Axial Force Fxx = (LCB: 161, POS:I) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 168, POS:I) Depth Web Thick Top F Width Top F Thick Bot.F Width Bot.F Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio L/r = 59.8 < (Memb:428, LCB: 1)... O.K Axial Resistance N_Ed/Nt_Rd = 0.00/ = < O.K Bending Resistance M_Edy/M_Rdy = / = < O.K M_Edz/M_Rdz = 0.00/ = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rmax = MAX[ RNRd, (Rcom+Rbend) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results L/ = > (Memb:425, LCB: 172, POS: 147.9cm, Dir-Z)... O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :31

156 midas Gen Steel Checking Result Company Author 1. Design Information Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, cm Member No : 283 Material : S235 - c (No:4) (Fy = , Es = ) Section Name : piatti_controventi (No:6) (Rolled : BSB 80x16x0/0). Member Length : Project Title File Name 8 C:\...amento_EST_pensilina-RID.mgb z y Member Forces Axial Force Fxx = (LCB: 60, POS:I) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 160, POS:I) Depth Width Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 0.01, Kz = 0.01 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio L/r = > (Memb:261, LCB: 8)... N.G Axial Resistance N_Ed/Nc_Rd = / = < O.K Bending Resistance M_Edy/M_Rdy = 0.000/ = < O.K M_Edz/M_Rdz = / = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rc_LT1 = N_Ed/(Xiy*A*fy/Gamma_M1) Rb_LT1 = (kyy*m_edy)/(xi_lt*wply*fy/gamma_m1) + (kyz*msdz)/(wplz*fy/gamma_m1) Rc_LT2 = N_Ed/(Xiz*A*fy/Gamma_M1) Rb_LT2 = (Kzy*M_Edy)/(Xi_LT*Wply*fy/Gamma_M1) + (Kzz*Msdz)/(Wplz*fy/Gamma_M1) Rmax = MAX[ RNRd, (Rcom+Rbend), MAX(Rc_LT1+Rb_LT1, Rc_LT2+Rb_LT2) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :31

157 midas Gen Steel Checking Result Company Project Title Author 1. Design Information Alberto Dellavalle File Name C:\...amento_EST_pensilina-RID.mgb z Design Code : Eurocode3:05 1 Unit System : kn, cm 0.7 Member No : 377 Material : S235 (No:1) (Fy = , Es = ) y Section Name : UPN140 (No:7) (Rolled : UPN140). Member Length : Member Forces Axial Force Fxx = (LCB: 161, POS:1/2) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 161, POS:J) Depth Web Thick Top F Width Top F Thick Bot.F Width Bot.F Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio L/r = < (Memb:627, LCB: 1)... O.K Axial Resistance N_Ed/Nt_Rd = 0.000/ = < O.K Bending Resistance M_Edy/M_Rdy = / = < O.K M_Edz/M_Rdz = 0.000/ = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rmax = MAX[ RNRd, (Rcom+Rbend) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results L/ = > (Memb:377, LCB: 163, POS: 131.0cm, Dir-Z)... O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :31

158 midas Gen Steel Checking Result Company Author 1. Design Information Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, cm Member No : 239 Material : S235 (No:3) (Fy = , Es = ) Section Name : pilastri (No:8) (Built-up Section). Member Length : Project Title File Name C:\...amento_EST_pensilina-RID.mgb z y Member Forces Axial Force Fxx = (LCB: 6, POS:I) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 6, POS:J) Fzz = (LCB: 97, POS:J) Outer Dia Wall Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 0.85, Cmz = 0.85, CmLT = Checking Results Slenderness Ratio KL/r = 74.4 < (Memb:239, LCB: 6)... O.K Axial Resistance N_Ed/Nc_Rd = / = < O.K Bending Resistance M_Edy/M_Rdy = 0.00/ = < O.K M_Edz/M_Rdz = 0.00/ = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rc_LT1 = N_Ed/(Xiy*A*fy/Gamma_M1) Rb_LT1 = (kyy*m_edy)/(xi_lt*wply*fy/gamma_m1) + (kyz*msdz)/(wplz*fy/gamma_m1) Rc_LT2 = N_Ed/(Xiz*A*fy/Gamma_M1) Rb_LT2 = (Kzy*M_Edy)/(Xi_LT*Wply*fy/Gamma_M1) + (Kzz*Msdz)/(Wplz*fy/Gamma_M1) Rmax = MAX[ RNRd, (Rcom+Rbend), MAX(Rc_LT1+Rb_LT1, Rc_LT2+Rb_LT2) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results Story Hight/ = > (Memb:553, LCB: 163, Dir-Y)... O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :31

159 midas Gen Steel Checking Result Company Author 1. Design Information Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, cm Member No : 565 Material : S235 (No:3) (Fy = , Es = ) Section Name : aste (No:9) (Built-up Section). Member Length : Project Title File Name C:\...amento_EST_pensilina-RID.mgb z y Member Forces Axial Force Fxx = (LCB: 161, POS:I) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 97, POS:I) Fzz = (LCB: 161, POS:I) Outer Dia Wall Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio KL/r = 53.7 < (Memb:250, LCB: 3)... O.K Axial Resistance N_Ed/Nc_Rd = / = < O.K Bending Resistance M_Edy/M_Rdy = / = < O.K M_Edz/M_Rdz = 0.242/ = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rmax1 = (M_Edy/Mny_Rd)^Alpha + (M_Edz/Mnz_Rd)^Beta Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rc_LT1 = N_Ed/(Xiy*A*fy/Gamma_M1) Rb_LT1 = (kyy*m_edy)/(xi_lt*wply*fy/gamma_m1) + (kyz*msdz)/(wplz*fy/gamma_m1) Rc_LT2 = N_Ed/(Xiz*A*fy/Gamma_M1) Rb_LT2 = (Kzy*M_Edy)/(Xi_LT*Wply*fy/Gamma_M1) + (Kzz*Msdz)/(Wplz*fy/Gamma_M1) Rmax = MAX[ RNRd, Rmax1, (Rcom+Rbend), MAX(Rc_LT1+Rb_LT1, Rc_LT2+Rb_LT2) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :31

160 midas Gen Steel Checking Result Company Author 1. Design Information Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, cm Member No : 574 Material : S235 (No:3) (Fy = , Es = ) Section Name : tiranti (No:10) (Built-up Section). Member Length : Project Title File Name C:\...amento_EST_pensilina-RID.mgb z y Member Forces Axial Force Fxx = (LCB: 161, POS:1/2) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 85, POS:I) Fzz = (LCB: 161, POS:J) Outer Dia Wall Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio L/r = < (Memb:574, LCB: 161)... O.K Axial Resistance N_Ed/Nt_Rd = / = < O.K Bending Resistance M_Edy/M_Rdy = 9.999/ = < O.K M_Edz/M_Rdz = 0.025/ = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rmax1 = (M_Edy/Mny_Rd)^Alpha + (M_Edz/Mnz_Rd)^Beta Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rmax = MAX[ RNRd, Rmax1, (Rcom+Rbend) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :31

161 midas Gen Steel Checking Result Company Project Title Author 1. Design Information Alberto Dellavalle File Name C:\...amento_EST_pensilina-RID.mgb z Design Code : Eurocode3: Unit System : kn, cm Member No : 634 Material : S235 (No:1) (Fy = , Es = ) y Section Name : HEB220 (No:14) (Rolled : HEB220). Member Length : Member Forces Axial Force Fxx = (LCB: 168, POS:I) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 168, POS:I) Depth Web Thick Top F Width Top F Thick Bot.F Width Bot.F Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio L/r = 43.3 < (Memb:427, LCB: 1)... O.K Axial Resistance N_Ed/Nt_Rd = 0.00/ = < O.K Bending Resistance M_Edy/M_Rdy = 193.3/ = < O.K M_Edz/M_Rdz = 0.00/ = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rmax = MAX[ RNRd, (Rcom+Rbend) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results L/ = > (Memb:427, LCB: 172, POS: 161.3cm, Dir-Z)... O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :31

162 Figura 1 3D *** NODE DATA < Node > NO X Y Z TEMPERATURE

163 e e e e e e e e

164 e e e e e e e e e e

165 e e e e e e e e e e e e e e e e e e e e

166 e e e e e e e

167 e e e e e e e e e e e

168 Figura 2 nodes

169 < Beam > *** BEAM MEMBER DATA NO NODAL CONNECTIVITY BEAM END RELEASE MATERIAL SECTION LENGTH I J I J C25/30 Cord_Fond C25/30 Cord_Fond C25/30 Cord_Fond C25/30 Cord_Fond C25/30 Cord_Fond C25/30 Cord_Fond C25/30 Cord_Fond S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 HEB200 - pil S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 HEB S235 HEB

170 S235 HEB S235 HEB S235 HEB OFFSET HEB200 - pil OFFSET HEB200 - pil S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEA S235 HEB S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 UPN S235 UPN S235 UPN S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA

171 S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEB S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEB S235 HEB S235 HEB S235 HEB S235 HEB S235 UPN S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEA S235 HEB S235 HEA S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEA S235 HEA S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEA S235 doppioheb S235 doppioheb S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 HEB S235 HEB S235 HEA S235 HEA S235 HEA S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri 0.06

172 S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret tiranti S235 - ret tiranti S235 - ret tiranti S235 - ret tiranti S235 - ret tiranti S235 - ret tiranti S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret pilastri S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste S235 - ret aste OFFSET offset OFFSET offset OFFSET offset OFFSET offset S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 UPN S235 HEB S235 HEB S235 HEB S235 HEB S235 HEB S235 HEB S235 HEA S235 UPN S235 UPN S235 UPN S235 UPN S235 HEA S235 UPN S235 offset S235 UPN

173 < Truss > *** TRUSS MEMBER DATA NO NODAL CONNECTIVITY MATERIAL SECTION TENSION / SECTION AREA LENGTH I J COMPRESSION I J S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N S235 - c piatti_co~ N Figura 3 elements

174 Tabella 1 1 : HEA140 z y A(m 2 ) Asy(m 2 ) Asz(m 2 ) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m) Tabella 2 2 : HEB200 z y A(m 2) Asy(m 2) Asz(m 2) z(+)(m) z(-)(m) Ixx(m 4 ) Iyy(m 4 ) Izz(m 4 ) y(+)(m) y(-)(m)

175 Tabella 3 3 : HEB200 - pil z y A(m 2) Asy(m 2) Asz(m 2) z(+)(m) z(-)(m) Ixx(m 4) Iyy(m 4) Izz(m 4) y(+)(m) y(-)(m) Tabella 4 5 : HEB160 z y A(m 2) Asy(m 2) Asz(m 2) z(+)(m) z(-)(m) Ixx(m 4) Iyy(m 4) Izz(m 4) y(+)(m) y(-)(m)

176 Tabella 5 6 : piatti_controventi z y A(m 2) Asy(m 2) Asz(m 2) z(+)(m) z(-)(m) Ixx(m 4) Iyy(m 4) Izz(m 4) y(+)(m) y(-)(m) Tabella 6 7 : UPN140 z y A(m 2) Asy(m 2) Asz(m 2) z(+)(m) z(-)(m) Ixx(m 4) Iyy(m 4) Izz(m 4) y(+)(m) y(-)(m)

177 Tabella 7 8 : pilastri z y A(m 2) Asy(m 2) Asz(m 2) z(+)(m) z(-)(m) Ixx(m 4) Iyy(m 4) Izz(m 4) y(+)(m) y(-)(m) Tabella 8 9 : aste z y A(m 2) Asy(m 2) Asz(m 2) z(+)(m) z(-)(m) Ixx(m 4) Iyy(m 4) Izz(m 4) y(+)(m) y(-)(m)

178 Tabella 9 10 : tiranti z y A(m 2) Asy(m 2) Asz(m 2) z(+)(m) z(-)(m) Ixx(m 4) Iyy(m 4) Izz(m 4) y(+)(m) y(-)(m) Tabella : doppioheb140 z y A(m 2) Asy(m 2) Asz(m 2) z(+)(m) z(-)(m) Ixx(m 4) Iyy(m 4) Izz(m 4) y(+)(m) y(-)(m)

179 Tabella : HEB220 z y A(m 2) Asy(m 2) Asz(m 2) z(+)(m) z(-)(m) Ixx(m 4) Iyy(m 4) Izz(m 4) y(+)(m) y(-)(m) Tabella : Cord_Fond z y A(m 2) Asy(m 2) Asz(m 2) z(+)(m) z(-)(m) Ixx(m 4) Iyy(m 4) Izz(m 4) y(+)(m) y(-)(m)

180 < Boundary > ** SUPPORT / SPECIFIED DISPLACEMENT NODE SUPPORT SPECIFIED DISPLACEMENT DDDRRR Dx Dy Dz Rx Ry Rz

181

182

183

184 Figura 4 external boundary Figura 5 internal boundary

185 Tabella 13 K Winkler Element Type Distributed Face Spring Modulus of Subgrade 1 PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear 2.00

186 61 PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear 2.00

187 119 PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear PLATE Planar(Face) Face #1 Linear 2.00 *** STORY DATA < Story > NAME LEVEL HEIGHT FLOOR DIAPHRAGM F Consider 1F Do not consider < Floor Diaphragm/Rigid Link > *** FLOOR DIAPHRAGM / RIGID LINK DATA MASTER DDDRRR NODES OF SAME DISPLACEMENT F Floor Diaphragm 355to to to to to to to to < Static Loadcase > *** LOAD CASE DATA NO NAME TYPE SELF WEIGHT FACTOR DESCRIPTION X Y Z G1 D G2 D Qk,neve S Qk,copertura L Vento X W Vento Y W Vento Z W < Weight/Volume/Surface area of all member > *** TOTAL WEIGHT / VOLUME / SURFACE AREA SUMMARY SECTION SECION SURFACE AREA VOLUMN WEIGHT FRAME TRUSS NO NAME NUMBER NUMBER HEA HEB HEB200 - pil offset

188 5 HEB piatti_controv~ UPN pilastri aste tiranti doppioheb UPN pilastri_obl HEB HEB Cord_Fond Cord_Fond Pilastrino Tabella 14 Floor Load Type S N n o o 1 1 TIPO 1-A 2 2 TIPO 1-B 3 3 TIPO 1-C 4 4 TIPO 1-D 5 5 TIPO 2 Name Desc. Copertura laboratori con Impianti Copertura laboratori senza Impianti Copertura corridoio con Impianti Copertura corridoio senza Impianti Copertura pensilina Load case1 Load1 (kn/m^2) Sub 1 Load case2 Load2 (kn/m^2) G O G X G O G X G O G X G O G X G O G X Sub 2 Load case3 Qk,ne ve Qk,ne ve Qk,ne ve Qk,ne ve Qk,ne ve Load3 (kn/m^2) X X X X X Sub 3 Load case4 Qk,co pertu ra Qk,co pertu ra Qk,co pertu ra Qk,co pertu ra Qk,co pertu ra Load4 (kn/m^2) X X X X X Sub Vent o Z Vento Z O NONE X NONE X NONE X 7 7 LUCE RNAI G O Qk,ne ve X NONE X NONE X Tabella 15 Flld No Load Type Distribution Load Angle Load Direction Projection Nodes for Loading Area 1 Vento Z Type Two Way 0.00 ([deg]) Global Z No 496, 497, 492, TIPO 1-A One Way 0.00 Global Z No 355, 358, 359, TIPO 1-A One Way 0.00 Global Z No 356, 359, 361, TIPO 1-A One Way 0.00 Global Z No 358, 362, 363, TIPO 1-A One Way 0.00 Global Z No 359, 363, 364, TIPO 1-A One Way 0.00 Global Z No 362, 366, 367, TIPO 1-A One Way 0.00 Global Z No 363, 367, 368, TIPO 1-A One Way 0.00 Global Z No 366, 369, 370, TIPO 1-A One Way 0.00 Global Z No 367, 370, 371, TIPO 1-A One Way 0.00 Global Z No 369, 372, 375, TIPO 1-A One Way 0.00 Global Z No 370, 375, 376, TIPO 1-B One Way 0.00 Global Z No 372, 379, 380, TIPO 1-B One Way 0.00 Global Z No 374, 381, 382, TIPO 1-B One Way 0.00 Global Z No 377, 380, 381, TIPO 1-B One Way 0.00 Global Z No 375, 382, 383, TIPO 1-B One Way 0.00 Global Z No 379, 396, 399, TIPO 1-B One Way 0.00 Global Z No 382, 399, 400, TIPO 1-B One Way 0.00 Global Z No 396, 410, 411, TIPO 1-B One Way 0.00 Global Z No 398, 412, 413, TIPO 1-B One Way 0.00 Global Z No 399, 401, 402, 400

189 21 TIPO 1-B One Way 0.00 Global Z No 401, 414, 415, TIPO 1-B One Way 0.00 Global Z No 412, 428, 429, TIPO 1-B One Way 0.00 Global Z No 410, 426, 427, TIPO 1-B One Way 0.00 Global Z No 416, 427, 428, TIPO 1-B One Way 0.00 Global Z No 426, 434, 435, TIPO 1-B One Way 0.00 Global Z No 414, 429, 430, TIPO 1-B One Way 0.00 Global Z No 434, 462, 463, TIPO 1-B One Way 0.00 Global Z No 462, 484, 485, TIPO 1-B One Way 0.00 Global Z No 484, 491, 492, TIPO 1-B One Way 0.00 Global Z No 491, 496, 497, TIPO 1-B One Way 0.00 Global Z No 429, 435, 436, TIPO 1-B One Way 0.00 Global Z No 435, 463, 464, TIPO 1-B One Way 0.00 Global Z No 463, 485, 486, TIPO 1-B One Way 0.00 Global Z No 485, 492, 493, TIPO 1-B One Way 0.00 Global Z No 492, 497, 498, TIPO 1-D One Way 0.00 Global Z No 384, 390, 391, TIPO 1-D One Way 0.00 Global Z No 390, 403, 404, TIPO 1-D One Way 0.00 Global Z No 386, 392, 393, TIPO 1-D One Way 0.00 Global Z No 392, 405, 406, TIPO 1-D One Way 0.00 Global Z No 388, 394, 395, TIPO 1-B One Way 0.00 Global Z No 394, 407, 408, TIPO 1-D One Way 0.00 Global Z No 402, 418, 419, TIPO 1-D One Way 0.00 Global Z No 403, 419, 420, TIPO 1-D One Way 0.00 Global Z No 404, 420, 421, TIPO 1-D One Way 0.00 Global Z No 405, 421, 422, TIPO 1-D One Way 0.00 Global Z No 406, 422, 423, TIPO 1-D One Way 0.00 Global Z No 407, 423, 424, TIPO 1-D One Way 0.00 Global Z No 408, 424, 425, TIPO 2 One Way 0.00 Global Z No 493, 498, 537, TIPO 2 One Way 0.00 Global Z No 486, 493, 536, TIPO 2 One Way 0.00 Global Z No 464, 486, 535, TIPO 2 One Way 0.00 Global Z No 436, 464, 534, TIPO 2 One Way 0.00 Global Z No 539, 532, 530, TIPO 2 One Way 0.00 Global Z No 419, 530, 529, TIPO 2 One Way 0.00 Global Z No 420, 529, 528, TIPO 2 One Way 0.00 Global Z No 421, 528, 527, TIPO 2 One Way 0.00 Global Z No 422, 527, 526, TIPO 2 One Way 0.00 Global Z No 423, 526, 525, TIPO 2 One Way 0.00 Global Z No 424, 525, 524, Vento Z Two Way 0.00 Global Z No 497, 498, 493, Vento Z Two Way 0.00 Global Z No 491, 492, 485, Vento Z Two Way 0.00 Global Z No 492, 493, 486, Vento Z Two Way 0.00 Global Z No 484, 485, 463, Vento Z Two Way 0.00 Global Z No 485, 486, 464, Vento Z Two Way 0.00 Global Z No 462, 463, 435, Vento Z Two Way 0.00 Global Z No 463, 464, 436, Vento Z Two Way 0.00 Global Z No 434, 435, 429, Vento Z Two Way 0.00 Global Z No 435, 436, 430, Vento Z Two Way 0.00 Global Z No 426, 427, 411, Vento Z Two Way 0.00 Global Z No 427, 428, 417, Vento Z Two Way 0.00 Global Z No 416, 417, 412, Vento Z Two Way 0.00 Global Z No 428, 429, 413, Vento Z Two Way 0.00 Global Z No 429, 430, 415, Vento Z Two Way 0.00 Global Z No 414, 415, 402, Vento Z Two Way 0.00 Global Z No 401, 402, 400, Vento Z Two Way 0.00 Global Z No 399, 400, 383, Vento Z Two Way 0.00 Global Z No 382, 383, 376, Vento Z Two Way 0.00 Global Z No 375, 376, 371, 370

190 79 Vento Z Two Way 0.00 Global Z No 370, 371, 368, Vento Z Two Way 0.00 Global Z No 367, 368, 365, Vento Z Two Way 0.00 Global Z No 363, 364, 360, Vento Z Two Way 0.00 Global Z No 364, 365, 361, Vento Z Two Way 0.00 Global Z No 359, 361, 357, Vento Z Two Way 0.00 Global Z No 358, 359, 356, Vento Z Two Way 0.00 Global Z No 362, 363, 359, Vento Z Two Way 0.00 Global Z No 366, 367, 363, Vento Z Two Way 0.00 Global Z No 366, 369, 370, Vento Z Two Way 0.00 Global Z No 369, 372, 375, Vento Z Two Way 0.00 Global Z No 372, 379, 380, Vento Z Two Way 0.00 Global Z No 380, 381, 378, Vento Z Two Way 0.00 Global Z No 381, 382, 375, Vento Z Two Way 0.00 Global Z No 377, 378, 374, Vento Z Two Way 0.00 Global Z No 379, 396, 399, Vento Z Two Way 0.00 Global Z No 396, 410, 411, Vento Z Two Way 0.00 Global Z No 411, 412, 398, Vento Z Two Way 0.00 Global Z No 412, 413, 399, Vento Z Two Way 0.00 Global Z No 402, 418, 419, Vento Z Two Way 0.00 Global Z No 403, 419, 420, Vento Z Two Way 0.00 Global Z No 390, 403, 404, Vento Z Two Way 0.00 Global Z No 390, 391, 385, Vento Z Two Way 0.00 Global Z No 420, 421, 405, Vento Z Two Way 0.00 Global Z No 421, 422, 406, Vento Z Two Way 0.00 Global Z No 405, 406, 393, Vento Z Two Way 0.00 Global Z No 392, 393, 387, Vento Z Two Way 0.00 Global Z No 422, 423, 407, Vento Z Two Way 0.00 Global Z No 423, 424, 408, Vento Z Two Way 0.00 Global Z No 407, 408, 395, Vento Z Two Way 0.00 Global Z No 394, 395, 389, Vento Z Two Way 0.00 Global Z No 408, 424, 425, LUCERNAI Two Way 0.00 Global Z No 411, 416, 417, LUCERNAI Two Way 0.00 Global Z No 397, 411, 412, LUCERNAI Two Way 0.00 Global Z No 373, 377, 378, LUCERNAI Two Way 0.00 Global Z No 360, 364, 365, TIPO 2 One Way 0.00 Global Z No 418, 436, 533, 539 Tabella 16 Bmld Element BM LD Type Line Load Line Load Line Load Line Load Line Load Line Load Line Load Line Load Line Load Load Case Vento Y Distributed Forces Vento Y Distributed Forces Vento Y Distributed Forces Vento Y Distributed Forces Vento Y Distributed Forces Vento Y Distributed Forces Vento Y Distributed Forces Vento X Distributed Forces Vento X Distributed Forces Load Type Direction Projection D1 D2 P1 P2 Unit Global Y Yes kn/m Global Y Yes kn/m Global Y Yes kn/m Global Y Yes kn/m Global Y Yes kn/m Global Y Yes kn/m Global Y Yes kn/m Global X Yes kn/m Global X Yes kn/m 447 Line Vento X Distributed Global X Yes kn/m

191 Load Forces 544 Line Load Vento Y Distributed Forces Global Y Yes kn/m 545 Line Load Vento Y Distributed Forces Global Y Yes kn/m 595 Line Load Vento X Distributed Forces Global X Yes kn/m 595 Line Load Vento X Distributed Forces Global X Yes kn/m 595 Line Load Vento X Distributed Forces Global X Yes kn/m 596 Line Load Vento X Distributed Forces Global X Yes kn/m 596 Line Load Vento X Distributed Forces Global X Yes kn/m 596 Line Load Vento X Distributed Forces Global X Yes kn/m 597 Line Load Vento X Distributed Forces Global X Yes kn/m 597 Line Load Vento X Distributed Forces Global X Yes kn/m 597 Line Load Vento X Distributed Forces Global X Yes kn/m 598 Line Load Vento X Distributed Forces Global X Yes kn/m 598 Line Load Vento X Distributed Forces Global X Yes kn/m 598 Line Load Vento X Distributed Forces Global X Yes kn/m 623 Line Load Vento Y Distributed Forces Global Y Yes kn/m 625 Line Load Vento X Distributed Forces Global X Yes kn/m 625 Line Load Vento X Distributed Forces Global X Yes kn/m 625 Line Load Vento X Distributed Forces Global X Yes kn/m

192 Figura 6 VentoY Figura 7 VentoX

193 Figura 8 VentoZ

194 Figura 9 SLD Figura 10 SLV

195 Figura 11 SLD eta 2/3 Figura 12 SP1

196 Figura 13 SP2 Figura 14 SP3

197 < Load Combination > ** GENERAL NO NAME TYPE ACTIVE DESCRIPTION glcb2 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))+0.3(1.00)(spettro_y_... 2 glcb3 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))+0.3(1.00)(spettro_y_... 3 glcb4 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))-0.3(1.00)(spettro_y_... 4 glcb5 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))-0.3(1.00)(spettro_y_... 5 glcb6 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))+0.3(1.00)(spettro_x_... 6 glcb7 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))+0.3(1.00)(spettro_x_... 7 glcb8 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))-0.3(1.00)(spettro_x_... 8 glcb9 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))-0.3(1.00)(spettro_x_... 9 glcb10 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))+0.3( glcb11 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))+0.3( glcb12 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))-0.3( glcb13 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))-0.3( glcb14 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))+0.3( glcb15 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))+0.3( glcb16 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))-0.3( glcb17 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))-0.3( glcb18 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))+0.3(1.00)(spettr glcb19 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))+0.3(1.00)(spettr glcb20 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))-0.3(1.00)(spettr glcb21 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))-0.3(1.00)(spettr glcb22 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))+0.3(1.00)(spettr glcb23 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))+0.3(1.00)(spettr glcb24 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))-0.3(1.00)(spettr glcb25 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))-0.3(1.00)(spettr glcb26 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))+0.3(1.00)(spettr glcb27 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))+0.3(1.00)(spettr glcb28 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))-0.3(1.00)(spettr glcb29 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))-0.3(1.00)(spettr glcb30 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))+0.3(1.00)(spettr glcb31 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))+0.3(1.00)(spettr glcb32 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))-0.3(1.00)(spettr glcb33 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))-0.3(1.00)(spettr glcb34 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))+0.3(1.00)(spettr glcb35 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))+0.3(1.00)(spettr glcb36 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))-0.3(1.00)(spettr...

198 36 glcb37 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))-0.3(1.00)(spettr glcb38 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))+0.3(1.00)(spettr glcb39 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))+0.3(1.00)(spettr glcb40 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))-0.3(1.00)(spettr glcb41 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))-0.3(1.00)(spettr glcb42 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))+0.3(1.00)(spettro_y_ glcb43 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))+0.3(1.00)(spettro_y_ glcb44 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))-0.3(1.00)(spettro_y_ glcb45 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))-0.3(1.00)(spettro_y_ glcb46 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))+0.3(1.00)(spettro_x_ glcb47 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))+0.3(1.00)(spettro_x_ glcb48 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))-0.3(1.00)(spettro_x_ glcb49 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))-0.3(1.00)(spettro_x_ glcb50 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))+0.3( glcb51 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))+0.3( glcb52 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))-0.3( glcb53 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))-0.3( glcb54 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))+0.3( glcb55 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))+0.3( glcb56 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))-0.3( glcb57 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))-0.3( glcb58 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))+0.3(1.00)(spettr glcb59 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))+0.3(1.00)(spettr glcb60 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))-0.3(1.00)(spettr glcb61 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))-0.3(1.00)(spettr glcb62 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))+0.3(1.00)(spettr glcb63 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))+0.3(1.00)(spettr glcb64 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))-0.3(1.00)(spettr glcb65 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))-0.3(1.00)(spettr glcb66 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))+0.3(1.00)(spettr glcb67 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))+0.3(1.00)(spettr glcb68 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))-0.3(1.00)(spettr glcb69 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))-0.3(1.00)(spettr glcb70 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))+0.3(1.00)(spettr glcb71 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))+0.3(1.00)(spettr glcb72 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))-0.3(1.00)(spettr glcb73 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))-0.3(1.00)(spettr glcb74 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))+0.3(1.00)(spettr glcb75 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))+0.3(1.00)(spettr...

199 75 glcb76 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))-0.3(1.00)(spettr glcb77 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))-0.3(1.00)(spettr glcb78 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))+0.3(1.00)(spettr glcb79 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))+0.3(1.00)(spettr glcb80 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))-0.3(1.00)(spettr glcb81 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))-0.3(1.00)(spettr glcb82 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))+0.3(1.00)(spettro_y_ glcb83 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))+0.3(1.00)(spettro_y_ glcb84 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))-0.3(1.00)(spettro_y_ glcb85 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))-0.3(1.00)(spettro_y_ glcb86 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))+0.3(1.00)(spettro_x_ glcb87 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))+0.3(1.00)(spettro_x_ glcb88 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))-0.3(1.00)(spettro_x_ glcb89 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))-0.3(1.00)(spettro_x_ glcb90 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))+0.3( glcb91 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))+0.3( glcb92 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))-0.3( glcb93 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))-0.3( glcb94 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))+0.3( glcb95 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))+0.3( glcb96 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))-0.3( glcb97 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))-0.3( glcb98 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))+0.3(1.00)(spettr glcb99 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))+0.3(1.00)(spettr glcb100 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))-0.3(1.00)(spettr glcb101 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))-0.3(1.00)(spettr glcb102 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))+0.3(1.00)(spettr glcb103 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))+0.3(1.00)(spettr glcb104 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))-0.3(1.00)(spettr glcb105 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))-0.3(1.00)(spettr glcb106 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))+0.3(1.00)(spettr glcb107 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))+0.3(1.00)(spettr glcb108 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))-0.3(1.00)(spettr glcb109 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))-0.3(1.00)(spettr glcb110 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))+0.3(1.00)(spettr glcb111 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))+0.3(1.00)(spettr glcb112 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))-0.3(1.00)(spettr glcb113 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))-0.3(1.00)(spettr glcb114 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))+0.3(1.00)(spettr...

200 114 glcb115 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))+0.3(1.00)(spettr glcb116 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))-0.3(1.00)(spettr glcb117 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))-0.3(1.00)(spettr glcb118 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))+0.3(1.00)(spettr glcb119 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))+0.3(1.00)(spettr glcb120 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))-0.3(1.00)(spettr glcb121 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))-0.3(1.00)(spettr glcb122 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))+0.3(1.00)(spettro_y_ glcb123 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))+0.3(1.00)(spettro_y_ glcb124 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))-0.3(1.00)(spettro_y_ glcb125 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))-0.3(1.00)(spettro_y_ glcb126 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))+0.3(1.00)(spettro_x_ glcb127 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))+0.3(1.00)(spettro_x_ glcb128 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))-0.3(1.00)(spettro_x_ glcb129 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))-0.3(1.00)(spettro_x_ glcb130 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))+0.3( glcb131 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))+0.3( glcb132 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))-0.3( glcb133 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))-0.3( glcb134 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))+0.3( glcb135 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))+0.3( glcb136 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))-0.3( glcb137 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))-0.3( glcb138 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))+0.3(1.00)(spettr glcb139 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))+0.3(1.00)(spettr glcb140 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))-0.3(1.00)(spettr glcb141 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))-0.3(1.00)(spettr glcb142 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))+0.3(1.00)(spettr glcb143 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))+0.3(1.00)(spettr glcb144 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))-0.3(1.00)(spettr glcb145 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))-0.3(1.00)(spettr glcb146 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))+0.3(1.00)(spettr glcb147 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))+0.3(1.00)(spettr glcb148 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))-0.3(1.00)(spettr glcb149 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))-0.3(1.00)(spettr glcb150 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))+0.3(1.00)(spettr glcb151 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))+0.3(1.00)(spettr glcb152 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))-0.3(1.00)(spettr glcb153 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))-0.3(1.00)(spettr...

201 153 glcb154 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))+0.3(1.00)(spettr glcb155 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))+0.3(1.00)(spettr glcb156 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))-0.3(1.00)(spettr glcb157 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))-0.3(1.00)(spettr glcb158 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))+0.3(1.00)(spettr glcb159 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))+0.3(1.00)(spettr glcb160 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))-0.3(1.00)(spettr glcb161 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))-0.3(1.00)(spettr SLU_Neve ~ Add ACTIVE 162 SLU_Coper~ Add ACTIVE 163 SLE Rara_~ Add ACTIVE 164 SLE Rara_~ Add ACTIVE 165 SLE_Frequ~ Add ACTIVE 166 SLE_Quasi~ Add ACTIVE 167 SLU_Neve ~ Add ACTIVE 168 SLU_ Cope~ Add ACTIVE 169 SLU_ Vent~ Add ACTIVE 170 SLU_Vento~ Add ACTIVE 171 SLU_Neve Add ACTIVE 172 SLE Rara_~ Add ACTIVE 173 SLE Rara_~ Add ACTIVE 174 SLE Rara_~ Add ACTIVE 175 SLE Rara_~ Add ACTIVE 176 SLV_Envel~ Envelope ACTIVE 177 SLV_Envel~ Envelope ACTIVE 178 SLV_Envel~ Envelope ACTIVE 179 SLU_Envel~ Envelope ACTIVE 180 SLE_Rara_~ Envelope ACTIVE 181 SLV_ Fond~ Add ACTIVE ** STEEL DESIGN NO NAME TYPE ACTIVE DESCRIPTION glcb2 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))+0.3(1.00)(spettro_y_... 2 glcb3 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))+0.3(1.00)(spettro_y_... 3 glcb4 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))-0.3(1.00)(spettro_y_... 4 glcb5 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))-0.3(1.00)(spettro_y_... 5 glcb6 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))+0.3(1.00)(spettro_x_... 6 glcb7 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))+0.3(1.00)(spettro_x_... 7 glcb8 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))-0.3(1.00)(spettro_x_... 8 glcb9 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))-0.3(1.00)(spettro_x_... 9 glcb10 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))+0.3( glcb11 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))+0.3( glcb12 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))-0.3( glcb13 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))-0.3( glcb14 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))+0.3( glcb15 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))+0.3( glcb16 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))-0.3( glcb17 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))-0.3( glcb18 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))+0.3(1.00)(spettr...

202 18 glcb19 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))+0.3(1.00)(spettr glcb20 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))-0.3(1.00)(spettr glcb21 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))-0.3(1.00)(spettr glcb22 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))+0.3(1.00)(spettr glcb23 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))+0.3(1.00)(spettr glcb24 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))-0.3(1.00)(spettr glcb25 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))-0.3(1.00)(spettr glcb26 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))+0.3(1.00)(spettr glcb27 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))+0.3(1.00)(spettr glcb28 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))-0.3(1.00)(spettr glcb29 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))-0.3(1.00)(spettr glcb30 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))+0.3(1.00)(spettr glcb31 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))+0.3(1.00)(spettr glcb32 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))-0.3(1.00)(spettr glcb33 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))-0.3(1.00)(spettr glcb34 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))+0.3(1.00)(spettr glcb35 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))+0.3(1.00)(spettr glcb36 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))-0.3(1.00)(spettr glcb37 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))-0.3(1.00)(spettr glcb38 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))+0.3(1.00)(spettr glcb39 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))+0.3(1.00)(spettr glcb40 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))-0.3(1.00)(spettr glcb41 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))-0.3(1.00)(spettr glcb42 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))+0.3(1.00)(spettro_y_ glcb43 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))+0.3(1.00)(spettro_y_ glcb44 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))-0.3(1.00)(spettro_y_ glcb45 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))-0.3(1.00)(spettro_y_ glcb46 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))+0.3(1.00)(spettro_x_ glcb47 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))+0.3(1.00)(spettro_x_ glcb48 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))-0.3(1.00)(spettro_x_ glcb49 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))-0.3(1.00)(spettro_x_ glcb50 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))+0.3( glcb51 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))+0.3( glcb52 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))-0.3( glcb53 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))-0.3( glcb54 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))+0.3( glcb55 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))+0.3( glcb56 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))-0.3( glcb57 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))-0.3(1...

203 57 glcb58 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))+0.3(1.00)(spettr glcb59 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))+0.3(1.00)(spettr glcb60 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))-0.3(1.00)(spettr glcb61 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))-0.3(1.00)(spettr glcb62 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))+0.3(1.00)(spettr glcb63 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))+0.3(1.00)(spettr glcb64 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))-0.3(1.00)(spettr glcb65 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))-0.3(1.00)(spettr glcb66 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))+0.3(1.00)(spettr glcb67 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))+0.3(1.00)(spettr glcb68 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))-0.3(1.00)(spettr glcb69 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))-0.3(1.00)(spettr glcb70 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))+0.3(1.00)(spettr glcb71 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))+0.3(1.00)(spettr glcb72 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))-0.3(1.00)(spettr glcb73 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))-0.3(1.00)(spettr glcb74 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))+0.3(1.00)(spettr glcb75 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))+0.3(1.00)(spettr glcb76 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))-0.3(1.00)(spettr glcb77 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))-0.3(1.00)(spettr glcb78 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))+0.3(1.00)(spettr glcb79 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))+0.3(1.00)(spettr glcb80 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))-0.3(1.00)(spettr glcb81 Add ACTIVE 1.0D + 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))-0.3(1.00)(spettr glcb82 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))+0.3(1.00)(spettro_y_ glcb83 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))+0.3(1.00)(spettro_y_ glcb84 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))-0.3(1.00)(spettro_y_ glcb85 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))-0.3(1.00)(spettro_y_ glcb86 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))+0.3(1.00)(spettro_x_ glcb87 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))+0.3(1.00)(spettro_x_ glcb88 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))-0.3(1.00)(spettro_x_ glcb89 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))-0.3(1.00)(spettro_x_ glcb90 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))+0.3( glcb91 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))+0.3( glcb92 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))-0.3( glcb93 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))-0.3( glcb94 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))+0.3( glcb95 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))+0.3( glcb96 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))-0.3(1...

204 96 glcb97 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))-0.3( glcb98 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))+0.3(1.00)(spettr glcb99 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))+0.3(1.00)(spettr glcb100 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))-0.3(1.00)(spettr glcb101 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))-0.3(1.00)(spettr glcb102 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))+0.3(1.00)(spettr glcb103 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))+0.3(1.00)(spettr glcb104 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))-0.3(1.00)(spettr glcb105 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))-0.3(1.00)(spettr glcb106 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))+0.3(1.00)(spettr glcb107 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))+0.3(1.00)(spettr glcb108 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))-0.3(1.00)(spettr glcb109 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))-0.3(1.00)(spettr glcb110 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))+0.3(1.00)(spettr glcb111 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))+0.3(1.00)(spettr glcb112 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))-0.3(1.00)(spettr glcb113 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))-0.3(1.00)(spettr glcb114 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))+0.3(1.00)(spettr glcb115 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))+0.3(1.00)(spettr glcb116 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))-0.3(1.00)(spettr glcb117 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))-0.3(1.00)(spettr glcb118 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))+0.3(1.00)(spettr glcb119 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))+0.3(1.00)(spettr glcb120 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))-0.3(1.00)(spettr glcb121 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))-0.3(1.00)(spettr glcb122 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))+0.3(1.00)(spettro_y_ glcb123 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))+0.3(1.00)(spettro_y_ glcb124 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)+ spettro_x_sv(es))-0.3(1.00)(spettro_y_ glcb125 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SV(RS)- spettro_x_sv(es))-0.3(1.00)(spettro_y_ glcb126 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))+0.3(1.00)(spettro_x_ glcb127 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))+0.3(1.00)(spettro_x_ glcb128 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)+ spettro_y_sv(es))-0.3(1.00)(spettro_x_ glcb129 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SV(RS)- spettro_y_sv(es))-0.3(1.00)(spettro_x_ glcb130 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))+0.3( glcb131 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))+0.3( glcb132 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)+ spettro_x_sd_eta2/3(es))-0.3( glcb133 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SD_eta2/3(RS)- spettro_x_sd_eta2/3(es))-0.3( glcb134 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))+0.3( glcb135 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))+0.3(1...

205 135 glcb136 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)+ spettro_y_sd_eta2/3(es))-0.3( glcb137 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SD_eta2/3(RS)- spettro_y_sd_eta2/3(es))-0.3( glcb138 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))+0.3(1.00)(spettr glcb139 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))+0.3(1.00)(spettr glcb140 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)+ spettro_x_sp_1(es))-0.3(1.00)(spettr glcb141 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_1(RS)- spettro_x_sp_1(es))-0.3(1.00)(spettr glcb142 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))+0.3(1.00)(spettr glcb143 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))+0.3(1.00)(spettr glcb144 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)+ spettro_y_sp_1(es))-0.3(1.00)(spettr glcb145 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_1(RS)- spettro_y_sp_1(es))-0.3(1.00)(spettr glcb146 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))+0.3(1.00)(spettr glcb147 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))+0.3(1.00)(spettr glcb148 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)+ spettro_x_sp_2(es))-0.3(1.00)(spettr glcb149 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_2(RS)- spettro_x_sp_2(es))-0.3(1.00)(spettr glcb150 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))+0.3(1.00)(spettr glcb151 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))+0.3(1.00)(spettr glcb152 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)+ spettro_y_sp_2(es))-0.3(1.00)(spettr glcb153 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_2(RS)- spettro_y_sp_2(es))-0.3(1.00)(spettr glcb154 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))+0.3(1.00)(spettr glcb155 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))+0.3(1.00)(spettr glcb156 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)+ spettro_x_sp_3(es))-0.3(1.00)(spettr glcb157 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_X_SP_3(RS)- spettro_x_sp_3(es))-0.3(1.00)(spettr glcb158 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))+0.3(1.00)(spettr glcb159 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))+0.3(1.00)(spettr glcb160 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)+ spettro_y_sp_3(es))-0.3(1.00)(spettr glcb161 Add ACTIVE 1.0D - 1.0(1.0(1.00)(spettro_Y_SP_3(RS)- spettro_y_sp_3(es))-0.3(1.00)(spettr SLU_Neve ~ Add ACTIVE 162 SLU_Coper~ Add ACTIVE 163 SLE Rara_~ Add SERVICE 164 SLE Rara_~ Add SERVICE 165 SLE_Frequ~ Add SERVICE 166 SLE_Quasi~ Add SERVICE 167 SLU_Neve ~ Add ACTIVE 168 SLU_ Cope~ Add ACTIVE 169 SLU_ Vent~ Add ACTIVE 170 SLU_Vento~ Add ACTIVE 171 SLU_Neve Add ACTIVE 172 SLE Rara_~ Add SERVICE 173 SLE Rara_~ Add SERVICE 174 SLE Rara_~ Add SERVICE 175 SLE Rara_~ Add SERVICE

206 Tabella 1 EigenMode Node Mode UX UY UZ RX RY RZ E I G E N V A L U E A N A L Y S I S Mode No Frequency Period (rad/sec) (cycle/sec) (sec) Tolerance e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e-227 MODAL PARTICIPATION MASSES PRINTOUT TRAN-X TRAN-Y TRAN-Z ROTN-X ROTN-Y ROTN-Z Mode No MASS(%) SUM(%) MASS(%) SUM(%) MASS(%) SUM(%) MASS(%) SUM(%) MASS(%) SUM(%) MASS(%) SUM(%)

207 Mode No TRAN-X TRAN-Y TRAN-Z ROTN-X ROTN-Y ROTN-Z MASS SUM MASS SUM MASS SUM MASS SUM MASS SUM MASS SUM MODAL PARTICIPATION FACTOR PRINTOUT (kgf,cm) Mode No TRAN-X TRAN-Y TRAN-Z ROTN-X ROTN-Y ROTN-Z Value Value Value Value Value Value

208 MODAL DIRECTION FACTOR PRINTOUT Mode No TRAN-X TRAN-Y TRAN-Z ROTN-X ROTN-Y ROTN-Z Value Value Value Value Value Value E I G E N V E C T O R (kgf,cm)

209 Figura 1 mode10 Figura 2 mode14

210 Figura 3 mode33 Tabella 2 Disp Node Load DX (cm) DY (cm) DZ (cm) RX ([rad]) RY ([rad]) RZ ([rad]) 1 SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all)

211 33 SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all)

212 105 SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all)

213 168 SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all)

214 231 SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all)

215 299 SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all)

216 362 SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all)

217 425 SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all) SLE_Rara_Envelope(all)

218 Figura 4 DeformSLERARA Tabella 3 BForce Elem Load Part Axial (kn) Shear-y (kn) Shear-z (kn) Torsion (kn*m) Moment-y (kn*m) 214 SLU_Envelope(all) I[239] SLU_Envelope(all) J[240] SLU_Envelope(all) I[240] SLU_Envelope(all) J[241] SLU_Envelope(all) I[257] SLU_Envelope(all) J[258] SLU_Envelope(all) I[262] SLU_Envelope(all) J[261] SLU_Envelope(all) I[266] SLU_Envelope(all) J[265] SLU_Envelope(all) I[274] SLU_Envelope(all) J[275] SLU_Envelope(all) I[275] SLU_Envelope(all) J[276] SLU_Envelope(all) I[313] SLU_Envelope(all) J[325] SLU_Envelope(all) I[314] SLU_Envelope(all) J[326] SLU_Envelope(all) I[315] SLU_Envelope(all) J[327] SLU_Envelope(all) I[316] SLU_Envelope(all) J[328] SLU_Envelope(all) I[317] SLU_Envelope(all) J[329] SLU_Envelope(all) I[318] SLU_Envelope(all) J[330] SLU_Envelope(all) I[319] SLU_Envelope(all) J[331] SLU_Envelope(all) I[320] SLU_Envelope(all) J[332] SLU_Envelope(all) I[321] Moment-z (kn*m)

219 248 SLU_Envelope(all) J[333] SLU_Envelope(all) I[322] SLU_Envelope(all) J[334] SLU_Envelope(all) I[323] SLU_Envelope(all) J[335] SLU_Envelope(all) I[324] SLU_Envelope(all) J[336] SLU_Envelope(all) I[325] SLU_Envelope(all) J[331] SLU_Envelope(all) I[326] SLU_Envelope(all) J[332] SLU_Envelope(all) I[327] SLU_Envelope(all) J[333] SLU_Envelope(all) I[328] SLU_Envelope(all) J[334] SLU_Envelope(all) I[329] SLU_Envelope(all) J[335] SLU_Envelope(all) I[330] SLU_Envelope(all) J[336] SLU_Envelope(all) I[325] SLU_Envelope(all) J[337] SLU_Envelope(all) I[326] SLU_Envelope(all) J[338] SLU_Envelope(all) I[327] SLU_Envelope(all) J[339] SLU_Envelope(all) I[328] SLU_Envelope(all) J[340] SLU_Envelope(all) I[329] SLU_Envelope(all) J[341] SLU_Envelope(all) I[330] SLU_Envelope(all) J[342] SLU_Envelope(all) I[276] SLU_Envelope(all) J[343] SLU_Envelope(all) I[306] SLU_Envelope(all) J[348] SLU_Envelope(all) I[216] SLU_Envelope(all) J[355] SLU_Envelope(all) I[221] SLU_Envelope(all) J[356] SLU_Envelope(all) I[226] SLU_Envelope(all) J[357] SLU_Envelope(all) I[233] SLU_Envelope(all) J[366] SLU_Envelope(all) I[234] SLU_Envelope(all) J[368] SLU_Envelope(all) I[239] SLU_Envelope(all) J[379] SLU_Envelope(all) I[240] SLU_Envelope(all) J[382] SLU_Envelope(all) I[241] SLU_Envelope(all) J[383] SLU_Envelope(all) I[274] SLU_Envelope(all) J[426] SLU_Envelope(all) I[275] SLU_Envelope(all) J[429] SLU_Envelope(all) I[296] SLU_Envelope(all) J[496] SLU_Envelope(all) I[301] SLU_Envelope(all) J[497] SLU_Envelope(all) I[331] SLU_Envelope(all) J[337] SLU_Envelope(all) I[332] SLU_Envelope(all) J[338]

220 297 SLU_Envelope(all) I[333] SLU_Envelope(all) J[339] SLU_Envelope(all) I[334] SLU_Envelope(all) J[340] SLU_Envelope(all) I[335] SLU_Envelope(all) J[341] SLU_Envelope(all) I[336] SLU_Envelope(all) J[342] SLU_Envelope(all) I[331] SLU_Envelope(all) J[349] SLU_Envelope(all) I[332] SLU_Envelope(all) J[350] SLU_Envelope(all) I[333] SLU_Envelope(all) J[351] SLU_Envelope(all) I[334] SLU_Envelope(all) J[352] SLU_Envelope(all) I[335] SLU_Envelope(all) J[353] SLU_Envelope(all) I[336] SLU_Envelope(all) J[354] SLU_Envelope(all) I[337] SLU_Envelope(all) J[349] SLU_Envelope(all) I[338] SLU_Envelope(all) J[350] SLU_Envelope(all) I[339] SLU_Envelope(all) J[351] SLU_Envelope(all) I[340] SLU_Envelope(all) J[352] SLU_Envelope(all) I[341] SLU_Envelope(all) J[353] SLU_Envelope(all) I[342] SLU_Envelope(all) J[354] SLU_Envelope(all) I[337] SLU_Envelope(all) J[390] SLU_Envelope(all) I[338] SLU_Envelope(all) J[391] SLU_Envelope(all) I[339] SLU_Envelope(all) J[392] SLU_Envelope(all) I[340] SLU_Envelope(all) J[393] SLU_Envelope(all) I[341] SLU_Envelope(all) J[394] SLU_Envelope(all) I[342] SLU_Envelope(all) J[395] SLU_Envelope(all) I[343] SLU_Envelope(all) J[344] SLU_Envelope(all) I[344] SLU_Envelope(all) J[345] SLU_Envelope(all) I[345] SLU_Envelope(all) J[346] SLU_Envelope(all) I[346] SLU_Envelope(all) J[347] SLU_Envelope(all) I[347] SLU_Envelope(all) J[348] SLU_Envelope(all) I[343] SLU_Envelope(all) J[430] SLU_Envelope(all) I[348] SLU_Envelope(all) J[498] SLU_Envelope(all) I[349] SLU_Envelope(all) J[403] SLU_Envelope(all) I[350] SLU_Envelope(all) J[404] SLU_Envelope(all) I[351]

221 332 SLU_Envelope(all) J[405] SLU_Envelope(all) I[352] SLU_Envelope(all) J[406] SLU_Envelope(all) I[353] SLU_Envelope(all) J[407] SLU_Envelope(all) I[354] SLU_Envelope(all) J[408] SLU_Envelope(all) I[355] SLU_Envelope(all) J[356] SLU_Envelope(all) I[356] SLU_Envelope(all) J[357] SLU_Envelope(all) I[355] SLU_Envelope(all) J[358] SLU_Envelope(all) I[356] SLU_Envelope(all) J[359] SLU_Envelope(all) I[357] SLU_Envelope(all) J[361] SLU_Envelope(all) I[358] SLU_Envelope(all) J[359] SLU_Envelope(all) I[359] SLU_Envelope(all) J[360] SLU_Envelope(all) I[360] SLU_Envelope(all) J[361] SLU_Envelope(all) I[358] SLU_Envelope(all) J[362] SLU_Envelope(all) I[359] SLU_Envelope(all) J[363] SLU_Envelope(all) I[360] SLU_Envelope(all) J[364] SLU_Envelope(all) I[361] SLU_Envelope(all) J[365] SLU_Envelope(all) I[362] SLU_Envelope(all) J[363] SLU_Envelope(all) I[363] SLU_Envelope(all) J[364] SLU_Envelope(all) I[364] SLU_Envelope(all) J[365] SLU_Envelope(all) I[362] SLU_Envelope(all) J[366] SLU_Envelope(all) I[363] SLU_Envelope(all) J[367] SLU_Envelope(all) I[365] SLU_Envelope(all) J[368] SLU_Envelope(all) I[366] SLU_Envelope(all) J[367] SLU_Envelope(all) I[367] SLU_Envelope(all) J[368] SLU_Envelope(all) I[366] SLU_Envelope(all) J[369] SLU_Envelope(all) I[367] SLU_Envelope(all) J[370] SLU_Envelope(all) I[368] SLU_Envelope(all) J[371] SLU_Envelope(all) I[369] SLU_Envelope(all) J[370] SLU_Envelope(all) I[370] SLU_Envelope(all) J[371] SLU_Envelope(all) I[369] SLU_Envelope(all) J[372] SLU_Envelope(all) I[370] SLU_Envelope(all) J[375] SLU_Envelope(all) I[371] SLU_Envelope(all) J[376]

222 364 SLU_Envelope(all) I[372] SLU_Envelope(all) J[373] SLU_Envelope(all) I[373] SLU_Envelope(all) J[374] SLU_Envelope(all) I[374] SLU_Envelope(all) J[375] SLU_Envelope(all) I[375] SLU_Envelope(all) J[376] SLU_Envelope(all) I[373] SLU_Envelope(all) J[377] SLU_Envelope(all) I[374] SLU_Envelope(all) J[378] SLU_Envelope(all) I[372] SLU_Envelope(all) J[379] SLU_Envelope(all) I[375] SLU_Envelope(all) J[382] SLU_Envelope(all) I[376] SLU_Envelope(all) J[383] SLU_Envelope(all) I[377] SLU_Envelope(all) J[378] SLU_Envelope(all) I[377] SLU_Envelope(all) J[380] SLU_Envelope(all) I[378] SLU_Envelope(all) J[381] SLU_Envelope(all) I[379] SLU_Envelope(all) J[380] SLU_Envelope(all) I[380] SLU_Envelope(all) J[381] SLU_Envelope(all) I[381] SLU_Envelope(all) J[382] SLU_Envelope(all) I[382] SLU_Envelope(all) J[383] SLU_Envelope(all) I[384] SLU_Envelope(all) J[385] SLU_Envelope(all) I[386] SLU_Envelope(all) J[387] SLU_Envelope(all) I[388] SLU_Envelope(all) J[389] SLU_Envelope(all) I[384] SLU_Envelope(all) J[390] SLU_Envelope(all) I[385] SLU_Envelope(all) J[391] SLU_Envelope(all) I[386] SLU_Envelope(all) J[392] SLU_Envelope(all) I[387] SLU_Envelope(all) J[393] SLU_Envelope(all) I[388] SLU_Envelope(all) J[394] SLU_Envelope(all) I[389] SLU_Envelope(all) J[395] SLU_Envelope(all) I[379] SLU_Envelope(all) J[396] SLU_Envelope(all) I[382] SLU_Envelope(all) J[399] SLU_Envelope(all) I[383] SLU_Envelope(all) J[400] SLU_Envelope(all) I[390] SLU_Envelope(all) J[391] SLU_Envelope(all) I[392] SLU_Envelope(all) J[393] SLU_Envelope(all) I[394] SLU_Envelope(all) J[395] SLU_Envelope(all) I[396]

223 395 SLU_Envelope(all) J[397] SLU_Envelope(all) I[397] SLU_Envelope(all) J[398] SLU_Envelope(all) I[398] SLU_Envelope(all) J[399] SLU_Envelope(all) I[399] SLU_Envelope(all) J[400] SLU_Envelope(all) I[390] SLU_Envelope(all) J[403] SLU_Envelope(all) I[391] SLU_Envelope(all) J[404] SLU_Envelope(all) I[392] SLU_Envelope(all) J[405] SLU_Envelope(all) I[393] SLU_Envelope(all) J[406] SLU_Envelope(all) I[394] SLU_Envelope(all) J[407] SLU_Envelope(all) I[395] SLU_Envelope(all) J[408] SLU_Envelope(all) I[399] SLU_Envelope(all) J[401] SLU_Envelope(all) I[400] SLU_Envelope(all) J[402] SLU_Envelope(all) I[396] SLU_Envelope(all) J[410] SLU_Envelope(all) I[397] SLU_Envelope(all) J[411] SLU_Envelope(all) I[398] SLU_Envelope(all) J[412] SLU_Envelope(all) I[401] SLU_Envelope(all) J[402] SLU_Envelope(all) I[402] SLU_Envelope(all) J[403] SLU_Envelope(all) I[403] SLU_Envelope(all) J[404] SLU_Envelope(all) I[404] SLU_Envelope(all) J[405] SLU_Envelope(all) I[405] SLU_Envelope(all) J[406] SLU_Envelope(all) I[406] SLU_Envelope(all) J[407] SLU_Envelope(all) I[407] SLU_Envelope(all) J[408] SLU_Envelope(all) I[408] SLU_Envelope(all) J[409] SLU_Envelope(all) I[401] SLU_Envelope(all) J[413] SLU_Envelope(all) I[410] SLU_Envelope(all) J[411] SLU_Envelope(all) I[411] SLU_Envelope(all) J[412] SLU_Envelope(all) I[412] SLU_Envelope(all) J[413] SLU_Envelope(all) I[402] SLU_Envelope(all) J[415] SLU_Envelope(all) I[413] SLU_Envelope(all) J[414] SLU_Envelope(all) I[403] SLU_Envelope(all) J[419] SLU_Envelope(all) I[404] SLU_Envelope(all) J[420] SLU_Envelope(all) I[405] SLU_Envelope(all) J[421]

224 427 SLU_Envelope(all) I[406] SLU_Envelope(all) J[422] SLU_Envelope(all) I[407] SLU_Envelope(all) J[423] SLU_Envelope(all) I[408] SLU_Envelope(all) J[424] SLU_Envelope(all) I[409] SLU_Envelope(all) J[425] SLU_Envelope(all) I[411] SLU_Envelope(all) J[416] SLU_Envelope(all) I[412] SLU_Envelope(all) J[417] SLU_Envelope(all) I[414] SLU_Envelope(all) J[415] SLU_Envelope(all) I[410] SLU_Envelope(all) J[426] SLU_Envelope(all) I[415] SLU_Envelope(all) J[418] SLU_Envelope(all) I[414] SLU_Envelope(all) J[429] SLU_Envelope(all) I[416] SLU_Envelope(all) J[417] SLU_Envelope(all) I[416] SLU_Envelope(all) J[427] SLU_Envelope(all) I[417] SLU_Envelope(all) J[428] SLU_Envelope(all) I[418] SLU_Envelope(all) J[539] SLU_Envelope(all) I[419] SLU_Envelope(all) J[420] SLU_Envelope(all) I[420] SLU_Envelope(all) J[421] SLU_Envelope(all) I[421] SLU_Envelope(all) J[422] SLU_Envelope(all) I[422] SLU_Envelope(all) J[423] SLU_Envelope(all) I[423] SLU_Envelope(all) J[424] SLU_Envelope(all) I[424] SLU_Envelope(all) J[425] SLU_Envelope(all) I[418] SLU_Envelope(all) J[430] SLU_Envelope(all) I[426] SLU_Envelope(all) J[427] SLU_Envelope(all) I[427] SLU_Envelope(all) J[428] SLU_Envelope(all) I[428] SLU_Envelope(all) J[429] SLU_Envelope(all) I[429] SLU_Envelope(all) J[430] SLU_Envelope(all) I[426] SLU_Envelope(all) J[434] SLU_Envelope(all) I[429] SLU_Envelope(all) J[435] SLU_Envelope(all) I[434] SLU_Envelope(all) J[435] SLU_Envelope(all) I[435] SLU_Envelope(all) J[436] SLU_Envelope(all) I[434] SLU_Envelope(all) J[462] SLU_Envelope(all) I[435] SLU_Envelope(all) J[463] SLU_Envelope(all) I[462]

225 498 SLU_Envelope(all) J[463] SLU_Envelope(all) I[463] SLU_Envelope(all) J[464] SLU_Envelope(all) I[464] SLU_Envelope(all) J[534] SLU_Envelope(all) I[462] SLU_Envelope(all) J[484] SLU_Envelope(all) I[463] SLU_Envelope(all) J[485] SLU_Envelope(all) I[484] SLU_Envelope(all) J[485] SLU_Envelope(all) I[485] SLU_Envelope(all) J[486] SLU_Envelope(all) I[486] SLU_Envelope(all) J[535] SLU_Envelope(all) I[484] SLU_Envelope(all) J[491] SLU_Envelope(all) I[485] SLU_Envelope(all) J[492] SLU_Envelope(all) I[491] SLU_Envelope(all) J[492] SLU_Envelope(all) I[492] SLU_Envelope(all) J[493] SLU_Envelope(all) I[493] SLU_Envelope(all) J[536] SLU_Envelope(all) I[491] SLU_Envelope(all) J[496] SLU_Envelope(all) I[492] SLU_Envelope(all) J[497] SLU_Envelope(all) I[496] SLU_Envelope(all) J[497] SLU_Envelope(all) I[497] SLU_Envelope(all) J[498] SLU_Envelope(all) I[498] SLU_Envelope(all) J[537] SLU_Envelope(all) I[403] SLU_Envelope(all) J[500] SLU_Envelope(all) I[404] SLU_Envelope(all) J[501] SLU_Envelope(all) I[405] SLU_Envelope(all) J[502] SLU_Envelope(all) I[406] SLU_Envelope(all) J[503] SLU_Envelope(all) I[407] SLU_Envelope(all) J[504] SLU_Envelope(all) I[408] SLU_Envelope(all) J[505] SLU_Envelope(all) I[390] SLU_Envelope(all) J[506] SLU_Envelope(all) I[391] SLU_Envelope(all) J[507] SLU_Envelope(all) I[392] SLU_Envelope(all) J[508] SLU_Envelope(all) I[393] SLU_Envelope(all) J[509] SLU_Envelope(all) I[394] SLU_Envelope(all) J[510] SLU_Envelope(all) I[395] SLU_Envelope(all) J[511] SLU_Envelope(all) I[500] SLU_Envelope(all) J[506] SLU_Envelope(all) I[501] SLU_Envelope(all) J[507]

226 561 SLU_Envelope(all) I[502] SLU_Envelope(all) J[508] SLU_Envelope(all) I[503] SLU_Envelope(all) J[509] SLU_Envelope(all) I[504] SLU_Envelope(all) J[510] SLU_Envelope(all) I[505] SLU_Envelope(all) J[511] SLU_Envelope(all) I[419] SLU_Envelope(all) J[518] SLU_Envelope(all) I[420] SLU_Envelope(all) J[519] SLU_Envelope(all) I[421] SLU_Envelope(all) J[520] SLU_Envelope(all) I[422] SLU_Envelope(all) J[521] SLU_Envelope(all) I[423] SLU_Envelope(all) J[522] SLU_Envelope(all) I[424] SLU_Envelope(all) J[523] SLU_Envelope(all) I[500] SLU_Envelope(all) J[518] SLU_Envelope(all) I[501] SLU_Envelope(all) J[519] SLU_Envelope(all) I[502] SLU_Envelope(all) J[520] SLU_Envelope(all) I[503] SLU_Envelope(all) J[521] SLU_Envelope(all) I[504] SLU_Envelope(all) J[522] SLU_Envelope(all) I[505] SLU_Envelope(all) J[523] SLU_Envelope(all) I[506] SLU_Envelope(all) J[512] SLU_Envelope(all) I[507] SLU_Envelope(all) J[513] SLU_Envelope(all) I[508] SLU_Envelope(all) J[514] SLU_Envelope(all) I[509] SLU_Envelope(all) J[515] SLU_Envelope(all) I[510] SLU_Envelope(all) J[516] SLU_Envelope(all) I[511] SLU_Envelope(all) J[517] SLU_Envelope(all) I[506] SLU_Envelope(all) J[518] SLU_Envelope(all) I[507] SLU_Envelope(all) J[519] SLU_Envelope(all) I[508] SLU_Envelope(all) J[520] SLU_Envelope(all) I[509] SLU_Envelope(all) J[521] SLU_Envelope(all) I[510] SLU_Envelope(all) J[522] SLU_Envelope(all) I[511] SLU_Envelope(all) J[523] SLU_Envelope(all) I[512] SLU_Envelope(all) J[518] SLU_Envelope(all) I[513] SLU_Envelope(all) J[519] SLU_Envelope(all) I[514] SLU_Envelope(all) J[520] SLU_Envelope(all) I[515]

227 592 SLU_Envelope(all) J[521] SLU_Envelope(all) I[516] SLU_Envelope(all) J[522] SLU_Envelope(all) I[517] SLU_Envelope(all) J[523] SLU_Envelope(all) I[498] SLU_Envelope(all) J[493] SLU_Envelope(all) I[493] SLU_Envelope(all) J[486] SLU_Envelope(all) I[486] SLU_Envelope(all) J[464] SLU_Envelope(all) I[464] SLU_Envelope(all) J[436] SLU_Envelope(all) I[532] SLU_Envelope(all) J[530] SLU_Envelope(all) I[530] SLU_Envelope(all) J[529] SLU_Envelope(all) I[529] SLU_Envelope(all) J[528] SLU_Envelope(all) I[528] SLU_Envelope(all) J[527] SLU_Envelope(all) I[527] SLU_Envelope(all) J[526] SLU_Envelope(all) I[526] SLU_Envelope(all) J[525] SLU_Envelope(all) I[525] SLU_Envelope(all) J[524] SLU_Envelope(all) I[425] SLU_Envelope(all) J[524] SLU_Envelope(all) I[424] SLU_Envelope(all) J[525] SLU_Envelope(all) I[423] SLU_Envelope(all) J[526] SLU_Envelope(all) I[422] SLU_Envelope(all) J[527] SLU_Envelope(all) I[421] SLU_Envelope(all) J[528] SLU_Envelope(all) I[419] SLU_Envelope(all) J[530] SLU_Envelope(all) I[420] SLU_Envelope(all) J[529] SLU_Envelope(all) I[436] SLU_Envelope(all) J[533] SLU_Envelope(all) I[537] SLU_Envelope(all) J[536] SLU_Envelope(all) I[536] SLU_Envelope(all) J[535] SLU_Envelope(all) I[535] SLU_Envelope(all) J[534] SLU_Envelope(all) I[533] SLU_Envelope(all) J[532] SLU_Envelope(all) I[539] SLU_Envelope(all) J[419] SLU_Envelope(all) I[532] SLU_Envelope(all) J[539] SLU_Envelope(all) I[436] SLU_Envelope(all) J[430] SLU_Envelope(all) I[534] SLU_Envelope(all) J[533]

228 Tabella 4 BForce1 Elem Load Part Axial (kn) Shear-y (kn) Shear-z (kn) Torsion (kn*m) Moment-y (kn*m) 214 SLV_Envelope(all) I[239] SLV_Envelope(all) J[240] SLV_Envelope(all) I[240] SLV_Envelope(all) J[241] SLV_Envelope(all) I[257] SLV_Envelope(all) J[258] SLV_Envelope(all) I[262] SLV_Envelope(all) J[261] SLV_Envelope(all) I[266] SLV_Envelope(all) J[265] SLV_Envelope(all) I[274] SLV_Envelope(all) J[275] SLV_Envelope(all) I[275] SLV_Envelope(all) J[276] SLV_Envelope(all) I[313] SLV_Envelope(all) J[325] SLV_Envelope(all) I[314] SLV_Envelope(all) J[326] SLV_Envelope(all) I[315] SLV_Envelope(all) J[327] SLV_Envelope(all) I[316] SLV_Envelope(all) J[328] SLV_Envelope(all) I[317] SLV_Envelope(all) J[329] SLV_Envelope(all) I[318] SLV_Envelope(all) J[330] SLV_Envelope(all) I[319] SLV_Envelope(all) J[331] SLV_Envelope(all) I[320] SLV_Envelope(all) J[332] SLV_Envelope(all) I[321] SLV_Envelope(all) J[333] SLV_Envelope(all) I[322] SLV_Envelope(all) J[334] SLV_Envelope(all) I[323] SLV_Envelope(all) J[335] SLV_Envelope(all) I[324] SLV_Envelope(all) J[336] SLV_Envelope(all) I[325] SLV_Envelope(all) J[331] SLV_Envelope(all) I[326] SLV_Envelope(all) J[332] SLV_Envelope(all) I[327] SLV_Envelope(all) J[333] SLV_Envelope(all) I[328] SLV_Envelope(all) J[334] SLV_Envelope(all) I[329] SLV_Envelope(all) J[335] SLV_Envelope(all) I[330] SLV_Envelope(all) J[336] SLV_Envelope(all) I[325] SLV_Envelope(all) J[337] SLV_Envelope(all) I[326] SLV_Envelope(all) J[338] SLV_Envelope(all) I[327] SLV_Envelope(all) J[339] SLV_Envelope(all) I[328] SLV_Envelope(all) J[340] SLV_Envelope(all) I[329] Moment-z (kn*m)

229 262 SLV_Envelope(all) J[341] SLV_Envelope(all) I[330] SLV_Envelope(all) J[342] SLV_Envelope(all) I[276] SLV_Envelope(all) J[343] SLV_Envelope(all) I[306] SLV_Envelope(all) J[348] SLV_Envelope(all) I[216] SLV_Envelope(all) J[355] SLV_Envelope(all) I[221] SLV_Envelope(all) J[356] SLV_Envelope(all) I[226] SLV_Envelope(all) J[357] SLV_Envelope(all) I[233] SLV_Envelope(all) J[366] SLV_Envelope(all) I[234] SLV_Envelope(all) J[368] SLV_Envelope(all) I[239] SLV_Envelope(all) J[379] SLV_Envelope(all) I[240] SLV_Envelope(all) J[382] SLV_Envelope(all) I[241] SLV_Envelope(all) J[383] SLV_Envelope(all) I[274] SLV_Envelope(all) J[426] SLV_Envelope(all) I[275] SLV_Envelope(all) J[429] SLV_Envelope(all) I[296] SLV_Envelope(all) J[496] SLV_Envelope(all) I[301] SLV_Envelope(all) J[497] SLV_Envelope(all) I[331] SLV_Envelope(all) J[337] SLV_Envelope(all) I[332] SLV_Envelope(all) J[338] SLV_Envelope(all) I[333] SLV_Envelope(all) J[339] SLV_Envelope(all) I[334] SLV_Envelope(all) J[340] SLV_Envelope(all) I[335] SLV_Envelope(all) J[341] SLV_Envelope(all) I[336] SLV_Envelope(all) J[342] SLV_Envelope(all) I[331] SLV_Envelope(all) J[349] SLV_Envelope(all) I[332] SLV_Envelope(all) J[350] SLV_Envelope(all) I[333] SLV_Envelope(all) J[351] SLV_Envelope(all) I[334] SLV_Envelope(all) J[352] SLV_Envelope(all) I[335] SLV_Envelope(all) J[353] SLV_Envelope(all) I[336] SLV_Envelope(all) J[354] SLV_Envelope(all) I[337] SLV_Envelope(all) J[349] SLV_Envelope(all) I[338] SLV_Envelope(all) J[350] SLV_Envelope(all) I[339] SLV_Envelope(all) J[351] SLV_Envelope(all) I[340] SLV_Envelope(all) J[352]

230 311 SLV_Envelope(all) I[341] SLV_Envelope(all) J[353] SLV_Envelope(all) I[342] SLV_Envelope(all) J[354] SLV_Envelope(all) I[337] SLV_Envelope(all) J[390] SLV_Envelope(all) I[338] SLV_Envelope(all) J[391] SLV_Envelope(all) I[339] SLV_Envelope(all) J[392] SLV_Envelope(all) I[340] SLV_Envelope(all) J[393] SLV_Envelope(all) I[341] SLV_Envelope(all) J[394] SLV_Envelope(all) I[342] SLV_Envelope(all) J[395] SLV_Envelope(all) I[343] SLV_Envelope(all) J[344] SLV_Envelope(all) I[344] SLV_Envelope(all) J[345] SLV_Envelope(all) I[345] SLV_Envelope(all) J[346] SLV_Envelope(all) I[346] SLV_Envelope(all) J[347] SLV_Envelope(all) I[347] SLV_Envelope(all) J[348] SLV_Envelope(all) I[343] SLV_Envelope(all) J[430] SLV_Envelope(all) I[348] SLV_Envelope(all) J[498] SLV_Envelope(all) I[349] SLV_Envelope(all) J[403] SLV_Envelope(all) I[350] SLV_Envelope(all) J[404] SLV_Envelope(all) I[351] SLV_Envelope(all) J[405] SLV_Envelope(all) I[352] SLV_Envelope(all) J[406] SLV_Envelope(all) I[353] SLV_Envelope(all) J[407] SLV_Envelope(all) I[354] SLV_Envelope(all) J[408] SLV_Envelope(all) I[355] SLV_Envelope(all) J[356] SLV_Envelope(all) I[356] SLV_Envelope(all) J[357] SLV_Envelope(all) I[355] SLV_Envelope(all) J[358] SLV_Envelope(all) I[356] SLV_Envelope(all) J[359] SLV_Envelope(all) I[357] SLV_Envelope(all) J[361] SLV_Envelope(all) I[358] SLV_Envelope(all) J[359] SLV_Envelope(all) I[359] SLV_Envelope(all) J[360] SLV_Envelope(all) I[360] SLV_Envelope(all) J[361] SLV_Envelope(all) I[358] SLV_Envelope(all) J[362] SLV_Envelope(all) I[359] SLV_Envelope(all) J[363] SLV_Envelope(all) I[360]

231 346 SLV_Envelope(all) J[364] SLV_Envelope(all) I[361] SLV_Envelope(all) J[365] SLV_Envelope(all) I[362] SLV_Envelope(all) J[363] SLV_Envelope(all) I[363] SLV_Envelope(all) J[364] SLV_Envelope(all) I[364] SLV_Envelope(all) J[365] SLV_Envelope(all) I[362] SLV_Envelope(all) J[366] SLV_Envelope(all) I[363] SLV_Envelope(all) J[367] SLV_Envelope(all) I[365] SLV_Envelope(all) J[368] SLV_Envelope(all) I[366] SLV_Envelope(all) J[367] SLV_Envelope(all) I[367] SLV_Envelope(all) J[368] SLV_Envelope(all) I[366] SLV_Envelope(all) J[369] SLV_Envelope(all) I[367] SLV_Envelope(all) J[370] SLV_Envelope(all) I[368] SLV_Envelope(all) J[371] SLV_Envelope(all) I[369] SLV_Envelope(all) J[370] SLV_Envelope(all) I[370] SLV_Envelope(all) J[371] SLV_Envelope(all) I[369] SLV_Envelope(all) J[372] SLV_Envelope(all) I[370] SLV_Envelope(all) J[375] SLV_Envelope(all) I[371] SLV_Envelope(all) J[376] SLV_Envelope(all) I[372] SLV_Envelope(all) J[373] SLV_Envelope(all) I[373] SLV_Envelope(all) J[374] SLV_Envelope(all) I[374] SLV_Envelope(all) J[375] SLV_Envelope(all) I[375] SLV_Envelope(all) J[376] SLV_Envelope(all) I[373] SLV_Envelope(all) J[377] SLV_Envelope(all) I[374] SLV_Envelope(all) J[378] SLV_Envelope(all) I[372] SLV_Envelope(all) J[379] SLV_Envelope(all) I[375] SLV_Envelope(all) J[382] SLV_Envelope(all) I[376] SLV_Envelope(all) J[383] SLV_Envelope(all) I[377] SLV_Envelope(all) J[378] SLV_Envelope(all) I[377] SLV_Envelope(all) J[380] SLV_Envelope(all) I[378] SLV_Envelope(all) J[381] SLV_Envelope(all) I[379] SLV_Envelope(all) J[380] SLV_Envelope(all) I[380] SLV_Envelope(all) J[381]

232 378 SLV_Envelope(all) I[381] SLV_Envelope(all) J[382] SLV_Envelope(all) I[382] SLV_Envelope(all) J[383] SLV_Envelope(all) I[384] SLV_Envelope(all) J[385] SLV_Envelope(all) I[386] SLV_Envelope(all) J[387] SLV_Envelope(all) I[388] SLV_Envelope(all) J[389] SLV_Envelope(all) I[384] SLV_Envelope(all) J[390] SLV_Envelope(all) I[385] SLV_Envelope(all) J[391] SLV_Envelope(all) I[386] SLV_Envelope(all) J[392] SLV_Envelope(all) I[387] SLV_Envelope(all) J[393] SLV_Envelope(all) I[388] SLV_Envelope(all) J[394] SLV_Envelope(all) I[389] SLV_Envelope(all) J[395] SLV_Envelope(all) I[379] SLV_Envelope(all) J[396] SLV_Envelope(all) I[382] SLV_Envelope(all) J[399] SLV_Envelope(all) I[383] SLV_Envelope(all) J[400] SLV_Envelope(all) I[390] SLV_Envelope(all) J[391] SLV_Envelope(all) I[392] SLV_Envelope(all) J[393] SLV_Envelope(all) I[394] SLV_Envelope(all) J[395] SLV_Envelope(all) I[396] SLV_Envelope(all) J[397] SLV_Envelope(all) I[397] SLV_Envelope(all) J[398] SLV_Envelope(all) I[398] SLV_Envelope(all) J[399] SLV_Envelope(all) I[399] SLV_Envelope(all) J[400] SLV_Envelope(all) I[390] SLV_Envelope(all) J[403] SLV_Envelope(all) I[391] SLV_Envelope(all) J[404] SLV_Envelope(all) I[392] SLV_Envelope(all) J[405] SLV_Envelope(all) I[393] SLV_Envelope(all) J[406] SLV_Envelope(all) I[394] SLV_Envelope(all) J[407] SLV_Envelope(all) I[395] SLV_Envelope(all) J[408] SLV_Envelope(all) I[399] SLV_Envelope(all) J[401] SLV_Envelope(all) I[400] SLV_Envelope(all) J[402] SLV_Envelope(all) I[396] SLV_Envelope(all) J[410] SLV_Envelope(all) I[397] SLV_Envelope(all) J[411] SLV_Envelope(all) I[398]

233 409 SLV_Envelope(all) J[412] SLV_Envelope(all) I[401] SLV_Envelope(all) J[402] SLV_Envelope(all) I[402] SLV_Envelope(all) J[403] SLV_Envelope(all) I[403] SLV_Envelope(all) J[404] SLV_Envelope(all) I[404] SLV_Envelope(all) J[405] SLV_Envelope(all) I[405] SLV_Envelope(all) J[406] SLV_Envelope(all) I[406] SLV_Envelope(all) J[407] SLV_Envelope(all) I[407] SLV_Envelope(all) J[408] SLV_Envelope(all) I[408] SLV_Envelope(all) J[409] SLV_Envelope(all) I[401] SLV_Envelope(all) J[413] SLV_Envelope(all) I[410] SLV_Envelope(all) J[411] SLV_Envelope(all) I[411] SLV_Envelope(all) J[412] SLV_Envelope(all) I[412] SLV_Envelope(all) J[413] SLV_Envelope(all) I[402] SLV_Envelope(all) J[415] SLV_Envelope(all) I[413] SLV_Envelope(all) J[414] SLV_Envelope(all) I[403] SLV_Envelope(all) J[419] SLV_Envelope(all) I[404] SLV_Envelope(all) J[420] SLV_Envelope(all) I[405] SLV_Envelope(all) J[421] SLV_Envelope(all) I[406] SLV_Envelope(all) J[422] SLV_Envelope(all) I[407] SLV_Envelope(all) J[423] SLV_Envelope(all) I[408] SLV_Envelope(all) J[424] SLV_Envelope(all) I[409] SLV_Envelope(all) J[425] SLV_Envelope(all) I[411] SLV_Envelope(all) J[416] SLV_Envelope(all) I[412] SLV_Envelope(all) J[417] SLV_Envelope(all) I[414] SLV_Envelope(all) J[415] SLV_Envelope(all) I[410] SLV_Envelope(all) J[426] SLV_Envelope(all) I[415] SLV_Envelope(all) J[418] SLV_Envelope(all) I[414] SLV_Envelope(all) J[429] SLV_Envelope(all) I[416] SLV_Envelope(all) J[417] SLV_Envelope(all) I[416] SLV_Envelope(all) J[427] SLV_Envelope(all) I[417] SLV_Envelope(all) J[428] SLV_Envelope(all) I[418] SLV_Envelope(all) J[539]

234 441 SLV_Envelope(all) I[419] SLV_Envelope(all) J[420] SLV_Envelope(all) I[420] SLV_Envelope(all) J[421] SLV_Envelope(all) I[421] SLV_Envelope(all) J[422] SLV_Envelope(all) I[422] SLV_Envelope(all) J[423] SLV_Envelope(all) I[423] SLV_Envelope(all) J[424] SLV_Envelope(all) I[424] SLV_Envelope(all) J[425] SLV_Envelope(all) I[418] SLV_Envelope(all) J[430] SLV_Envelope(all) I[426] SLV_Envelope(all) J[427] SLV_Envelope(all) I[427] SLV_Envelope(all) J[428] SLV_Envelope(all) I[428] SLV_Envelope(all) J[429] SLV_Envelope(all) I[429] SLV_Envelope(all) J[430] SLV_Envelope(all) I[426] SLV_Envelope(all) J[434] SLV_Envelope(all) I[429] SLV_Envelope(all) J[435] SLV_Envelope(all) I[434] SLV_Envelope(all) J[435] SLV_Envelope(all) I[435] SLV_Envelope(all) J[436] SLV_Envelope(all) I[434] SLV_Envelope(all) J[462] SLV_Envelope(all) I[435] SLV_Envelope(all) J[463] SLV_Envelope(all) I[462] SLV_Envelope(all) J[463] SLV_Envelope(all) I[463] SLV_Envelope(all) J[464] SLV_Envelope(all) I[464] SLV_Envelope(all) J[534] SLV_Envelope(all) I[462] SLV_Envelope(all) J[484] SLV_Envelope(all) I[463] SLV_Envelope(all) J[485] SLV_Envelope(all) I[484] SLV_Envelope(all) J[485] SLV_Envelope(all) I[485] SLV_Envelope(all) J[486] SLV_Envelope(all) I[486] SLV_Envelope(all) J[535] SLV_Envelope(all) I[484] SLV_Envelope(all) J[491] SLV_Envelope(all) I[485] SLV_Envelope(all) J[492] SLV_Envelope(all) I[491] SLV_Envelope(all) J[492] SLV_Envelope(all) I[492] SLV_Envelope(all) J[493] SLV_Envelope(all) I[493] SLV_Envelope(all) J[536] SLV_Envelope(all) I[491] SLV_Envelope(all) J[496] SLV_Envelope(all) I[492]

235 542 SLV_Envelope(all) J[497] SLV_Envelope(all) I[496] SLV_Envelope(all) J[497] SLV_Envelope(all) I[497] SLV_Envelope(all) J[498] SLV_Envelope(all) I[498] SLV_Envelope(all) J[537] SLV_Envelope(all) I[403] SLV_Envelope(all) J[500] SLV_Envelope(all) I[404] SLV_Envelope(all) J[501] SLV_Envelope(all) I[405] SLV_Envelope(all) J[502] SLV_Envelope(all) I[406] SLV_Envelope(all) J[503] SLV_Envelope(all) I[407] SLV_Envelope(all) J[504] SLV_Envelope(all) I[408] SLV_Envelope(all) J[505] SLV_Envelope(all) I[390] SLV_Envelope(all) J[506] SLV_Envelope(all) I[391] SLV_Envelope(all) J[507] SLV_Envelope(all) I[392] SLV_Envelope(all) J[508] SLV_Envelope(all) I[393] SLV_Envelope(all) J[509] SLV_Envelope(all) I[394] SLV_Envelope(all) J[510] SLV_Envelope(all) I[395] SLV_Envelope(all) J[511] SLV_Envelope(all) I[500] SLV_Envelope(all) J[506] SLV_Envelope(all) I[501] SLV_Envelope(all) J[507] SLV_Envelope(all) I[502] SLV_Envelope(all) J[508] SLV_Envelope(all) I[503] SLV_Envelope(all) J[509] SLV_Envelope(all) I[504] SLV_Envelope(all) J[510] SLV_Envelope(all) I[505] SLV_Envelope(all) J[511] SLV_Envelope(all) I[419] SLV_Envelope(all) J[518] SLV_Envelope(all) I[420] SLV_Envelope(all) J[519] SLV_Envelope(all) I[421] SLV_Envelope(all) J[520] SLV_Envelope(all) I[422] SLV_Envelope(all) J[521] SLV_Envelope(all) I[423] SLV_Envelope(all) J[522] SLV_Envelope(all) I[424] SLV_Envelope(all) J[523] SLV_Envelope(all) I[500] SLV_Envelope(all) J[518] SLV_Envelope(all) I[501] SLV_Envelope(all) J[519] SLV_Envelope(all) I[502] SLV_Envelope(all) J[520] SLV_Envelope(all) I[503] SLV_Envelope(all) J[521]

236 575 SLV_Envelope(all) I[504] SLV_Envelope(all) J[522] SLV_Envelope(all) I[505] SLV_Envelope(all) J[523] SLV_Envelope(all) I[506] SLV_Envelope(all) J[512] SLV_Envelope(all) I[507] SLV_Envelope(all) J[513] SLV_Envelope(all) I[508] SLV_Envelope(all) J[514] SLV_Envelope(all) I[509] SLV_Envelope(all) J[515] SLV_Envelope(all) I[510] SLV_Envelope(all) J[516] SLV_Envelope(all) I[511] SLV_Envelope(all) J[517] SLV_Envelope(all) I[506] SLV_Envelope(all) J[518] SLV_Envelope(all) I[507] SLV_Envelope(all) J[519] SLV_Envelope(all) I[508] SLV_Envelope(all) J[520] SLV_Envelope(all) I[509] SLV_Envelope(all) J[521] SLV_Envelope(all) I[510] SLV_Envelope(all) J[522] SLV_Envelope(all) I[511] SLV_Envelope(all) J[523] SLV_Envelope(all) I[512] SLV_Envelope(all) J[518] SLV_Envelope(all) I[513] SLV_Envelope(all) J[519] SLV_Envelope(all) I[514] SLV_Envelope(all) J[520] SLV_Envelope(all) I[515] SLV_Envelope(all) J[521] SLV_Envelope(all) I[516] SLV_Envelope(all) J[522] SLV_Envelope(all) I[517] SLV_Envelope(all) J[523] SLV_Envelope(all) I[498] SLV_Envelope(all) J[493] SLV_Envelope(all) I[493] SLV_Envelope(all) J[486] SLV_Envelope(all) I[486] SLV_Envelope(all) J[464] SLV_Envelope(all) I[464] SLV_Envelope(all) J[436] SLV_Envelope(all) I[532] SLV_Envelope(all) J[530] SLV_Envelope(all) I[530] SLV_Envelope(all) J[529] SLV_Envelope(all) I[529] SLV_Envelope(all) J[528] SLV_Envelope(all) I[528] SLV_Envelope(all) J[527] SLV_Envelope(all) I[527] SLV_Envelope(all) J[526] SLV_Envelope(all) I[526] SLV_Envelope(all) J[525] SLV_Envelope(all) I[525] SLV_Envelope(all) J[524] SLV_Envelope(all) I[425]

237 609 SLV_Envelope(all) J[524] SLV_Envelope(all) I[424] SLV_Envelope(all) J[525] SLV_Envelope(all) I[423] SLV_Envelope(all) J[526] SLV_Envelope(all) I[422] SLV_Envelope(all) J[527] SLV_Envelope(all) I[421] SLV_Envelope(all) J[528] SLV_Envelope(all) I[419] SLV_Envelope(all) J[530] SLV_Envelope(all) I[420] SLV_Envelope(all) J[529] SLV_Envelope(all) I[436] SLV_Envelope(all) J[533] SLV_Envelope(all) I[537] SLV_Envelope(all) J[536] SLV_Envelope(all) I[536] SLV_Envelope(all) J[535] SLV_Envelope(all) I[535] SLV_Envelope(all) J[534] SLV_Envelope(all) I[533] SLV_Envelope(all) J[532] SLV_Envelope(all) I[539] SLV_Envelope(all) J[419] SLV_Envelope(all) I[532] SLV_Envelope(all) J[539] SLV_Envelope(all) I[436] SLV_Envelope(all) J[430] SLV_Envelope(all) I[534] SLV_Envelope(all) J[533] Tabella 5 TFORCE Elem Load Force-I (kn) Force-J (kn) 267 SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max) SLV_Envelope(max)

238 Figura 5 MySLU Figura 6 FzSLU

239 Figura 7 FxSLV Figura 8 soilpressureslv

240 Figura 9 soilpressureslu

241 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== +============================================================+ MIDAS(Modeling, Integrated Design & Analysis Software) midas Gen - Design & checking system for windows +============================================================+ Steel Member Applicable Code Checking Based On Eurocode3:05, Eurocode3, AISC(13th)-LRFD05, AISC(13th)-ASD05, AISC-LRFD2K, AISC-LRFD93, AISC-ASD89, AISI-CFSD86, CSA-S16-01, BS (c)since ============================================================+ MIDAS Information Technology Co.,Ltd. (MIDAS IT) MIDAS IT Design Development Team +============================================================+ HomePage : +============================================================+ Gen ============================================================+ *. DEFINITION OF LOAD COMBINATIONS WITH SCALING UP FACTORS LCB C Loadcase Name(Factor) + Loadcase Name(Factor) + Loadcase Name(Factor) G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)( 1.000) +spettro_x_slv(es)( 1.000) +spettro_y_slv(rs)( 0.300) +spettro_y_slv(es)( 0.300) 2 1 G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)( 1.000) +spettro_x_slv(es)(-1.000) +spettro_y_slv(rs)( 0.300) +spettro_y_slv(es)(-0.300) 3 1 G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)( 1.000) +spettro_x_slv(es)( 1.000) +spettro_y_slv(rs)(-0.300) +spettro_y_slv(es)(-0.300) 4 1 G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)( 1.000) +spettro_x_slv(es)(-1.000) +spettro_y_slv(rs)(-0.300) +spettro_y_slv(es)( 0.300) 5 1 G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)( 1.000) +spettro_y_slv(es)( 1.000) +spettro_x_slv(rs)( 0.300) +spettro_x_slv(es)( 0.300) 6 1 G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)( 1.000) +spettro_y_slv(es)(-1.000) +spettro_x_slv(rs)( 0.300) +spettro_x_slv(es)(-0.300) 7 1 G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)( 1.000) +spettro_y_slv(es)( 1.000) +spettro_x_slv(rs)(-0.300) +spettro_x_slv(es)(-0.300) 8 1 G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)( 1.000) +spettro_y_slv(es)(-1.000) +spettro_x_slv(rs)(-0.300) +spettro_x_slv(es)( 0.300) 9 1 G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)( 1.000) +spettro_x_sld_eta2/3(es)( 1.000) +spettro_y_sld_eta2/3(rs)( 0.300) +spettro_y_sld_eta2/3(es )( 0.300) 10 1 G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)( 1.000) +spettro_x_sld_eta2/3(es)(-1.000) +spettro_y_sld_eta2/3(rs)( 0.300) +spettro_y_sld_eta2/3(es )(-0.300) 11 1 G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)( 1.000) +spettro_x_sld_eta2/3(es)( 1.000) +spettro_y_sld_eta2/3(rs)(-0.300) +spettro_y_sld_eta2/3(es )(-0.300) 12 1 G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)( 1.000) +spettro_x_sld_eta2/3(es)(-1.000) +spettro_y_sld_eta2/3(rs)(-0.300) +spettro_y_sld_eta2/3(es )( 0.300) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-1 / 58 -

242 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== 13 1 G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)( 1.000) +spettro_y_sld_eta2/3(es)( 1.000) +spettro_x_sld_eta2/3(rs)( 0.300) +spettro_x_sld_eta2/3(es )( 0.300) 14 1 G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)( 1.000) +spettro_y_sld_eta2/3(es)(-1.000) +spettro_x_sld_eta2/3(rs)( 0.300) +spettro_x_sld_eta2/3(es )(-0.300) 15 1 G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)( 1.000) +spettro_y_sld_eta2/3(es)( 1.000) +spettro_x_sld_eta2/3(rs)(-0.300) +spettro_x_sld_eta2/3(es )(-0.300) 16 1 G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)( 1.000) +spettro_y_sld_eta2/3(es)(-1.000) +spettro_x_sld_eta2/3(rs)(-0.300) +spettro_x_sld_eta2/3(es )( 0.300) 17 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)( 1.000) +spettro_x_sp_1(es)( 1.000) +spettro_y_sp_1(rs)( 0.300) +spettro_y_sp_1(es)( 0.300) 18 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)( 1.000) +spettro_x_sp_1(es)(-1.000) +spettro_y_sp_1(rs)( 0.300) +spettro_y_sp_1(es)(-0.300) 19 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)( 1.000) +spettro_x_sp_1(es)( 1.000) +spettro_y_sp_1(rs)(-0.300) +spettro_y_sp_1(es)(-0.300) 20 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)( 1.000) +spettro_x_sp_1(es)(-1.000) +spettro_y_sp_1(rs)(-0.300) +spettro_y_sp_1(es)( 0.300) 21 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)( 1.000) +spettro_y_sp_1(es)( 1.000) +spettro_x_sp_1(rs)( 0.300) +spettro_x_sp_1(es)( 0.300) 22 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)( 1.000) +spettro_y_sp_1(es)(-1.000) +spettro_x_sp_1(rs)( 0.300) +spettro_x_sp_1(es)(-0.300) 23 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)( 1.000) +spettro_y_sp_1(es)( 1.000) +spettro_x_sp_1(rs)(-0.300) +spettro_x_sp_1(es)(-0.300) 24 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)( 1.000) +spettro_y_sp_1(es)(-1.000) +spettro_x_sp_1(rs)(-0.300) +spettro_x_sp_1(es)( 0.300) 25 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)( 1.000) +spettro_x_sp_2(es)( 1.000) +spettro_y_sp_2(rs)( 0.300) +spettro_y_sp_2(es)( 0.300) 26 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)( 1.000) +spettro_x_sp_2(es)(-1.000) +spettro_y_sp_2(rs)( 0.300) +spettro_y_sp_2(es)(-0.300) 27 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)( 1.000) +spettro_x_sp_2(es)( 1.000) +spettro_y_sp_2(rs)(-0.300) +spettro_y_sp_2(es)(-0.300) 28 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)( 1.000) +spettro_x_sp_2(es)(-1.000) +spettro_y_sp_2(rs)(-0.300) +spettro_y_sp_2(es)( 0.300) 29 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)( 1.000) +spettro_y_sp_2(es)( 1.000) +spettro_x_sp_2(rs)( 0.300) +spettro_x_sp_2(es)( 0.300) 30 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)( 1.000) +spettro_y_sp_2(es)(-1.000) +spettro_x_sp_2(rs)( 0.300) +spettro_x_sp_2(es)(-0.300) 31 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)( 1.000) +spettro_y_sp_2(es)( 1.000) +spettro_x_sp_2(rs)(-0.300) +spettro_x_sp_2(es)(-0.300) 32 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)( 1.000) +spettro_y_sp_2(es)(-1.000) +spettro_x_sp_2(rs)(-0.300) +spettro_x_sp_2(es)( 0.300) 33 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)( 1.000) +spettro_x_sp_3(es)( 1.000) +spettro_y_sp_3(rs)( 0.300) +spettro_y_sp_3(es)( 0.300) 34 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)( 1.000) +spettro_x_sp_3(es)(-1.000) +spettro_y_sp_3(rs)( 0.300) +spettro_y_sp_3(es)(-0.300) 35 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)( 1.000) +spettro_x_sp_3(es)( 1.000) +spettro_y_sp_3(rs)(-0.300) +spettro_y_sp_3(es)(-0.300) 36 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)( 1.000) +spettro_x_sp_3(es)(-1.000) +spettro_y_sp_3(rs)(-0.300) +spettro_y_sp_3(es)( 0.300) 37 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)( 1.000) +spettro_y_sp_3(es)( 1.000) +spettro_x_sp_3(rs)( 0.300) +spettro_x_sp_3(es)( 0.300) 38 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)( 1.000) +spettro_y_sp_3(es)(-1.000) +spettro_x_sp_3(rs)( 0.300) +spettro_x_sp_3(es)(-0.300) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-2 / 58 -

243 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== 39 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)( 1.000) +spettro_y_sp_3(es)( 1.000) +spettro_x_sp_3(rs)(-0.300) +spettro_x_sp_3(es)(-0.300) 40 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)( 1.000) +spettro_y_sp_3(es)(-1.000) +spettro_x_sp_3(rs)(-0.300) +spettro_x_sp_3(es)( 0.300) 41 1 G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)( 1.000) +spettro_x_slv(es)( 1.000) +spettro_y_slv(rs)( 0.300) +spettro_y_slv(es)(-0.300) 42 1 G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)( 1.000) +spettro_x_slv(es)(-1.000) +spettro_y_slv(rs)( 0.300) +spettro_y_slv(es)( 0.300) 43 1 G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)( 1.000) +spettro_x_slv(es)( 1.000) +spettro_y_slv(rs)(-0.300) +spettro_y_slv(es)( 0.300) 44 1 G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)( 1.000) +spettro_x_slv(es)(-1.000) +spettro_y_slv(rs)(-0.300) +spettro_y_slv(es)(-0.300) 45 1 G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)( 1.000) +spettro_y_slv(es)( 1.000) +spettro_x_slv(rs)( 0.300) +spettro_x_slv(es)(-0.300) 46 1 G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)( 1.000) +spettro_y_slv(es)(-1.000) +spettro_x_slv(rs)( 0.300) +spettro_x_slv(es)( 0.300) 47 1 G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)( 1.000) +spettro_y_slv(es)( 1.000) +spettro_x_slv(rs)(-0.300) +spettro_x_slv(es)( 0.300) 48 1 G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)( 1.000) +spettro_y_slv(es)(-1.000) +spettro_x_slv(rs)(-0.300) +spettro_x_slv(es)(-0.300) 49 1 G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)( 1.000) +spettro_x_sld_eta2/3(es)( 1.000) +spettro_y_sld_eta2/3(rs)( 0.300) +spettro_y_sld_eta2/3(es )(-0.300) 50 1 G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)( 1.000) +spettro_x_sld_eta2/3(es)(-1.000) +spettro_y_sld_eta2/3(rs)( 0.300) +spettro_y_sld_eta2/3(es )( 0.300) 51 1 G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)( 1.000) +spettro_x_sld_eta2/3(es)( 1.000) +spettro_y_sld_eta2/3(rs)(-0.300) +spettro_y_sld_eta2/3(es )( 0.300) 52 1 G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)( 1.000) +spettro_x_sld_eta2/3(es)(-1.000) +spettro_y_sld_eta2/3(rs)(-0.300) +spettro_y_sld_eta2/3(es )(-0.300) 53 1 G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)( 1.000) +spettro_y_sld_eta2/3(es)( 1.000) +spettro_x_sld_eta2/3(rs)( 0.300) +spettro_x_sld_eta2/3(es )(-0.300) 54 1 G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)( 1.000) +spettro_y_sld_eta2/3(es)(-1.000) +spettro_x_sld_eta2/3(rs)( 0.300) +spettro_x_sld_eta2/3(es )( 0.300) 55 1 G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)( 1.000) +spettro_y_sld_eta2/3(es)( 1.000) +spettro_x_sld_eta2/3(rs)(-0.300) +spettro_x_sld_eta2/3(es )( 0.300) 56 1 G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)( 1.000) +spettro_y_sld_eta2/3(es)(-1.000) +spettro_x_sld_eta2/3(rs)(-0.300) +spettro_x_sld_eta2/3(es )(-0.300) 57 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)( 1.000) +spettro_x_sp_1(es)( 1.000) +spettro_y_sp_1(rs)( 0.300) +spettro_y_sp_1(es)(-0.300) 58 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)( 1.000) +spettro_x_sp_1(es)(-1.000) +spettro_y_sp_1(rs)( 0.300) +spettro_y_sp_1(es)( 0.300) 59 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)( 1.000) +spettro_x_sp_1(es)( 1.000) +spettro_y_sp_1(rs)(-0.300) +spettro_y_sp_1(es)( 0.300) 60 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)( 1.000) +spettro_x_sp_1(es)(-1.000) +spettro_y_sp_1(rs)(-0.300) +spettro_y_sp_1(es)(-0.300) 61 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)( 1.000) +spettro_y_sp_1(es)( 1.000) +spettro_x_sp_1(rs)( 0.300) +spettro_x_sp_1(es)(-0.300) 62 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)( 1.000) +spettro_y_sp_1(es)(-1.000) +spettro_x_sp_1(rs)( 0.300) +spettro_x_sp_1(es)( 0.300) 63 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)( 1.000) +spettro_y_sp_1(es)( 1.000) +spettro_x_sp_1(rs)(-0.300) +spettro_x_sp_1(es)( 0.300) 64 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)( 1.000) +spettro_y_sp_1(es)(-1.000) +spettro_x_sp_1(rs)(-0.300) +spettro_x_sp_1(es)(-0.300) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-3 / 58 -

244 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== 65 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)( 1.000) +spettro_x_sp_2(es)( 1.000) +spettro_y_sp_2(rs)( 0.300) +spettro_y_sp_2(es)(-0.300) 66 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)( 1.000) +spettro_x_sp_2(es)(-1.000) +spettro_y_sp_2(rs)( 0.300) +spettro_y_sp_2(es)( 0.300) 67 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)( 1.000) +spettro_x_sp_2(es)( 1.000) +spettro_y_sp_2(rs)(-0.300) +spettro_y_sp_2(es)( 0.300) 68 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)( 1.000) +spettro_x_sp_2(es)(-1.000) +spettro_y_sp_2(rs)(-0.300) +spettro_y_sp_2(es)(-0.300) 69 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)( 1.000) +spettro_y_sp_2(es)( 1.000) +spettro_x_sp_2(rs)( 0.300) +spettro_x_sp_2(es)(-0.300) 70 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)( 1.000) +spettro_y_sp_2(es)(-1.000) +spettro_x_sp_2(rs)( 0.300) +spettro_x_sp_2(es)( 0.300) 71 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)( 1.000) +spettro_y_sp_2(es)( 1.000) +spettro_x_sp_2(rs)(-0.300) +spettro_x_sp_2(es)( 0.300) 72 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)( 1.000) +spettro_y_sp_2(es)(-1.000) +spettro_x_sp_2(rs)(-0.300) +spettro_x_sp_2(es)(-0.300) 73 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)( 1.000) +spettro_x_sp_3(es)( 1.000) +spettro_y_sp_3(rs)( 0.300) +spettro_y_sp_3(es)(-0.300) 74 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)( 1.000) +spettro_x_sp_3(es)(-1.000) +spettro_y_sp_3(rs)( 0.300) +spettro_y_sp_3(es)( 0.300) 75 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)( 1.000) +spettro_x_sp_3(es)( 1.000) +spettro_y_sp_3(rs)(-0.300) +spettro_y_sp_3(es)( 0.300) 76 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)( 1.000) +spettro_x_sp_3(es)(-1.000) +spettro_y_sp_3(rs)(-0.300) +spettro_y_sp_3(es)(-0.300) 77 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)( 1.000) +spettro_y_sp_3(es)( 1.000) +spettro_x_sp_3(rs)( 0.300) +spettro_x_sp_3(es)(-0.300) 78 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)( 1.000) +spettro_y_sp_3(es)(-1.000) +spettro_x_sp_3(rs)( 0.300) +spettro_x_sp_3(es)( 0.300) 79 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)( 1.000) +spettro_y_sp_3(es)( 1.000) +spettro_x_sp_3(rs)(-0.300) +spettro_x_sp_3(es)( 0.300) 80 1 G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)( 1.000) +spettro_y_sp_3(es)(-1.000) +spettro_x_sp_3(rs)(-0.300) +spettro_x_sp_3(es)(-0.300) 81 1 G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)(-1.000) +spettro_x_slv(es)(-1.000) +spettro_y_slv(rs)(-0.300) +spettro_y_slv(es)(-0.300) 82 1 G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)(-1.000) +spettro_x_slv(es)( 1.000) +spettro_y_slv(rs)(-0.300) +spettro_y_slv(es)( 0.300) 83 1 G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)(-1.000) +spettro_x_slv(es)(-1.000) +spettro_y_slv(rs)( 0.300) +spettro_y_slv(es)( 0.300) 84 1 G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)(-1.000) +spettro_x_slv(es)( 1.000) +spettro_y_slv(rs)( 0.300) +spettro_y_slv(es)(-0.300) 85 1 G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)(-1.000) +spettro_y_slv(es)(-1.000) +spettro_x_slv(rs)(-0.300) +spettro_x_slv(es)(-0.300) 86 1 G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)(-1.000) +spettro_y_slv(es)( 1.000) +spettro_x_slv(rs)(-0.300) +spettro_x_slv(es)( 0.300) 87 1 G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)(-1.000) +spettro_y_slv(es)(-1.000) +spettro_x_slv(rs)( 0.300) +spettro_x_slv(es)( 0.300) 88 1 G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)(-1.000) +spettro_y_slv(es)( 1.000) +spettro_x_slv(rs)( 0.300) +spettro_x_slv(es)(-0.300) 89 1 G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)(-1.000) +spettro_x_sld_eta2/3(es)(-1.000) +spettro_y_sld_eta2/3(rs)(-0.300) +spettro_y_sld_eta2/3(es )(-0.300) 90 1 G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)(-1.000) +spettro_x_sld_eta2/3(es)( 1.000) +spettro_y_sld_eta2/3(rs)(-0.300) +spettro_y_sld_eta2/3(es )( 0.300) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-4 / 58 -

245 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== 91 1 G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)(-1.000) +spettro_x_sld_eta2/3(es)(-1.000) +spettro_y_sld_eta2/3(rs)( 0.300) +spettro_y_sld_eta2/3(es )( 0.300) 92 1 G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)(-1.000) +spettro_x_sld_eta2/3(es)( 1.000) +spettro_y_sld_eta2/3(rs)( 0.300) +spettro_y_sld_eta2/3(es )(-0.300) 93 1 G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)(-1.000) +spettro_y_sld_eta2/3(es)(-1.000) +spettro_x_sld_eta2/3(rs)(-0.300) +spettro_x_sld_eta2/3(es )(-0.300) 94 1 G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)(-1.000) +spettro_y_sld_eta2/3(es)( 1.000) +spettro_x_sld_eta2/3(rs)(-0.300) +spettro_x_sld_eta2/3(es )( 0.300) 95 1 G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)(-1.000) +spettro_y_sld_eta2/3(es)(-1.000) +spettro_x_sld_eta2/3(rs)( 0.300) +spettro_x_sld_eta2/3(es )( 0.300) 96 1 G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)(-1.000) +spettro_y_sld_eta2/3(es)( 1.000) +spettro_x_sld_eta2/3(rs)( 0.300) +spettro_x_sld_eta2/3(es )(-0.300) 97 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)(-1.000) +spettro_x_sp_1(es)(-1.000) +spettro_y_sp_1(rs)(-0.300) +spettro_y_sp_1(es)(-0.300) 98 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)(-1.000) +spettro_x_sp_1(es)( 1.000) +spettro_y_sp_1(rs)(-0.300) +spettro_y_sp_1(es)( 0.300) 99 1 G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)(-1.000) +spettro_x_sp_1(es)(-1.000) +spettro_y_sp_1(rs)( 0.300) +spettro_y_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)(-1.000) +spettro_x_sp_1(es)( 1.000) +spettro_y_sp_1(rs)( 0.300) +spettro_y_sp_1(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)(-1.000) +spettro_y_sp_1(es)(-1.000) +spettro_x_sp_1(rs)(-0.300) +spettro_x_sp_1(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)(-1.000) +spettro_y_sp_1(es)( 1.000) +spettro_x_sp_1(rs)(-0.300) +spettro_x_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)(-1.000) +spettro_y_sp_1(es)(-1.000) +spettro_x_sp_1(rs)( 0.300) +spettro_x_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)(-1.000) +spettro_y_sp_1(es)( 1.000) +spettro_x_sp_1(rs)( 0.300) +spettro_x_sp_1(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)(-1.000) +spettro_x_sp_2(es)(-1.000) +spettro_y_sp_2(rs)(-0.300) +spettro_y_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)(-1.000) +spettro_x_sp_2(es)( 1.000) +spettro_y_sp_2(rs)(-0.300) +spettro_y_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)(-1.000) +spettro_x_sp_2(es)(-1.000) +spettro_y_sp_2(rs)( 0.300) +spettro_y_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)(-1.000) +spettro_x_sp_2(es)( 1.000) +spettro_y_sp_2(rs)( 0.300) +spettro_y_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)(-1.000) +spettro_y_sp_2(es)(-1.000) +spettro_x_sp_2(rs)(-0.300) +spettro_x_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)(-1.000) +spettro_y_sp_2(es)( 1.000) +spettro_x_sp_2(rs)(-0.300) +spettro_x_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)(-1.000) +spettro_y_sp_2(es)(-1.000) +spettro_x_sp_2(rs)( 0.300) +spettro_x_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)(-1.000) +spettro_y_sp_2(es)( 1.000) +spettro_x_sp_2(rs)( 0.300) +spettro_x_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)(-1.000) +spettro_x_sp_3(es)(-1.000) +spettro_y_sp_3(rs)(-0.300) +spettro_y_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)(-1.000) +spettro_x_sp_3(es)( 1.000) +spettro_y_sp_3(rs)(-0.300) +spettro_y_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)(-1.000) +spettro_x_sp_3(es)(-1.000) +spettro_y_sp_3(rs)( 0.300) +spettro_y_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)(-1.000) +spettro_x_sp_3(es)( 1.000) +spettro_y_sp_3(rs)( 0.300) +spettro_y_sp_3(es)(-0.300) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-5 / 58 -

246 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)(-1.000) +spettro_y_sp_3(es)(-1.000) +spettro_x_sp_3(rs)(-0.300) +spettro_x_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)(-1.000) +spettro_y_sp_3(es)( 1.000) +spettro_x_sp_3(rs)(-0.300) +spettro_x_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)(-1.000) +spettro_y_sp_3(es)(-1.000) +spettro_x_sp_3(rs)( 0.300) +spettro_x_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)(-1.000) +spettro_y_sp_3(es)( 1.000) +spettro_x_sp_3(rs)( 0.300) +spettro_x_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)(-1.000) +spettro_x_slv(es)(-1.000) +spettro_y_slv(rs)(-0.300) +spettro_y_slv(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)(-1.000) +spettro_x_slv(es)( 1.000) +spettro_y_slv(rs)(-0.300) +spettro_y_slv(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)(-1.000) +spettro_x_slv(es)(-1.000) +spettro_y_slv(rs)( 0.300) +spettro_y_slv(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_slv(rs)(-1.000) +spettro_x_slv(es)( 1.000) +spettro_y_slv(rs)( 0.300) +spettro_y_slv(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)(-1.000) +spettro_y_slv(es)(-1.000) +spettro_x_slv(rs)(-0.300) +spettro_x_slv(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)(-1.000) +spettro_y_slv(es)( 1.000) +spettro_x_slv(rs)(-0.300) +spettro_x_slv(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)(-1.000) +spettro_y_slv(es)(-1.000) +spettro_x_slv(rs)( 0.300) +spettro_x_slv(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_slv(rs)(-1.000) +spettro_y_slv(es)( 1.000) +spettro_x_slv(rs)( 0.300) +spettro_x_slv(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)(-1.000) +spettro_x_sld_eta2/3(es)(-1.000) +spettro_y_sld_eta2/3(rs)(-0.300) +spettro_y_sld_eta2/3(es )( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)(-1.000) +spettro_x_sld_eta2/3(es)( 1.000) +spettro_y_sld_eta2/3(rs)(-0.300) +spettro_y_sld_eta2/3(es )(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)(-1.000) +spettro_x_sld_eta2/3(es)(-1.000) +spettro_y_sld_eta2/3(rs)( 0.300) +spettro_y_sld_eta2/3(es )(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_sld_eta2/3(rs)(-1.000) +spettro_x_sld_eta2/3(es)( 1.000) +spettro_y_sld_eta2/3(rs)( 0.300) +spettro_y_sld_eta2/3(es )( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)(-1.000) +spettro_y_sld_eta2/3(es)(-1.000) +spettro_x_sld_eta2/3(rs)(-0.300) +spettro_x_sld_eta2/3(es )( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)(-1.000) +spettro_y_sld_eta2/3(es)( 1.000) +spettro_x_sld_eta2/3(rs)(-0.300) +spettro_x_sld_eta2/3(es )(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)(-1.000) +spettro_y_sld_eta2/3(es)(-1.000) +spettro_x_sld_eta2/3(rs)( 0.300) +spettro_x_sld_eta2/3(es )(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_sld_eta2/3(rs)(-1.000) +spettro_y_sld_eta2/3(es)( 1.000) +spettro_x_sld_eta2/3(rs)( 0.300) +spettro_x_sld_eta2/3(es )( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)(-1.000) +spettro_x_sp_1(es)(-1.000) +spettro_y_sp_1(rs)(-0.300) +spettro_y_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)(-1.000) +spettro_x_sp_1(es)( 1.000) +spettro_y_sp_1(rs)(-0.300) +spettro_y_sp_1(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)(-1.000) +spettro_x_sp_1(es)(-1.000) +spettro_y_sp_1(rs)( 0.300) +spettro_y_sp_1(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_1(rs)(-1.000) +spettro_x_sp_1(es)( 1.000) +spettro_y_sp_1(rs)( 0.300) +spettro_y_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)(-1.000) +spettro_y_sp_1(es)(-1.000) +spettro_x_sp_1(rs)(-0.300) +spettro_x_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)(-1.000) +spettro_y_sp_1(es)( 1.000) +spettro_x_sp_1(rs)(-0.300) +spettro_x_sp_1(es)(-0.300) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-6 / 58 -

247 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)(-1.000) +spettro_y_sp_1(es)(-1.000) +spettro_x_sp_1(rs)( 0.300) +spettro_x_sp_1(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_1(rs)(-1.000) +spettro_y_sp_1(es)( 1.000) +spettro_x_sp_1(rs)( 0.300) +spettro_x_sp_1(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)(-1.000) +spettro_x_sp_2(es)(-1.000) +spettro_y_sp_2(rs)(-0.300) +spettro_y_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)(-1.000) +spettro_x_sp_2(es)( 1.000) +spettro_y_sp_2(rs)(-0.300) +spettro_y_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)(-1.000) +spettro_x_sp_2(es)(-1.000) +spettro_y_sp_2(rs)( 0.300) +spettro_y_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_2(rs)(-1.000) +spettro_x_sp_2(es)( 1.000) +spettro_y_sp_2(rs)( 0.300) +spettro_y_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)(-1.000) +spettro_y_sp_2(es)(-1.000) +spettro_x_sp_2(rs)(-0.300) +spettro_x_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)(-1.000) +spettro_y_sp_2(es)( 1.000) +spettro_x_sp_2(rs)(-0.300) +spettro_x_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)(-1.000) +spettro_y_sp_2(es)(-1.000) +spettro_x_sp_2(rs)( 0.300) +spettro_x_sp_2(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_2(rs)(-1.000) +spettro_y_sp_2(es)( 1.000) +spettro_x_sp_2(rs)( 0.300) +spettro_x_sp_2(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)(-1.000) +spettro_x_sp_3(es)(-1.000) +spettro_y_sp_3(rs)(-0.300) +spettro_y_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)(-1.000) +spettro_x_sp_3(es)( 1.000) +spettro_y_sp_3(rs)(-0.300) +spettro_y_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)(-1.000) +spettro_x_sp_3(es)(-1.000) +spettro_y_sp_3(rs)( 0.300) +spettro_y_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_x_sp_3(rs)(-1.000) +spettro_x_sp_3(es)( 1.000) +spettro_y_sp_3(rs)( 0.300) +spettro_y_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)(-1.000) +spettro_y_sp_3(es)(-1.000) +spettro_x_sp_3(rs)(-0.300) +spettro_x_sp_3(es)( 0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)(-1.000) +spettro_y_sp_3(es)( 1.000) +spettro_x_sp_3(rs)(-0.300) +spettro_x_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)(-1.000) +spettro_y_sp_3(es)(-1.000) +spettro_x_sp_3(rs)( 0.300) +spettro_x_sp_3(es)(-0.300) G1( 1.000) + G2( 1.000) +spettro_y_sp_3(rs)(-1.000) +spettro_y_sp_3(es)( 1.000) +spettro_x_sp_3(rs)( 0.300) +spettro_x_sp_3(es)( 0.300) G1( 1.300) + G2( 1.500) + Qk,neve( 1.500) + Vento X(-0.900) + Vento Y(-0.450) + Vento Z( 0.450) G1( 1.300) + G2( 1.500) + Qk,neve( 0.750) + Qk,copertura( 1.500) + Vento X(-0.900) + Vento Y(-0.450) + Vento Z( 0.450) G1( 1.000) + G2( 1.000) + Qk,neve( 1.000) G1( 1.000) + G2( 1.000) + Qk,neve( 0.500) + Qk,copertura( 1.000) G1( 1.000) + G2( 1.000) + Qk,neve( 0.200) G1( 1.000) + G2( 1.000) G1( 1.300) + G2( 1.500) + Qk,neve( 1.500) + Vento X(-0.450) + Vento Y(-0.900) + Vento Z( 0.450) G1( 1.300) + G2( 1.500) + Qk,neve( 0.750) + Qk,copertura( 1.500) + Vento X(-0.450) + Vento Y(-0.900) + Vento Z( 0.450) G1( 1.300) + G2( 1.500) + Qk,neve( 0.750) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-7 / 58 -

248 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== + Vento X(-1.500) + Vento Y(-0.750) + Vento Z( 0.750) G1( 1.300) + G2( 1.500) + Qk,neve( 0.750) + Vento X(-0.750) + Vento Y(-1.500) + Vento Z( 0.750) G1( 1.300) + G2( 1.500) + Qk,neve( 1.500) G1( 1.000) + G2( 1.000) + Qk,neve( 1.000) + Vento X(-0.600) + Vento Y(-0.300) + Vento Z( 0.300) G1( 1.000) + G2( 1.000) + Qk,neve( 1.000) + Vento X(-0.600) + Vento Y(-0.300) + Vento Z( 0.300) G1( 1.000) + G2( 1.000) + Qk,neve( 0.500) + Vento X(-1.000) + Vento Y(-0.500) + Vento Z( 0.500) G1( 1.000) + G2( 1.000) + Qk,neve( 0.500) + Vento X(-0.500) + Vento Y(-1.000) + Vento Z( 0.500) Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-8 / 58 -

249 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 341, ELEMENT TYPE = Beam *. LOADCOMB NO = 171, MATERIAL NO = 1, SECTION NO = 1 *. UNIT SYSTEM : kn, m *. SECTION PROPERTIES : Designation = HEA140 Shape = I - Section. (Rolled) Depth = 0.133, Top F Width = 0.140, Bot.F Width = Web Thick = 0.005, Top F Thick = 0.009, Bot.F Thick = Area = e-003, Avy = e-003, Avz = e-003 Ybar = e-002, Zbar = e-002, Qyb = e-002, Qzb = e-003 Wely = e-004, Welz = e-005, Wply = e-004, Wplz = e-005 Iyy = e-005, Izz = e-006, Iyz = e+000 iy = e-002, iz = e-002 J = e-008, Cwp = e-008 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+000, Lz = e+000, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+005, Es = e+008, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (1/2) POINT : Axial Force Fxx = e+000 Shear Forces Fyy = e+000, Fzz = e+000 Bending Moments My = e+001, Mz = e+000 End Moments Myi = e+000, Myj = e+000 (for Lb) Myi = e+000, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY LEFT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-9 / 58 -

250 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY RIGHT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY LEFT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY RIGHT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY WEB OF SECTION (HTR). ( ). Determine classification of bending Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = KPa. -. sigma2 = KPa. -. HTR < 72*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-10 / 58 -

251 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial tension member (l/i). [ Eurocode3: ] -. l/i = < > O.K. ( ). Calculate parameters for combined resistance. -. Lambda1 = Pi * SQRT(Es/fy) = Lambda_bz = (KLz/iz) / Lambda1 = ( ). Calculate axial tensile resistance (Nt_Rd). [ Eurocode3: ] -. Nt_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nt_Rd). N_Ed = = < > O.K. Nt_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. eta = 1.2 (Fy < 460 MPa.) -. r = m. -. Avy = Area - hw*tw = m^2. -. Avz1 = eta*hw*tw = m^2. -. Avz2 = Area - 2*B*tf + (tw + 2*r)*tf = m^2. -. Avz = MAX[ Avz1, Avz2 ] = m^2. ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-11 / 58 -

252 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 171, POS = I ) -. Applied shear force : V_Edz = kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = m^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = e-005 m^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-m. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-m. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-12 / 58 -

253 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = a = MIN[ (Area-2b*tf)/Area, 0.5 ] = Alpha = Beta = MAX[ 5*n, 1.0 ] = N_Ed < 0.25*Npl_Rd = kn. -. N_Ed < 0.5*hw*tw*fy/Gamma_M0 = kn. Therefore, No allowance for the effect of axial force. -. Mny_Rd = Mply_Rd = kn-m. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. N_Ed < hw*tw*fy/gamma_m0 = kn. Therefore, No allowance for the effect of axial force. -. Mnz_Rd = Mplz_Rd = kn-m. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. -. Rmax = MAX[ Rmax1, Rmax2 ] = < > O.K. [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Position = 2.060m From i-end(node 358). -. Def = * DAF = m (Golbal Z) -. Def_Lim = 0.021m Def > Def_Lim ---> Not Acceptable!!! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-13 / 58 -

254 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 339, ELEMENT TYPE = Beam *. LOADCOMB NO = 171, MATERIAL NO = 1, SECTION NO = 2 *. UNIT SYSTEM : kn, m *. SECTION PROPERTIES : Designation = HEB200 Shape = I - Section. (Rolled) Depth = 0.200, Top F Width = 0.200, Bot.F Width = Web Thick = 0.009, Top F Thick = 0.015, Bot.F Thick = Area = e-003, Avy = e-003, Avz = e-003 Ybar = e-001, Zbar = e-001, Qyb = e-002, Qzb = e-003 Wely = e-004, Welz = e-004, Wply = e-004, Wplz = e-004 Iyy = e-005, Izz = e-005, Iyz = e+000 iy = e-002, iz = e-002 J = e-007, Cwp = e-007 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+000, Lz = e-001, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+005, Es = e+008, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (1/2) POINT : Axial Force Fxx = e+000 Shear Forces Fyy = e+000, Fzz = e+001 Bending Moments My = e+002, Mz = e+000 End Moments Myi = e+002, Myj = e+002 (for Lb) Myi = e-002, Myj = e+002 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY LEFT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-14 / 58 -

255 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY RIGHT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY LEFT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY RIGHT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY WEB OF SECTION (HTR). ( ). Determine classification of bending Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = KPa. -. sigma2 = KPa. -. HTR < 72*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-15 / 58 -

256 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial tension member (l/i). [ Eurocode3: ] -. l/i = 75.5 < > O.K. ( ). Calculate parameters for combined resistance. -. Lambda1 = Pi * SQRT(Es/fy) = Lambda_bz = (KLz/iz) / Lambda1 = ( ). Calculate axial tensile resistance (Nt_Rd). [ Eurocode3: ] -. Nt_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nt_Rd). N_Ed = = < > O.K. Nt_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. eta = 1.2 (Fy < 460 MPa.) -. r = m. -. Avy = Area - hw*tw = m^2. -. Avz1 = eta*hw*tw = m^2. -. Avz2 = Area - 2*B*tf + (tw + 2*r)*tf = m^2. -. Avz = MAX[ Avz1, Avz2 ] = m^2. ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-16 / 58 -

257 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 171, POS = J ) -. Applied shear force : V_Edz = kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = m^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = > > Not Acceptable! Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = m^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz > 0.5 (equal flanges) -. Rho = { 2*(V_Edz/Vpl_Rdz) - 1 }^2 =1.833e My.V_Rd1= [ Wply - {Rho*Aw^2/(4*tw)} ]*fy / Gamma_M0 = kn-m. -. My_Rd = MIN [ My.V_Rdy1, Mc_Rdy ] = kn-m. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-m. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-17 / 58 -

258 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = > > Not Acceptable! ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = a = MIN[ (Area-2b*tf)/Area, 0.5 ] = Alpha = Beta = MAX[ 5*n, 1.0 ] = N_Ed < 0.25*Npl_Rd = kn. -. N_Ed < 0.5*hw*tw*fy/Gamma_M0 = kn. Therefore, No allowance for the effect of axial force. -. Mny_Rd = Mply_Rd = kn-m. -. Rmaxy = M_Edy / Mny_Rd = > > Not Acceptable! -. N_Ed < hw*tw*fy/gamma_m0 = kn. Therefore, No allowance for the effect of axial force. -. Mnz_Rd = Mplz_Rd = kn-m. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = > > Not Acceptable! -. Rmax = MAX[ Rmax1, Rmax2 ] = > > Not Acceptable! [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Position = 2.926m From i-end(node 356). -. Def = * DAF = m (Golbal Z) -. Def_Lim = 0.032m Def > Def_Lim ---> Not Acceptable!!! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-18 / 58 -

259 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 284, ELEMENT TYPE = Beam *. LOADCOMB NO = 171, MATERIAL NO = 1, SECTION NO = 3 *. UNIT SYSTEM : kn, m *. SECTION PROPERTIES : Designation = HEB200 - pil, HEB200 Shape = I - Section. (Rolled) Depth = 0.200, Top F Width = 0.200, Bot.F Width = Web Thick = 0.009, Top F Thick = 0.015, Bot.F Thick = Area = e-003, Avy = e-003, Avz = e-003 Ybar = e-001, Zbar = e-001, Qyb = e-002, Qzb = e-003 Wely = e-004, Welz = e-004, Wply = e-004, Wplz = e-004 Iyy = e-005, Izz = e-005, Iyz = e+000 iy = e-002, iz = e-002 J = e-007, Cwp = e-007 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+000, Lz = e+000, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+005, Es = e+008, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (I) POINT : Axial Force Fxx = e+002 Shear Forces Fyy = e+000, Fzz = e+000 Bending Moments My = e+000, Mz = e+000 End Moments Myi = e+000, Myj = e+000 (for Lb) Myi = e+000, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY LEFT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-19 / 58 -

260 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY RIGHT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY LEFT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY RIGHT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY WEB OF SECTION (HTR). ( ). Determine classification of compression Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = KPa. -. sigma2 = KPa. -. HTR < 33*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-20 / 58 -

261 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial compression member (Kl/i). [ Eurocode3: ] -. Kl/i = 77.3 < > O.K. ( ). Calculate axial compressive resistance (Nc_Rd). [ Eurocode3:05 6.1, ] -. Nc_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nc_Rd). N_Ed = = < > O.K. Nc_Rd ( ). Calculate buckling resistance of compression member (Nb_Rdy, Nb_Rdz). [ Eurocode3: , ] -. Beta_A = Aeff / Area = Lambda1 = Pi * SQRT(Es/fy) = Lambda_by = {(KLy/iy)/Lambda1} * SQRT(Beta_A) = Ncry = Pi^2*Es*Ryy / KLy^2 = kn. -. Lambda_by < 0.2 or N_Ed/Ncry < > No need to check. -. Lambda_bz = {(KLz/iz)/Lambda1} * SQRT(Beta_A) = Ncrz = Pi^2*Es*Rzz / KLz^2 = kn. -. Lambda_bz > 0.2 and N_Ed/Ncrz > > Need to check. -. Alphaz = Phiz = 0.5 * [ 1 + Alphaz*(Lambda_bz-0.2) + Lambda_bz^2 ] = Xiz = MIN [ 1 / [Phiz + SQRT(Phiz^2 - Lambda_bz^2)], 1.0 ] = Nb_Rdz = Xiz*Beta_A*Area*fy / Gamma_M1 = kn. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-21 / 58 -

262 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check ratio of buckling resistance (N_Ed/Nb_Rd). -. Nb_Rd = MIN[ Nb_Rdy, Nb_Rdz ] = kn. N_Ed = = < > O.K. Nb_Rd [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = m^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = m^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-m. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-m. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-22 / 58 -

263 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = a = MIN[ (Area-2b*tf)/Area, 0.5 ] = Alpha = Beta = MAX[ 5*n, 1.0 ] = N_Ed < 0.25*Npl_Rd = kn. -. N_Ed > 0.5*hw*tw*fy/Gamma_M0 = kn. Therefore, Allowance for the effect of axial force. -. Mny_Rd = MIN[ Mply_Rd*(1-n)/(1-0.5*a), Mply_Rd ] = kn-m. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. N_Ed < hw*tw*fy/gamma_m0 = kn. Therefore, No allowance for the effect of axial force. -. Mnz_Rd = Mplz_Rd = kn-m. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. ( ). Check interaction ratio of bending and axial compression member. [ Eurocode3: , (6.61, 6.62), Annex A ] -. N_Ed = kn. -. M_Edy = 0.00 kn-m. -. M_Edz = 0.00 kn-m. -. kyy = kyz = kzy = kzz = Xiy = Xiz = XiLT = N_Rk = A*fy = kn. -. My_Rk = Wply*fy = kn-m. -. Mz_Rk = Wplz*fy = kn-m. -. N_Ed*eNy = 0.0 (Not Slender) -. N_Ed*eNZ = 0.0 (Not Slender) N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT1 = kyy * kyz * Xiy*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT2 = kzy * kzz * Xiz*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. -. Rmax = MAX[ MAX(Rmax1, Rmax2), MAX(Rmax_LT1, Rmax_LT2) ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-23 / 58 -

264 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Def = 3.200e-004 * DAF =3.200e-004m (Golbal Y) -. Def_Lim = 0.013m Def < Def_Lim ---> O.K! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-24 / 58 -

265 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 424, ELEMENT TYPE = Beam *. LOADCOMB NO = 128, MATERIAL NO = 1, SECTION NO = 5 *. UNIT SYSTEM : kn, m *. SECTION PROPERTIES : Designation = HEB160 Shape = I - Section. (Rolled) Depth = 0.160, Top F Width = 0.160, Bot.F Width = Web Thick = 0.008, Top F Thick = 0.013, Bot.F Thick = Area = e-003, Avy = e-003, Avz = e-003 Ybar = e-002, Zbar = e-002, Qyb = e-002, Qzb = e-003 Wely = e-004, Welz = e-004, Wply = e-004, Wplz = e-004 Iyy = e-005, Izz = e-006, Iyz = e+000 iy = e-002, iz = e-002 J = e-007, Cwp = e-008 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+000, Lz = e+000, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+005, Es = e+008, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (I) POINT : Axial Force Fxx = e+000 Shear Forces Fyy = e+000, Fzz = e+000 Bending Moments My = e+000, Mz = e+000 End Moments Myi = e+000, Myj = e-001 (for Lb) Myi = e+000, Myj = e-001 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY LEFT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY RIGHT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-25 / 58 -

266 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY LEFT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY RIGHT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY WEB OF SECTION (HTR). ( ). Determine classification of bending Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = KPa. -. sigma2 = KPa. -. HTR < 72*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-26 / 58 -

267 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial tension member (l/i). [ Eurocode3: ] -. l/i = 56.8 < > O.K. ( ). Calculate parameters for combined resistance. -. Lambda1 = Pi * SQRT(Es/fy) = Lambda_bz = (KLz/iz) / Lambda1 = ( ). Calculate axial tensile resistance (Nt_Rd). [ Eurocode3: ] -. Nt_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nt_Rd). N_Ed = = < > O.K. Nt_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. eta = 1.2 (Fy < 460 MPa.) -. r = m. -. Avy = Area - hw*tw = m^2. -. Avz1 = eta*hw*tw = m^2. -. Avz2 = Area - 2*B*tf + (tw + 2*r)*tf = m^2. -. Avz = MAX[ Avz1, Avz2 ] = m^2. ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-27 / 58 -

268 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 128, POS = I ) -. Applied shear force : V_Edz = 1.31 kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = m^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = m^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-m. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-m. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-28 / 58 -

269 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = a = MIN[ (Area-2b*tf)/Area, 0.5 ] = Alpha = Beta = MAX[ 5*n, 1.0 ] = N_Ed < 0.25*Npl_Rd = kn. -. N_Ed < 0.5*hw*tw*fy/Gamma_M0 = kn. Therefore, No allowance for the effect of axial force. -. Mny_Rd = Mply_Rd = kn-m. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. N_Ed < hw*tw*fy/gamma_m0 = kn. Therefore, No allowance for the effect of axial force. -. Mnz_Rd = Mplz_Rd = kn-m. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. -. Rmax = MAX[ Rmax1, Rmax2 ] = < > O.K. [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Position = 1.150m From i-end(node 403). -. Def = 1.672e-004 * DAF =1.672e-004m (Golbal Z) -. Def_Lim = 0.012m Def < Def_Lim ---> O.K! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-29 / 58 -

270 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 270, ELEMENT TYPE = Truss *. LOADCOMB NO = 59, MATERIAL NO = 4, SECTION NO = 6 *. UNIT SYSTEM : kn, m *. SECTION PROPERTIES : Designation = piatti_controventi Shape = SB - Section. (Built-up) Depth = 0.080, Width = Area = e-003, Avy = e-003, Avz = e-003 Ybar = e-003, Zbar = e-002, Qyb = e-004, Qzb = e-005 Wely = e-005, Welz = e-006, Wply = e-005, Wplz = e-006 Iyy = e-007, Izz = e-008, Iyz = e+000 iy = e-002, iz = e-003 J = e-008, Cwp = e+028 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+000, Lz = e+000, Lu = e+000 Ky = e-002, Kz = e-002 *. MATERIAL PROPERTIES : Fy = e+005, Es = e+008, MATERIAL NAME = S235 - c *. FORCES AND MOMENTS AT (I) POINT : Axial Force Fxx = e+001 Shear Forces Fyy = e+000, Fzz = e+000 Bending Moments My = e+000, Mz = e+000 End Moments Myi = e+000, Myj = e+000 (for Lb) Myi = e+000, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = KPa. -. sigma2 = KPa. -. HTR < 33*e ( Class 1 : Plastic ). Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-30 / 58 -

271 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = KPa. -. sigma2 = KPa. -. HTR < 33*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY LEFT WEB OF SECTION (HTR). ( ). Determine classification of compression Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = KPa. -. sigma2 = KPa. -. HTR < 33*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial compression member (Kl/i). [ Eurocode3: ] -. Kl/i = 12.1 < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-31 / 58 -

272 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate axial compressive resistance (Nc_Rd). [ Eurocode3:05 6.1, ] -. Nc_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nc_Rd). N_Ed = = < > O.K. Nc_Rd ( ). Calculate buckling resistance of compression member (Nb_Rdy, Nb_Rdz). [ Eurocode3: , ] -. Beta_A = Aeff / Area = Lambda1 = Pi * SQRT(Es/fy) = Lambda_by = {(KLy/iy)/Lambda1} * SQRT(Beta_A) = Ncry = Pi^2*Es*Ryy / KLy^2 = kn. -. Lambda_by < 0.2 or N_Ed/Ncry < > No need to check. -. Lambda_bz = {(KLz/iz)/Lambda1} * SQRT(Beta_A) = Ncrz = Pi^2*Es*Rzz / KLz^2 = kn. -. Lambda_bz < 0.2 or N_Ed/Ncrz < > No need to check. [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = e-005 m^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = 2.86 kn-m. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy 2.86 [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = e-006 m^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = 0.57 kn-m. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz 0.57 Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-32 / 58 -

273 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = 2.86 kn-m. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = 0.57 kn-m. ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = Alpha = *n^3 = Beta = *n^3 = N_Ed > 0.25*Npl_Rd = kn. Therefore, Allowance for the effect of axial force. -. ay = MIN[ (Area-2b*tf)/Area, 0.5 ] = Mny_Rd = MIN[ Mply_Rd*(1-n)/(1-0.5*ay), Mply_Rd ] = 1.63 kn-m. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. N_Ed > 0.25*Npl_Rd = kn. Therefore, Allowance for the effect of axial force. -. az = MIN[ (Area-2h*tw)/Area, 0.5 ] = Mnz_Rd = MIN[ Mplz_Rd*(1-n)/(1-0.5*az), Mplz_Rd ] = 0.33 kn-m. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-33 / 58 -

274 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check interaction ratio of bending and axial compression member. [ Eurocode3: , (6.61, 6.62), Annex A ] -. N_Ed = kn. -. M_Edy = 0.00 kn-m. -. M_Edz = 0.00 kn-m. -. kyy = kyz = kzy = kzz = Xiy = Xiz = XiLT = N_Rk = A*fy = kn. -. My_Rk = Wply*fy = 3.01 kn-m. -. Mz_Rk = Wplz*fy = 0.60 kn-m. -. N_Ed*eNy = 0.0 (Not Slender) -. N_Ed*eNZ = 0.0 (Not Slender) N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT1 = kyy * kyz * Xiy*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT2 = kzy * kzz * Xiz*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. -. Rmax = MAX[ MAX(Rmax1, Rmax2), MAX(Rmax_LT1, Rmax_LT2) ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-34 / 58 -

275 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 382, ELEMENT TYPE = Beam *. LOADCOMB NO = 171, MATERIAL NO = 1, SECTION NO = 7 *. UNIT SYSTEM : kn, m *. SECTION PROPERTIES : Designation = UPN140 Shape = C - Section. (Rolled) Depth = 0.140, Top F Width = 0.060, Bot.F Width = Web Thick = 0.007, Top F Thick = 0.010, Bot.F Thick = Area = e-003, Avy = e-003, Avz = e-003 Ybar = e-002, Zbar = e-002, Qyb = e-003, Qzb = e-004 Wely = e-005, Welz = e-005, Wply = e-004, Wplz = e-005 Iyy = e-006, Izz = e-007, Iyz = e+000 iy = e-002, iz = e-002 J = e-008, Cwp = e-009 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+000, Lz = e+000, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+005, Es = e+008, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (1/2) POINT : Axial Force Fxx = e+000 Shear Forces Fyy = e+000, Fzz = e+000 Bending Moments My = e+000, Mz = e+000 End Moments Myi = e+000, Myj = e+000 (for Lb) Myi = e+000, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY TOP FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-35 / 58 -

276 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY WEB OF SECTION (HTR). ( ). Determine classification of bending Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = KPa. -. sigma2 = KPa. -. HTR < 72*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial tension member (l/i). [ Eurocode3: ] -. l/i = < > O.K. ( ). Calculate parameters for combined resistance. -. Lambda1 = Pi * SQRT(Es/fy) = Lambda_bz = (KLz/iz) / Lambda1 = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-36 / 58 -

277 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate axial tensile resistance (Nt_Rd). [ Eurocode3: ] -. Nt_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nt_Rd). N_Ed = = < > O.K. Nt_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. r = m. -. Avy = Area - hw*tw = m^2. -. Avz = Area - 2*B*tf + (tw+r)*tf = m^2. ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 171, POS = J ) -. Applied shear force : V_Edz = 3.06 kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = m^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-37 / 58 -

278 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = e-005 m^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = 7.04 kn-m. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz 7.04 [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-m. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = 7.04 kn-m. ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = a = MIN[ (Area-2b*tf)/Area, 0.5 ] = Alpha = Beta = MAX[ 5*n, 1.0 ] = Mny_Rd = MIN[ Mply_Rd*(1-n)/(1-0.5*a), Mply_Rd ] = kn-m. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. In case of n < a -. Mnz_Rd = Mplz_Rd = 7.04 kn-m. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. -. Rmax = MAX[ Rmax1, Rmax2 ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-38 / 58 -

279 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Position = 1.310m From i-end(node 388). -. Def = e-004 * DAF =-8.194e-004m (Golbal Z) -. Def_Lim = 0.013m Def < Def_Lim ---> O.K! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-39 / 58 -

280 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 247, ELEMENT TYPE = Beam *. LOADCOMB NO = 167, MATERIAL NO = 3, SECTION NO = 8 *. UNIT SYSTEM : kn, m *. SECTION PROPERTIES : Designation = pilastri Shape = P - Section. (Built-up) Outer Dia. = 0.140, Wall Thick = Area = e-003, Avy = e-003, Avz = e-003 Ybar = e-002, Zbar = e-002, Qyb = e-003, Qzb = e-003 Wely = e-004, Welz = e-004, Wply = e-004, Wplz = e-004 Iyy = e-006, Izz = e-006, Iyz = e+000 iy = e-002, iz = e-002 J = e-005, Cwp = e+028 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+000, Lz = e-001, Lu = e-001 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+005, Es = e+008, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (J) POINT : Axial Force Fxx = e+002 Shear Forces Fyy = e+001, Fzz = e-002 Bending Moments My = e-002, Mz = e+000 End Moments Myi = e-002, Myj = e-002 (for Lb) Myi = e-002, Myj = e-002 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. ( ). Determine classification of tublar section(hollow pipe). [ Eurocode3:05 Table 5.2 (Sheet 3 of 3) ] -. e = SQRT( 235/fy ) = d/t = DTR = DTR < 50*e^2 ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-40 / 58 -

281 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== -. Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial compression member (Kl/i). [ Eurocode3: ] -. Kl/i = 74.4 < > O.K. ( ). Calculate axial compressive resistance (Nc_Rd). [ Eurocode3:05 6.1, ] -. Nc_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nc_Rd). N_Ed = = < > O.K. Nc_Rd ( ). Calculate buckling resistance of compression member (Nb_Rdy, Nb_Rdz). [ Eurocode3: , ] -. Beta_A = Aeff / Area = Lambda1 = Pi * SQRT(Es/fy) = Lambda_by = {(KLy/iy)/Lambda1} * SQRT(Beta_A) = Ncry = Pi^2*Es*Ryy / KLy^2 = kn. -. Lambda_by > 0.2 and N_Ed/Ncry > > Need to check. -. Alphay = Phiy = 0.5 * [ 1 + Alphay*(Lambda_by-0.2) + Lambda_by^2 ] = Xiy = MIN [ 1 / [Phiy + SQRT(Phiy^2 - Lambda_by^2)], 1.0 ] = Nb_Rdy = Xiy*Beta_A*Area*fy / Gamma_M1 = kn. -. Lambda_bz = {(KLz/iz)/Lambda1} * SQRT(Beta_A) = Ncrz = Pi^2*Es*Rzz / KLz^2 = kn. -. Lambda_bz < 0.2 or N_Ed/Ncrz < > No need to check. ( ). Check ratio of buckling resistance (N_Ed/Nb_Rd). -. Nb_Rd = MIN[ Nb_Rdy, Nb_Rdz ] = kn. N_Ed = = < > O.K. Nb_Rd [[[*]]] CHECK SHEAR RESISTANCE. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-41 / 58 -

282 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. Avy = 2*Area/Pi = m^2. -. Avz = 2*Area/Pi = m^2. ( ). Calculate plastic shear resistance in local-y direction (Vpl_Rdy). [ Eurocode3:05 6.1, ] -. Vpl_Rdy = [ Avy*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Check ratio of shear resistance (V_Edy/Vpl_Rdy). ( LCB = 127, POS = J ) -. Applied shear force : V_Edy = kn. V_Edy = = < > O.K. Vpl_Rdy ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 98, POS = 1/4 ) -. Applied shear force : V_Edz = 0.43 kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = m^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = =3.195e-004 < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-42 / 58 -

283 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = m^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-m. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-m. ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. Alpha = Beta = N_Ed < 0.25*Npl_Rd = kn. Therefore, No allowance for the effect of axial force. -. Mny_Rd = Mply_Rd = kn-m. -. Rmaxy = M_Edy / Mny_Rd =3.195e-004 < > O.K. -. Mnz_Rd = Mplz_Rd = kn-m. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. [ M_Edy ^(Alpha) M_Edz ^(Beta) ] -. Rmax2 = [ ] [ Mny_Rd Mnz_Rd ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-43 / 58 -

284 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check interaction ratio of bending and axial compression member. [ Eurocode3: , (6.61, 6.62), Annex A ] -. N_Ed = kn. -. M_Edy = 0.01 kn-m. -. M_Edz = kn-m. -. kyy = kyz = kzy = kzz = Xiy = Xiz = XiLT = N_Rk = A*fy = kn. -. My_Rk = Wply*fy = kn-m. -. Mz_Rk = Wplz*fy = kn-m. -. N_Ed*eNy = 0.0 (Not Slender) -. N_Ed*eNZ = 0.0 (Not Slender) N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT1 = kyy * kyz * Xiy*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT2 = kzy * kzz * Xiz*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. -. Rmax = MAX[ MAX(Rmax1, Rmax2), MAX(Rmax_LT1, Rmax_LT2) ] = < > O.K. [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Def = 6.616e-004 * DAF =6.616e-004m (Golbal Y) -. Def_Lim = 0.011m Def < Def_Lim ---> O.K! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-44 / 58 -

285 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 560, ELEMENT TYPE = Beam *. LOADCOMB NO = 171, MATERIAL NO = 3, SECTION NO = 9 *. UNIT SYSTEM : kn, m *. SECTION PROPERTIES : Designation = aste Shape = P - Section. (Built-up) Outer Dia. = 0.089, Wall Thick = Area = e-003, Avy = e-004, Avz = e-004 Ybar = e-002, Zbar = e-002, Qyb = e-003, Qzb = e-003 Wely = e-005, Welz = e-005, Wply = e-005, Wplz = e-005 Iyy = e-006, Izz = e-006, Iyz = e+000 iy = e-002, iz = e-002 J = e-006, Cwp = e+028 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+000, Lz = e+000, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+005, Es = e+008, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (I) POINT : Axial Force Fxx = e+001 Shear Forces Fyy = e-003, Fzz = e-001 Bending Moments My = e-001, Mz = e-003 End Moments Myi = e-001, Myj = e-001 (for Lb) Myi = e-001, Myj = e-001 (for Ly) Mzi = e-003, Mzj = e-004 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. ( ). Determine classification of tublar section(hollow pipe). [ Eurocode3:05 Table 5.2 (Sheet 3 of 3) ] -. e = SQRT( 235/fy ) = d/t = DTR = DTR < 50*e^2 ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-45 / 58 -

286 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== -. Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial compression member (Kl/i). [ Eurocode3: ] -. Kl/i = 48.9 < > O.K. ( ). Calculate axial compressive resistance (Nc_Rd). [ Eurocode3:05 6.1, ] -. Nc_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nc_Rd). N_Ed = = < > O.K. Nc_Rd ( ). Calculate buckling resistance of compression member (Nb_Rdy, Nb_Rdz). [ Eurocode3: , ] -. Beta_A = Aeff / Area = Lambda1 = Pi * SQRT(Es/fy) = Lambda_by = {(KLy/iy)/Lambda1} * SQRT(Beta_A) = Ncry = Pi^2*Es*Ryy / KLy^2 = kn. -. Lambda_by > 0.2 and N_Ed/Ncry > > Need to check. -. Alphay = Phiy = 0.5 * [ 1 + Alphay*(Lambda_by-0.2) + Lambda_by^2 ] = Xiy = MIN [ 1 / [Phiy + SQRT(Phiy^2 - Lambda_by^2)], 1.0 ] = Nb_Rdy = Xiy*Beta_A*Area*fy / Gamma_M1 = kn. -. Lambda_bz = {(KLz/iz)/Lambda1} * SQRT(Beta_A) = Ncrz = Pi^2*Es*Rzz / KLz^2 = kn. -. Lambda_bz > 0.2 and N_Ed/Ncrz > > Need to check. -. Alphaz = Phiz = 0.5 * [ 1 + Alphaz*(Lambda_bz-0.2) + Lambda_bz^2 ] = Xiz = MIN [ 1 / [Phiz + SQRT(Phiz^2 - Lambda_bz^2)], 1.0 ] = Nb_Rdz = Xiz*Beta_A*Area*fy / Gamma_M1 = kn. ( ). Check ratio of buckling resistance (N_Ed/Nb_Rd). -. Nb_Rd = MIN[ Nb_Rdy, Nb_Rdz ] = kn. N_Ed = = < > O.K. Nb_Rd Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-46 / 58 -

287 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. Avy = 2*Area/Pi = m^2. -. Avz = 2*Area/Pi = m^2. ( ). Calculate plastic shear resistance in local-y direction (Vpl_Rdy). [ Eurocode3:05 6.1, ] -. Vpl_Rdy = [ Avy*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Check ratio of shear resistance (V_Edy/Vpl_Rdy). ( LCB = 59, POS = J ) -. Applied shear force : V_Edy = 0.02 kn. V_Edy = =1.561e-004 < > O.K. Vpl_Rdy ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 171, POS = I ) -. Applied shear force : V_Edz = 0.98 kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = e-005 m^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = 7.89 kn-m. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy 7.89 Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-47 / 58 -

288 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = e-005 m^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = 7.89 kn-m. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz 2.99e = =3.794e-004 < > O.K. Mc_Rdz 7.89 [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = 7.89 kn-m. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = 7.89 kn-m. ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. Alpha = Beta = N_Ed < 0.25*Npl_Rd = kn. Therefore, No allowance for the effect of axial force. -. Mny_Rd = Mply_Rd = 7.89 kn-m. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. Mnz_Rd = Mplz_Rd = 7.89 kn-m. -. Rmaxz = M_Edz / Mnz_Rd =3.794e-004 < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-48 / 58 -

289 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [ M_Edy ^(Alpha) M_Edz ^(Beta) ] -. Rmax2 = [ ] [ Mny_Rd Mnz_Rd ] = < > O.K. ( ). Check interaction ratio of bending and axial compression member. [ Eurocode3: , (6.61, 6.62), Annex A ] -. N_Ed = kn. -. M_Edy = kn-m. -. M_Edz = 2.99e-003 kn-m. -. kyy = kyz = kzy = kzz = Xiy = Xiz = XiLT = N_Rk = A*fy = kn. -. My_Rk = Wply*fy = 8.28 kn-m. -. Mz_Rk = Wplz*fy = 8.28 kn-m. -. N_Ed*eNy = 0.0 (Not Slender) -. N_Ed*eNZ = 0.0 (Not Slender) N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT1 = kyy * kyz * Xiy*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. N_Ed M_Edy + N_Ed*eNy M_Edz + N_Ed*eNz -. Rmax_LT2 = kzy * kzz * Xiz*N_Rk/Gamma_M1 XiLT*My_Rk/Gamma_M1 Mz_Rk/Gamma_M1 = < > O.K. -. Rmax = MAX[ MAX(Rmax1, Rmax2), MAX(Rmax_LT1, Rmax_LT2) ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-49 / 58 -

290 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 569, ELEMENT TYPE = Beam *. LOADCOMB NO = 171, MATERIAL NO = 3, SECTION NO = 10 *. UNIT SYSTEM : kn, m *. SECTION PROPERTIES : Designation = tiranti Shape = P - Section. (Built-up) Outer Dia. = 0.076, Wall Thick = Area = e-003, Avy = e-004, Avz = e-004 Ybar = e-002, Zbar = e-002, Qyb = e-003, Qzb = e-003 Wely = e-005, Welz = e-005, Wply = e-005, Wplz = e-005 Iyy = e-007, Izz = e-007, Iyz = e+000 iy = e-002, iz = e-002 J = e-006, Cwp = e+028 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+000, Lz = e+000, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+005, Es = e+008, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (1/2) POINT : Axial Force Fxx = e+001 Shear Forces Fyy = e+000, Fzz = e+000 Bending Moments My = e-002, Mz = e+000 End Moments Myi = e+000, Myj = e+000 (for Lb) Myi = e+000, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. ( ). Determine classification of tublar section(hollow pipe). [ Eurocode3:05 Table 5.2 (Sheet 3 of 3) ] -. e = SQRT( 235/fy ) = d/t = DTR = DTR < 50*e^2 ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-50 / 58 -

291 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== -. Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial tension member (l/i). [ Eurocode3: ] -. l/i = < > O.K. ( ). Calculate parameters for combined resistance. -. Lambda1 = Pi * SQRT(Es/fy) = Lambda_bz = (KLz/iz) / Lambda1 = ( ). Calculate axial tensile resistance (Nt_Rd). [ Eurocode3: ] -. Nt_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nt_Rd). N_Ed = = < > O.K. Nt_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. Avy = 2*Area/Pi = m^2. -. Avz = 2*Area/Pi = m^2. ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-51 / 58 -

292 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 171, POS = I ) -. Applied shear force : V_Edz = 0.13 kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = e-005 m^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = 5.67 kn-m. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy 5.67 [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = e-005 m^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = 5.67 kn-m. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz 5.67 [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = 5.67 kn-m. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = 5.67 kn-m. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-52 / 58 -

293 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. Alpha = Beta = N_Ed > 0.25*Npl_Rd = kn. Therefore, Allowance for the effect of axial force. -. n = N_Ed / Npl_Rd = Mny_Rd = MIN[ 1.04 * Mply_Rd*(1-n^1.7), Mply_Rd ] = 5.27 kn-m. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. Mnz_Rd = MIN[ 1.04 * Mplz_Rd*(1-n^1.7), Mplz_Rd ] = 5.27 kn-m. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. -. Rmax = MAX[ Rmax1, Rmax2 ] = < > O.K. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-53 / 58 -

294 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== *. PROJECT : *. MEMBER NO = 425, ELEMENT TYPE = Beam *. LOADCOMB NO = 167, MATERIAL NO = 1, SECTION NO = 14 *. UNIT SYSTEM : kn, m *. SECTION PROPERTIES : Designation = HEB220 Shape = I - Section. (Rolled) Depth = 0.220, Top F Width = 0.220, Bot.F Width = Web Thick = 0.009, Top F Thick = 0.016, Bot.F Thick = Area = e-003, Avy = e-003, Avz = e-003 Ybar = e-001, Zbar = e-001, Qyb = e-002, Qzb = e-003 Wely = e-004, Welz = e-004, Wply = e-004, Wplz = e-004 Iyy = e-005, Izz = e-005, Iyz = e+000 iy = e-002, iz = e-002 J = e-007, Cwp = e-007 *. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = e+000, Lz = e+000, Lu = e+000 Ky = e+000, Kz = e+000 *. MATERIAL PROPERTIES : Fy = e+005, Es = e+008, MATERIAL NAME = S235 *. FORCES AND MOMENTS AT (I) POINT : Axial Force Fxx = e+000 Shear Forces Fyy = e+000, Fzz = e+000 Bending Moments My = e+000, Mz = e+000 End Moments Myi = e+000, Myj = e+000 (for Lb) Myi = e+000, Myj = e+000 (for Ly) Mzi = e+000, Mzj = e+000 (for Lz) *. Sign conventions for stress and axial force. - Stress : Compression positive. - Axial force: Tension positive. [[[*]]] CLASSIFY LEFT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. [[[*]]] CLASSIFY RIGHT-TOP FLANGE OF SECTION (BTR). ( ). Determine classification of tension outstand flanges. -. Not Checking the Section Classification. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-54 / 58 -

295 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== [[[*]]] CLASSIFY LEFT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY RIGHT-BOTTOM FLANGE OF SECTION (BTR). ( ). Determine classification of compression outstand flanges. [ Eurocode3:05 Table 5.2 (Sheet 2 of 3), EN ] -. e = SQRT( 235/fy ) = b/t = BTR = sigma1 = KPa. -. sigma2 = KPa. -. BTR < 9*e ( Class 1 : Plastic ). [[[*]]] CLASSIFY WEB OF SECTION (HTR). ( ). Determine classification of bending Internal Parts. [ Eurocode3:05 Table 5.2 (Sheet 1 of 3), EN ] -. e = SQRT( 235/fy ) = d/t = HTR = sigma1 = KPa. -. sigma2 = KPa. -. HTR < 72*e ( Class 1 : Plastic ). [[[*]]] APPLIED FACTORS. ( ). Calculate equivalent uniform moment factors (Cmy,Cmz,CmLT). [ Eurocode3:05 Annex A. Table A.1, A.2 ] -. Cmy,0 = Cmz,0 = Cmy (Default or User Defined Value) = Cmz (Default or User Defined Value) = CmLT (Default or User Defined Value) = Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-55 / 58 -

296 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Partial Factors (Gamma_Mi). [ Eurocode3: ] -. Gamma_M0 = Gamma_M1 = Gamma_M2 = 1.25 [[[*]]] CHECK AXIAL RESISTANCE. ( ). Check slenderness ratio of axial tension member (l/i). [ Eurocode3: ] -. l/i = 41.1 < > O.K. ( ). Calculate parameters for combined resistance. -. Lambda1 = Pi * SQRT(Es/fy) = Lambda_bz = (KLz/iz) / Lambda1 = ( ). Calculate axial tensile resistance (Nt_Rd). [ Eurocode3: ] -. Nt_Rd = fy * Area / Gamma_M0 = kn. ( ). Check ratio of axial resistance (N_Ed/Nt_Rd). N_Ed = = < > O.K. Nt_Rd [[[*]]] CHECK SHEAR RESISTANCE. ( ). Calculate shear area. [ Eurocode3: , EN : NOTE 2 ] -. eta = 1.2 (Fy < 460 MPa.) -. r = m. -. Avy = Area - hw*tw = m^2. -. Avz1 = eta*hw*tw = m^2. -. Avz2 = Area - 2*B*tf + (tw + 2*r)*tf = m^2. -. Avz = MAX[ Avz1, Avz2 ] = m^2. ( ). Calculate plastic shear resistance in local-z direction (Vpl_Rdz). [ Eurocode3:05 6.1, ] -. Vpl_Rdz = [ Avz*fy/SQRT(3) ] / Gamma_M0 = kn. ( ). Shear Buckling Check. [ Eurocode3: ] -. HTR < 72*e/Eta ---> No need to check! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-56 / 58 -

297 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check ratio of shear resistance (V_Edz/Vpl_Rdz). ( LCB = 127, POS = I ) -. Applied shear force : V_Edz = 2.22 kn. V_Edz = = < > O.K. Vpl_Rdz [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MAJOR AXIS. ( ). Calculate plastic resistance moment about major axis. [ Eurocode3:05 6.1, ] -. Wply = m^3. -. Mc_Rdy = Wply * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edy/Mc_Rdy). M_Edy = = < > O.K. Mc_Rdy [[[*]]] CHECK BENDING MOMENT RESISTANCE ABOUT MINOR AXIS. ( ). Calculate plastic resistance moment about minor axis. [ Eurocode3:05 6.1, ] -. Wplz = m^3. -. Mc_Rdz = Wplz * fy / Gamma_M0 = kn-m. ( ). Check ratio of moment resistance (M_Edz/Mc_Rdz). M_Edz = = < > O.K. Mc_Rdz [[[*]]] CHECK INTERACTION OF COMBINED RESISTANCE. ( ). Calculate Major reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edz / Vpl_Rdz < My_Rd = Mc_Rdy = kn-m. ( ). Calculate Minor reduced design resistance of bending and shear. [ Eurocode3: (6.30) ] -. In case of V_Edy / Vpl_Rdy < Mz_Rd = Mc_Rdz = kn-m. Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-57 / 58 -

298 midas Gen Steel Code Checking Result PROJECT TITLE : Company Author Alberto Dellavalle Client File Name Untitled.acs midas Gen - Steel Code Checking [ Eurocode3:05 ] Gen 2013 ==== ( ). Check general interaction ratio. [ Eurocode3: (6.2) ] - Class1 or Class2 N_Ed M_Edy M_Edz -. Rmax1 = N_Rd My_Rd Mz_Rd = < > O.K. ( ). Check interaction ratio of bending and axial force member. [ Eurocode3: (6.31 ~ 6.41) ] - Class1 or Class2 -. n = N_Ed / Npl_Rd = a = MIN[ (Area-2b*tf)/Area, 0.5 ] = Alpha = Beta = MAX[ 5*n, 1.0 ] = N_Ed < 0.25*Npl_Rd = kn. -. N_Ed < 0.5*hw*tw*fy/Gamma_M0 = kn. Therefore, No allowance for the effect of axial force. -. Mny_Rd = Mply_Rd = kn-m. -. Rmaxy = M_Edy / Mny_Rd = < > O.K. -. N_Ed < hw*tw*fy/gamma_m0 = kn. Therefore, No allowance for the effect of axial force. -. Mnz_Rd = Mplz_Rd = kn-m. -. Rmaxz = M_Edz / Mnz_Rd = < > O.K. -. Rmax2 = MAX[ Rmaxy, Rmaxz ] = < > O.K. -. Rmax = MAX[ Rmax1, Rmax2 ] = < > O.K. [[[*]]] CHECK DEFLECTION. ( ). Compute Maximum Deflection. -. LCB = DAF = (Deflection Amplification Factor). -. Position = 1.022m From i-end(node 404). -. Def = 6.835e-005 * DAF =6.835e-005m (Golbal Z) -. Def_Lim = 0.012m Def < Def_Lim ---> O.K! Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :32-58 / 58 -

299 midas Gen Steel Checking Result 1. Design Information Company Project Title Author Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, m Member No : 341 Material : S235 (No:1) (Fy = , Es = ) Section Name : HEA140 (No:1) (Rolled : HEA140). Member Length : File Name C:\...ento_OVEST_pensilina-RID.mgb z y 2. Member Forces Axial Force Fxx = (LCB: 171, POS:1/2) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 171, POS:I) Depth Web Thick Top F Width Top F Thick Bot.F Width Bot.F Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio L/r = < (Memb:341, LCB: 171)... O.K Axial Resistance N_Ed/Nt_Rd = 0.000/ = < O.K Bending Resistance M_Edy/M_Rdy = / = < O.K M_Edz/M_Rdz = / = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rmax = MAX[ RNRd, (Rcom+Rbend) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results L/ = < (Memb:341, LCB: 163, POS: 2.1m, Dir-Z)... N.G Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :27

300 midas Gen Steel Checking Result 1. Design Information Company Project Title Author Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, m Member No : 339 Material : S235 (No:1) (Fy = , Es = ) Section Name : HEB200 (No:2) (Rolled : HEB200). Member Length : File Name 0.2 C:\...ento_OVEST_pensilina-RID.mgb z y 2. Member Forces Axial Force Fxx = (LCB: 171, POS:1/2) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 171, POS:J) Depth Web Thick Top F Width Top F Thick Bot.F Width Bot.F Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio KL/r = < (Memb:319, LCB: 1)... O.K Axial Resistance N_Ed/Nt_Rd = 0.00/ = < O.K Bending Resistance M_Edy/M_Rdy = / = > N.G M_Edz/M_Rdz = / = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rmax = MAX[ RNRd, (Rcom+Rbend) ] = > N.G Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results L/ = < (Memb:339, LCB: 163, POS: 2.9m, Dir-Z)... N.G Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :27

301 midas Gen Steel Checking Result 1. Design Information Company Project Title Author Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, m Member No : 284 Material : S235 (No:1) (Fy = , Es = ) Section Name : HEB200 - pil (No:3) (Rolled : HEB200). Member Length : File Name 0.2 C:\...ento_OVEST_pensilina-RID.mgb z y 2. Member Forces Axial Force Fxx = (LCB: 171, POS:I) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 160, POS:I) Depth Web Thick Top F Width Top F Thick Bot.F Width Bot.F Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 0.85, Cmz = 0.85, CmLT = Checking Results Slenderness Ratio KL/r = 77.3 < (Memb:284, LCB: 171)... O.K Axial Resistance N_Ed/Nc_Rd = / = < O.K Bending Resistance M_Edy/M_Rdy = 0.000/ = < O.K M_Edz/M_Rdz = / = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rc_LT1 = N_Ed/(Xiy*A*fy/Gamma_M1) Rb_LT1 = (kyy*m_edy)/(xi_lt*wply*fy/gamma_m1) + (kyz*msdz)/(wplz*fy/gamma_m1) Rc_LT2 = N_Ed/(Xiz*A*fy/Gamma_M1) Rb_LT2 = (Kzy*M_Edy)/(Xi_LT*Wply*fy/Gamma_M1) + (Kzz*Msdz)/(Wplz*fy/Gamma_M1) Rmax = MAX[ RNRd, (Rcom+Rbend), MAX(Rc_LT1+Rb_LT1, Rc_LT2+Rb_LT2) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results Story Hight/ = > (Memb:272, LCB: 163, Dir-Y)... O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :27

302 midas Gen Steel Checking Result 1. Design Information Company Project Title Author Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, m Member No : 424 Material : S235 (No:1) (Fy = , Es = ) Section Name : HEB160 (No:5) (Rolled : HEB160). Member Length : File Name 0.16 C:\...ento_OVEST_pensilina-RID.mgb z y 2. Member Forces Axial Force Fxx = (LCB: 128, POS:I) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 128, POS:I) Depth Web Thick Top F Width Top F Thick Bot.F Width Bot.F Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio L/r = 56.8 < (Memb:424, LCB: 128)... O.K Axial Resistance N_Ed/Nt_Rd = 0.00/ = < O.K Bending Resistance M_Edy/M_Rdy = / = < O.K M_Edz/M_Rdz = / = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rmax = MAX[ RNRd, (Rcom+Rbend) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results L/ = > (Memb:424, LCB: 173, POS: 1.2m, Dir-Z)... O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :27

303 midas Gen Steel Checking Result 1. Design Information Company Project Title Author Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, m Member No : 270 Material : S235 - c (No:4) (Fy = , Es = ) Section Name : piatti_controventi (No:6) (Built-up Section). Member Length : File Name 0.08 C:\...ento_OVEST_pensilina-RID.mgb z y Member Forces Axial Force Fxx = (LCB: 59, POS:I) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 160, POS:I) Depth Width Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 0.01, Kz = 0.01 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio L/r = > (Memb:267, LCB: 6)... N.G Axial Resistance N_Ed/Nc_Rd = / = < O.K Bending Resistance M_Edy/M_Rdy = / = < O.K M_Edz/M_Rdz = / = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rc_LT1 = N_Ed/(Xiy*A*fy/Gamma_M1) Rb_LT1 = (kyy*m_edy)/(xi_lt*wply*fy/gamma_m1) + (kyz*msdz)/(wplz*fy/gamma_m1) Rc_LT2 = N_Ed/(Xiz*A*fy/Gamma_M1) Rb_LT2 = (Kzy*M_Edy)/(Xi_LT*Wply*fy/Gamma_M1) + (Kzz*Msdz)/(Wplz*fy/Gamma_M1) Rmax = MAX[ RNRd, (Rcom+Rbend), MAX(Rc_LT1+Rb_LT1, Rc_LT2+Rb_LT2) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :27

304 midas Gen Steel Checking Result 1. Design Information Company Project Title Author Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, m Member No : 382 Material : S235 (No:1) (Fy = , Es = ) Section Name : UPN140 (No:7) (Rolled : UPN140). Member Length : File Name 0.14 C:\...ento_OVEST_pensilina-RID.mgb z y 2. Member Forces Axial Force Fxx = (LCB: 171, POS:1/2) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 171, POS:J) Depth Web Thick Top F Width Top F Thick Bot.F Width Bot.F Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio L/r = < (Memb:606, LCB: 1)... O.K Axial Resistance N_Ed/Nt_Rd = 0.000/ = < O.K Bending Resistance M_Edy/M_Rdy = / = < O.K M_Edz/M_Rdz = / = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rmax = MAX[ RNRd, (Rcom+Rbend) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results L/ = > (Memb:604, LCB: 173, POS: 1.7m, Dir-Z)... O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :27

305 midas Gen Steel Checking Result 1. Design Information Company Project Title Author Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, m Member No : 247 Material : S235 (No:3) (Fy = , Es = ) Section Name : pilastri (No:8) (Built-up Section). Member Length : File Name C:\...ento_OVEST_pensilina-RID.mgb z y Member Forces Axial Force Fxx = (LCB: 167, POS:J) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 127, POS:J) Fzz = (LCB: 98, POS:I) Outer Dia Wall Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 0.85, Cmz = 0.85, CmLT = Checking Results Slenderness Ratio KL/r = 74.4 < (Memb:247, LCB: 167)... O.K Axial Resistance N_Ed/Nc_Rd = / = < O.K Bending Resistance M_Edy/M_Rdy = / = < O.K M_Edz/M_Rdz = / = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rmax1 = (M_Edy/Mny_Rd)^Alpha + (M_Edz/Mnz_Rd)^Beta Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rc_LT1 = N_Ed/(Xiy*A*fy/Gamma_M1) Rb_LT1 = (kyy*m_edy)/(xi_lt*wply*fy/gamma_m1) + (kyz*msdz)/(wplz*fy/gamma_m1) Rc_LT2 = N_Ed/(Xiz*A*fy/Gamma_M1) Rb_LT2 = (Kzy*M_Edy)/(Xi_LT*Wply*fy/Gamma_M1) + (Kzz*Msdz)/(Wplz*fy/Gamma_M1) Rmax = MAX[ RNRd, Rmax1, (Rcom+Rbend), MAX(Rc_LT1+Rb_LT1, Rc_LT2+Rb_LT2) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results Story Hight/ = > (Memb:551, LCB: 163, Dir-Y)... O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :27

306 midas Gen Steel Checking Result 1. Design Information Company Project Title Author Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, m Member No : 560 Material : S235 (No:3) (Fy = , Es = ) Section Name : aste (No:9) (Built-up Section). Member Length : File Name C:\...ento_OVEST_pensilina-RID.mgb z y Member Forces Axial Force Fxx = (LCB: 171, POS:I) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 59, POS:I) Fzz = (LCB: 171, POS:I) Outer Dia Wall Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio KL/r = 53.7 < (Memb:312, LCB: 2)... O.K Axial Resistance N_Ed/Nc_Rd = / = < O.K Bending Resistance M_Edy/M_Rdy = / = < O.K M_Edz/M_Rdz = / = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rmax1 = (M_Edy/Mny_Rd)^Alpha + (M_Edz/Mnz_Rd)^Beta Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rc_LT1 = N_Ed/(Xiy*A*fy/Gamma_M1) Rb_LT1 = (kyy*m_edy)/(xi_lt*wply*fy/gamma_m1) + (kyz*msdz)/(wplz*fy/gamma_m1) Rc_LT2 = N_Ed/(Xiz*A*fy/Gamma_M1) Rb_LT2 = (Kzy*M_Edy)/(Xi_LT*Wply*fy/Gamma_M1) + (Kzz*Msdz)/(Wplz*fy/Gamma_M1) Rmax = MAX[ RNRd, Rmax1, (Rcom+Rbend), MAX(Rc_LT1+Rb_LT1, Rc_LT2+Rb_LT2) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :27

307 midas Gen Steel Checking Result 1. Design Information Company Project Title Author Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, m Member No : 569 Material : S235 (No:3) (Fy = , Es = ) Section Name : tiranti (No:10) (Built-up Section). Member Length : File Name C:\...ento_OVEST_pensilina-RID.mgb z y Member Forces Axial Force Fxx = (LCB: 171, POS:1/2) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 161, POS:I) Outer Dia Wall Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio L/r = < (Memb:569, LCB: 171)... O.K Axial Resistance N_Ed/Nt_Rd = / = < O.K Bending Resistance M_Edy/M_Rdy = / = < O.K M_Edz/M_Rdz = / = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rmax = MAX[ RNRd, (Rcom+Rbend) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :27

308 midas Gen Steel Checking Result 1. Design Information Company Project Title Author Alberto Dellavalle Design Code : Eurocode3:05 Unit System : kn, m Member No : 425 Material : S235 (No:1) (Fy = , Es = ) Section Name : HEB220 (No:14) (Rolled : HEB220). Member Length : File Name 0.22 C:\...ento_OVEST_pensilina-RID.mgb z y 2. Member Forces Axial Force Fxx = (LCB: 167, POS:I) Bending Moments My = , Mz = End Moments Myi = , Myj = (for Lb) Myi = , Myj = (for Ly) Mzi = , Mzj = (for Lz) Shear Forces Fyy = (LCB: 160, POS:I) Fzz = (LCB: 127, POS:I) Depth Web Thick Top F Width Top F Thick Bot.F Width Bot.F Thick Area Asz Qyb Qzb Iyy Izz Ybar Zbar Wely Welz ry rz Design Parameters Unbraced Lengths Ly = , Lz = , Lb = Effective Length Factors Ky = 1.00, Kz = 1.00 Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = Checking Results Slenderness Ratio L/r = 41.1 < (Memb:425, LCB: 167)... O.K Axial Resistance N_Ed/Nt_Rd = 0.00/ = < O.K Bending Resistance M_Edy/M_Rdy = 4.141/ = < O.K M_Edz/M_Rdz = / = < O.K Combined Resistance RNRd = MAX[ M_Edy/Mny_Rd, M_Edz/Mnz_Rd ] Rcom = N_Ed/(A*fy/Gamma_M0), Rbend = M_Edy/My_Rd + M_Edz/Mz_Rd Rmax = MAX[ RNRd, (Rcom+Rbend) ] = < O.K Shear Resistance V_Edy/Vy_Rd = < O.K V_Edz/Vz_Rd = < O.K 5. Deflection Checking Results L/ = > (Memb:425, LCB: 173, POS: 1.0m, Dir-Z)... O.K Modeling, Integrated Design & Analysis Software Gen 2013 Print Date/Time : 08/09/ :27

309 Travi principali L orditura principale delle coperture, posta in direzione Y, trasferisce i carichi dagli elementi secondari ai pilastri verticali. Data la conformazione dell impalcato, l elemento maggiormente sollecitato è la trave centrale della zona impianti. I momenti massimi vengono registrati nella combinazione allo SLU con carico di neve come carico principale. Con riferimento all ampliamento Ovest si rileva il seguente diagramma del momento flettente. Il massimo momento positivo risulta essere pari a kn*m, mentre il massimo momento negativo risulta essere pari a kn*m Riportiamo di seguito la sezione trasversale del solaio dalla quale è possibile evincere che la trave in acciaio HEB200 sia collaborante con una soletta piena di c.a. di spessore pari a 10cm. La larghezza efficace b eff di una soletta in calcestruzzo può essere determinata come: dove: b 0 è la distanza tra gli assi dei connettori;

310 L e è la lunghezza efficace funzione dello schema statico (NTC ). Figura 6.3 Larghezza efficace e luci equivalenti Il caso in esame può essere ricondotto ad una trave continua su 4 appoggi, in telai controventati con luci delle campate che non differiscono per più del 60%. Il calcolo della larghezza efficace varierà nel caso si conduca una verifica a momento positivo o una verifica a momento negativo. La campata di luce maggiore ha una sviluppo di 6.45m, mentre la campata intermedia ha uno sviluppo di 4.29m, con un interasse delle travi di 4.05m. b eff. -> momento positivo b 0 = 0cm L e = 0.70*645 = 451.5cm b i = 405/2 = 202.5cm b e1 = b e2 = min (451.5/8=56.45cm; 202.5cm) = 56.45cm b eff.+ = 2*56.45 = 112.9cm b eff. -> momento negativo b 0 = 0cm L e = 0.25*( ) = 268.5cm b i = 405/2 = 202.5cm b e1 = b e2 = min (268.5/8=33.55cm; 202.5cm) = 33.55cm b eff.- = 2*33.55 = 67.1cm

311 Il momento resistente M pl,rd della sezione mista acciaio-cls viene determinato in concordanza con il punto delle NTC 2008 e con la relativa Circolare esplicativa (C ) ipotizzando la conservazione delle sezioni piane, considerando nullo il contributo del calcestruzzo teso ed un rapporto tra i moduli elastici dell acciaio e del cls pari a 15 per tenere conto della viscosità del cls. Figura 6.4 Schema del momento resistente per sollecitazione positiva Figura 6.5 Schema del momento resistente per sollecitazione negativa Per il progetto e la verifica delle sezioni miste si utilizzano i coefficienti parziali identificati al par del D.M. 14/01/2008: - calcestruzzo C25/30, γ C = 1,5 ; - acciaio da carpenteria S235, γ A = 1,05 ; - acciaio d armatura B450C, γ S = 1,15 ; - connettori classe 8.8, γ V = 1,25 ; La connessione acciaio-calcestruzzo viene garantita dall utilizzo di pioli metallici duttili (disposizioni e limitazioni al par del D.M. 14/01/2008) a completo ripristino di resistenza. Le verifiche saranno condotte con l ausilio del software Profili V.6 realizzato dal Prof. Gelfi dell Università degli Studi di Brescia. Si riportano di seguito le verifiche.

312 Per l intera lunghezza delle travi dovranno inoltre essere previsti dei connettori a taglio in grado di trasmettere la forza di scorrimento tra soletta e putrella in acciaio, trascurando l effetto di aderenza tra le due parti. Si ha connessione a taglio completa quando i connettori, nel loro insieme, sono così robusti che la capacità portante limite della struttura è determinata dalla massima resistenza flessionale. In questo caso (η=1) un aumento del numero di connettori non produce un incremento della capacità portante, mentre una loro riduzione ne genera la diminuzione. Quando non interessa sfruttare a fondo la collaborazione tra i due materiali per ottenere la resistenza richiesta, è possibile utilizzare un connessione a taglio parziale (η<1). [Il grado di connessione η è definito dalla Circolare C ] I pioli devono inoltre garantire un collegamento di tipo duttile per generare il momento

313 resistente plastico (M pl,rd ), con capacità deformativa superiore ai 6 mm. Per garantire i parametri di duttilità i pioli, su tutta la lunghezza della trave, devono avere un altezza di 76 mm, sopra la saldatura, e diametro pari a 19 mm. La resistenza a taglio di un piolo può essere assunta pari al minore tra i valori: Definendo h sc come l altezza del piolo dopo la saldatura (non minore di tre volte d): - per ; - per. Per le verifiche si utilizzano i seguenti coefficienti parziali dei materiali: - calcestruzzo C25/30, γ C = 1,5 ; - acciaio da carpenteria S235, γ A = 1,05 ; - acciaio d armatura B450C, γ S = 1,15 ; - connettori classe 8.8, γ V = 1,25. Si riporta di seguito la verifica. VERIFICA AGLI SLE La verifica di deformazione allo Stato Limite di Esercizio, per le travi composte, deve essere eseguita in fase di costruzione ed in fase di esercizio. Nel primo caso i carichi agenti derivano esclusivamente dal peso proprio (della struttura, della lamiera e del getto in calcestruzzo) e dai carichi accidentali di costruzione. Nel secondo caso si utilizza la combinazione caratteristica delle azioni G 1, G 2 e Q k. I carichi di solaio in fase provvisionale risultano essere pari ai soli carichi permanenti strutturali G1, 3.63 kn/m 2, ai quali aggiungere 0.50kN/m 2 per tenere in conto del transito delle maestranze e quindi complessivamente pari a 4.13 kn/m 2. I carichi di solaio nella combinazione caratteristica risultano pari a 9.38 kn/m 2. Si riporta di seguito la deformata della travata HEB200 dell ampliamento OVEST nella combinazione caratteristica, calcolata considerando solo la rigidezza della trave in

314 acciaio. Il valore massimo della freccia risulta pari a 4.85cm. Per cui la freccia in fase provvisionale può essere valutata pari 4.85cm*4.13/9.38 = 2.14cm ( L/300) < L/200: verifica soddisfatta. In fase di esercizio occorre considerare la rigidezza della sezione composta secondo le indicazioni delle NTC08, utilizzando il metodo 2 dell analisi elastica lineare descritto al par Nel caso di specie avremo che la rigidezza non fessurata può essere calcolata con riferimento al momento nella combinazione caratteristica, il cui diagramma viene di seguito riportato. Il valore del momento flettente in mezzeria risulta pari a kn*m. Per questo valore del momento flettente è possibile calcolare il rapporto tra il momento d inerzia della sezione composta e della sezione di acciaio, che risulta pari a Per quanto riguarda la rigidezza fessurata, dove il momento è negativo, si considera a favore di sicurezza una rigidezza della trave composta pari alla rigidezza della trave in acciaio.

315 In accordo con quanto riportato al par. par risulta possibile calcolare la freccia in esercizio considerando la rigidezza non fessurata nella parte centrale della trave e la rigidezza fessurata in corrispondenza degli appoggi per una larghezza pari al 15% della luce. Per eseguire questo calcolo è stato eseguito un modello con il software MIDAS GEN, dove la travata è stata suddivisa in conci ai quali è stato attribuito un modulo elastico pari al modulo elastico dell acciaio S235 in prossimità degli appoggi e un modulo elastico 2.75 volte superiore nella parte centrale. Nella figura che segue riportiamo la geometria del modello. Con S235 sono indicati i conci di travata con modulo elastico pari a 210 N/mm 2, con S235-cls i conci di travata con modulo elastico pari 210*2.75=577.5 N/mm 2. Riportiamo di seguito l andamento della deformata nella combinazione caratteristica.

316 Si ottiene una freccia pari a 2.46cm ( L/260) < L/200: verifica soddisfatta.

OGGETTO : STRUTTURE IN C.A. E C.A.P. PER CAPANNONE PREFABBRICATO AD USO RICOVERO ATTREZZI AGRICOLI RELAZIONE TECNICA

OGGETTO : STRUTTURE IN C.A. E C.A.P. PER CAPANNONE PREFABBRICATO AD USO RICOVERO ATTREZZI AGRICOLI RELAZIONE TECNICA STUDIO TECNICO ING. ALBERTO MICHIELIN via Buzzati 6/4, Montebelluna (TV) tel. 0423 / 302255 fax. 0423 / 303733 e-mail: alberto@studiomichielin.191.it DITTA : SOCIETA AGRICOLA MENOZZI EDGARDO, RAINERO e

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO COMUNE di INDUNO OLONA - PROVINCIA DI VARESE PROGETTO di AMPLIAMENTO del CIMITERO COMUNALE PROGETTO STRUTTURALE ESECUTIVO RELAZIONE DI CALCOLO Brescia, 20 Ottobre 2011 1 Il dimensionamento e le verifiche

Dettagli

OGGETTO COMPLESSO TURISTICO ALBERGHIERO E RESIDENZIALE IN LOCALITA' VIGNASSE

OGGETTO COMPLESSO TURISTICO ALBERGHIERO E RESIDENZIALE IN LOCALITA' VIGNASSE COMUNE DI LOANO (SV ricettiva (ai sensi dell' art. 7 - L.R. 3 novembre 2009, n.49 COMUNE DI LOANO (SV per intervento di demolizione, ricostruzione di edifici incongrui con cambio di destinazione d'uso

Dettagli

INDICE. ULSS 17- Ospedali Riuniti Padova Sud Madre Teresa di Calcutta

INDICE. ULSS 17- Ospedali Riuniti Padova Sud Madre Teresa di Calcutta INDICE 1 PREMESSA... 2 2 NORME E REGOLAMENTI... 3 3.1 CALCESTRUZZO... 4 3.1.1 CALCESTRUZZO PER PALI.... 4 3.1.2 CALCESTRUZZO PER STRUTTURE DI FONDAZIONE.... 5 3.1.3 CALCESTRUZZO PER STRUTTURE IN ELEVAZIONE

Dettagli

Mario Seccafien Ingegnere Studio Tecnico

Mario Seccafien Ingegnere Studio Tecnico Egr. sig. CERANTOLA ROBERTO Sede Oggetto: Chiarimenti in merito Azioni Sismiche, Carico neve e carico vento Si riporta quanto in relazione di calcolo per la costruzione di edificio plurifamiliare in ditta

Dettagli

PROGETTO ESECUTIVO. Relazione di calcolo opere in cemento armato

PROGETTO ESECUTIVO. Relazione di calcolo opere in cemento armato AMSA Spa Azienda Milanese Servizi Ambientali Sede legale e amministrativa Via Olgettina, 25 20132 Milano MI Tel. 02-27298.1 Fax. 02-26300911 E mail: amsa@amsa.it http://www.amsa.it REALIZZAZIONE DI PARCHEGGIO

Dettagli

INDICE 1. GENERALITA MATERIALI PREVISTI CALCESTRUZZO ACCIAIO PER ARMATURE ORDINARIE ACCIAIO PER TRAVI PRECOMPRESSE...

INDICE 1. GENERALITA MATERIALI PREVISTI CALCESTRUZZO ACCIAIO PER ARMATURE ORDINARIE ACCIAIO PER TRAVI PRECOMPRESSE... INDICE 1. GENERALITA...1 2. MATERIALI PREVISTI...2 2.1 CALCESTRUZZO...2 2.2 ACCIAIO PER ARMATURE ORDINARIE...3 2.3 ACCIAIO PER TRAVI PRECOMPRESSE...3 3. NORMATIVE DI RIFERIMENTO...4 4. DESCRIZIONE DELL

Dettagli

Comune di Casarsa della Delizia Valutazione della sicurezza dei complessi scolastici INDICE GENERALE

Comune di Casarsa della Delizia Valutazione della sicurezza dei complessi scolastici INDICE GENERALE INDICE GENERALE 1 Introduzione... 3 2 Descrizione del complesso scolastico... 3 3 Normativa di riferimento e riferimenti tecnici... 3 4 Procedure per la valutazione della sicurezza... 4 4.1. Analisi storico-critica...

Dettagli

RELAZIONE SULL ANALISI SISMICA

RELAZIONE SULL ANALISI SISMICA RELAZIONE SULL ANALISI SISMICA 1 - Premessa La nuova costruzione sarà realizzata su di un terreno che ricade in zona sismica 3 secondo l attuale vigente normativa. I dati utilizzati per la determinazione

Dettagli

RELAZIONE DI CALCOLO STRUTTURALE

RELAZIONE DI CALCOLO STRUTTURALE RELAZIONE DI CALCOLO STRUTTURALE A.1 PREMESSA Il presente elaborato costituisce la relazione di calcolo strutturale delle passerelle pedonali, comprensiva di una descrizione generale dell opera e dei criteri

Dettagli

1. PERICOLOSITA SISMICA.1 2. CRITERI GENERALI PER LA CLASSIFICAZIONE SISMICA DEL TERRITORIO NAZIONALE

1. PERICOLOSITA SISMICA.1 2. CRITERI GENERALI PER LA CLASSIFICAZIONE SISMICA DEL TERRITORIO NAZIONALE Sommario 1. PERICOLOSITA SISMICA...1 2. CRITERI GENERALI PER LA CLASSIFICAZIONE SISMICA DEL TERRITORIO NAZIONALE..3 3. TABELLE DEI PARAMETRI CHE DEFINISCONO L AZIONE SISMICA...6 4. VITA NOMINALE, CLASSE

Dettagli

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 16/12/2010 ore 15:00 aula ALFA.

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 16/12/2010 ore 15:00 aula ALFA. Cognome e Nome: Matricola: Università degli Studi di Cagliari Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 16/1/010 ore 15:00 aula ALFA. Quesito N 1 (8 punti) Verificare allo SLU

Dettagli

PROGETTO ESECUTIVO Edificio Porta Sud-Ovest

PROGETTO ESECUTIVO Edificio Porta Sud-Ovest COMUNE DI SALERNO SETTORE OPERE E LAVORI PUBBLICI PROGETTO ESECUTIVO Edificio Porta Sud-Ovest PROGETTO STRUTTURALE RELAZIONE ILLUSTRATIVA SUI MATERIALI E SULLE DOSATURE,, AI SENSI E PER GLI EFFETTI DELL

Dettagli

DEPOSITO SISMICO del Progetto Strutturale per l Ampiamento e Completamento di Area Attrezzata per Emergenze della Protezione Civile Rolo (RE) INDICE

DEPOSITO SISMICO del Progetto Strutturale per l Ampiamento e Completamento di Area Attrezzata per Emergenze della Protezione Civile Rolo (RE) INDICE Pag. 1 di 10 INDICE 3 RELAZIONE SUI MATERIALI... 2 3.1 Elenco dei materiali impiegati e loro modalità di posa in opera... 2 3.2 Valori di calcolo... 3 3.3 Note specifiche per la posa in opera e la certificazione

Dettagli

RELAZIONE ILLUSTRATIVA RIGUARDANTE LE STRUTTURE

RELAZIONE ILLUSTRATIVA RIGUARDANTE LE STRUTTURE RELAZIONE ILLUSTRATIVA RIGUARDANTE LE STRUTTURE Proprietà: Ubicazione: RONCONI & LIVERANI Srl Comune di Cotignola Via Madonna di Genova n 39/41 Prog. e DDL Strutturale: Progetto architettonico: Ing. Peroni

Dettagli

COMUNE DI S.MINIATO (PI) IMPIANTO DI SOLLEVAMENTO PER LA RIDUZIONE DEI FENOMENI DI ALLAGAMENTO E RISTAGNO PRESSO LA ZONA DI S.

COMUNE DI S.MINIATO (PI) IMPIANTO DI SOLLEVAMENTO PER LA RIDUZIONE DEI FENOMENI DI ALLAGAMENTO E RISTAGNO PRESSO LA ZONA DI S. COMUNE DI S.MINIATO (PI) IMPIANTO DI SOLLEVAMENTO PER LA RIDUZIONE DEI FENOMENI DI ALLAGAMENTO E RISTAGNO PRESSO LA ZONA DI S.DONATO RELAZIONE PRELIMINARE DI CALCOLO DELLE STRUTTURE - indice 1. Relazione

Dettagli

SICUREZZA E PRESTAZIONI ATTESE...

SICUREZZA E PRESTAZIONI ATTESE... INDICE GENERALE PREMESSA... 1 1 OGGETTO... 1 2 SICUREZZA E PRESTAZIONI ATTESE... 3 2.1 PRINCIPI FONDAMENTALI... 3 2.2 STATI LIMITE... 4 2.2.1 Stati Limite Ultimi (SLU)... 4 2.2.2 Stati Limite di Esercizio

Dettagli

COMUNE DI VALMADRERA PROVINCIA DI LECCO

COMUNE DI VALMADRERA PROVINCIA DI LECCO COMUNE DI VALMADRERA PROVINCIA DI LECCO PROGETTO PER IL RIFACIMENTO DELLA COPERTURA EDIFICIO DI PROPRIETA COMUNALE SITO IN VIA CASNEDI, 4 (ex Distretto ASL). RELAZIONE SUI MATERIALI DOC. 4.3 IL PROGETTISTA

Dettagli

All. INTERVENTO DI CONSOLIDAMENTO E MITIGAZIONE DEL RISCHIO IDROGEOLOGICO IN LOCALITA' VILLA POPOLO DI TORRICELLA SICURA - PRIMO LOTTO FUNZIONALE

All. INTERVENTO DI CONSOLIDAMENTO E MITIGAZIONE DEL RISCHIO IDROGEOLOGICO IN LOCALITA' VILLA POPOLO DI TORRICELLA SICURA - PRIMO LOTTO FUNZIONALE COMUNE DI TORRICELLA SICURA REGIONE ABRUZZO DIREZIONE LAVORI PUBBLICI AREE URBANE, SERVIZIO INDRICO INTEGRATO, MANUTENZIONE PROGRAMMATA DEL TERRITORIO - GESTIONE INTEGRATA DEI BACINI IDROGRAFICI, PROTEZIONE

Dettagli

Il muro della lunghezza complessiva di 15,30 mt avrà altezza variabile tra 1,40 e 1,80 mt e spessore costante di 35 cm.

Il muro della lunghezza complessiva di 15,30 mt avrà altezza variabile tra 1,40 e 1,80 mt e spessore costante di 35 cm. PREMESSA Nell ambito dei lavori di realizzazione nuova strada comunale di collegamento via B. Chiatello - via G. Pastore sarà necessario realizzare un muro in cemento armato di contenimento del rilevato

Dettagli

RELAZIONE DI CALCOLO DELLE STRUTTURE

RELAZIONE DI CALCOLO DELLE STRUTTURE Pagina 1 PREMESSA La presente Relazione Tecnica Specialistica riguarda la descrizione ed il calcolo (ove previsto) delle strutture da realizzare con il progetto esecutivo relativo ai lavori di Adeguamento,

Dettagli

Comune di Remanzacco FATTIBILITA' TECNICA ED ECONOMICA. Fase Progettuale: Revisione Data Descrizione nov 2016 emissione - Committente

Comune di Remanzacco FATTIBILITA' TECNICA ED ECONOMICA. Fase Progettuale: Revisione Data Descrizione nov 2016 emissione - Committente Riproduzione vietata. Tutti i diritti riservati. Nessuna parte del presente documento può essere riprodotta senza il consenso scritto Oggetto: Elaborato: Regione Autonoma Friuli - Venezia Giulia Provincia

Dettagli

RELAZIONE ILLUSTRATIVA RIGUARDANTE LE STRUTTURE

RELAZIONE ILLUSTRATIVA RIGUARDANTE LE STRUTTURE RELAZIONE ILLUSTRATIVA RIGUARDANTE LE STRUTTURE Proprietà: Ubicazione: RONCONI & LIVERANI Srl Comune di Cotignola Via Madonna di Genova n 39/41 Prog. e DDL Strutturale: Progetto architettonico: Ing. Peroni

Dettagli

PROGETTO DEFINITIVO CAMPO IN ERBA SINTETICA DIMENSIONAMENTO DELLE STRUTTURE PRINCIPALI

PROGETTO DEFINITIVO CAMPO IN ERBA SINTETICA DIMENSIONAMENTO DELLE STRUTTURE PRINCIPALI COMUNE DI VALLI DEL PASUBIO REGIONE VENETO PROGETTO DEFINITIVO CAMPO IN ERBA SINTETICA DIMENSIONAMENTO DELLE STRUTTURE PRINCIPALI dott. ing. Giuseppe Piccioli Albo Ingegneri di Vicenza iscritto al n. 814

Dettagli

COMUNE DI BARLETTA. Realizzazione di urbanizzazioni primarie nel piano di zona della nuova 167, 2 e 3 triennio.

COMUNE DI BARLETTA. Realizzazione di urbanizzazioni primarie nel piano di zona della nuova 167, 2 e 3 triennio. Indice 1 Premessa... 2 2 Calcolo dell azione sismica... 2 ~ 1 ~ 1 Premessa Il presente documento è finalizzato a illustrare, in accordo con le Nuove Norme Tecniche DM 14 gennaio 2008, l inquadramento sismico

Dettagli

5. CALCOLO DELL AZIONE SISMICA DI PROGETTO (NORME TECNICHE PER LE COSTRUZIONI D.M. 14 GENNAIO 2008)

5. CALCOLO DELL AZIONE SISMICA DI PROGETTO (NORME TECNICHE PER LE COSTRUZIONI D.M. 14 GENNAIO 2008) 5. CALCOLO DELL AZIONE SISMICA DI PROGETTO (NORME TECNICHE PER LE COSTRUZIONI D.M. 14 GENNAIO 2008) L azione sismica di progetto si definisce a partire dalla pericolosità sismica di base del sito d interesse

Dettagli

PERICOLOSITA SISMICA 2 VITA NOMINALE E CLASSE D USO 4 AZIONE SISMICA 5 CATEGORIA DEL SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE 6

PERICOLOSITA SISMICA 2 VITA NOMINALE E CLASSE D USO 4 AZIONE SISMICA 5 CATEGORIA DEL SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE 6 INDICE PERICOLOSITA SISMICA 2 VITA NOMINALE E CLASSE D USO 4 AZIONE SISMICA 5 CATEGORIA DEL SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE 6 SPETTRI E PARAMETRI DI STRUTTURA 7 1 PERICOLOSITA SISMICA L azione sismica

Dettagli

DESCRIZIONE DELLA STRUTTURA ESISTENTE...

DESCRIZIONE DELLA STRUTTURA ESISTENTE... INDICE 1) PREMESSA... 3 2) DESCRIZIONE DELLA STRUTTURA ESISTENTE... 3 3) NORMATIVE DI RIFERIMENTO... 4 4) RELAZIONE SPECIALISTICA SULLA PERICOLOSITÀ SISMICA DI BASE... 5 4.1 AZIONE SISMICA PER LO STATO

Dettagli

ANALISI DEI CARICHI. (Parte integrante della Relazione di calcolo strutturale redatta ai sensi del capitolo C Paragrafo 1.1 Circ. n.

ANALISI DEI CARICHI. (Parte integrante della Relazione di calcolo strutturale redatta ai sensi del capitolo C Paragrafo 1.1 Circ. n. ANALISI DEI CARICHI (Parte integrante della Relazione di calcolo strutturale redatta ai sensi del capitolo C10.1. - Paragrafo 1.1 Circ. n. 617/2009) Carichi permanenti Per la determinazione dei pesi propri

Dettagli

Comune di Castelleone (CR)- Nuova scuola dell infanzia PROGETTO DEFINITIVO Disciplinare descrittivo degli elementi prestazionali: strutture

Comune di Castelleone (CR)- Nuova scuola dell infanzia PROGETTO DEFINITIVO Disciplinare descrittivo degli elementi prestazionali: strutture 1. DISCIPLINARE DESCRITTIVO TIVO DEGLI ELEMENTI PRESTAZIONALI: STRUTTURE 1.1 DESCRIZIONE DELL OPERA Il seguente progetto definitivo delle strutture riguarda la nuova scuole d infanzia da realizzare nel

Dettagli

INDICE 1. INTRODUZIONE NORMATIVA MATERIALI DEFINIZIONE DEI CARICHI... 5

INDICE 1. INTRODUZIONE NORMATIVA MATERIALI DEFINIZIONE DEI CARICHI... 5 INDICE 1. INTRODUZIONE... 2 1.1. NUOVA SOLETTA... 2 1.2. POSTAZIONE DISABILI E NUOVI GRADINI... 3 2. NORMATIVA... 4 3. MATERIALI... 4 3.1. CALCESTRUZZI... 5 3.2. ACCIAIO PER C.A.... 5 4. DEFINIZIONE DEI

Dettagli

Materiale Principale. Periodo di inizio del tratto accelerazione costante dello spettro elastico in accelerazione orizzontale. T C

Materiale Principale. Periodo di inizio del tratto accelerazione costante dello spettro elastico in accelerazione orizzontale. T C 1 - EDIFICIO Classe d'uso V N [anni] V R [anni] Materiale Principale Condizioni Coordinate geografiche ED 50 Categoria Topografiche Sottosuolo Latitudine Longitudine Categoria S T Classe 3 50 75 ca 41.319167

Dettagli

CITTÀ di FABRIANO PROVINCIA DI ANCONA

CITTÀ di FABRIANO PROVINCIA DI ANCONA CITTÀ di FABRIANO PROVINCIA DI ANCONA Settore Assetto e Tutela del Territorio Oggetto: Attidium: l area archeologica diviene luogo di fruibilità turistica Importo dell opera 133.000,00 Importo del cofinanziamento

Dettagli

CAVRIGLIA. RESPONSABILE INTEGRAZIONE SINGOLE ATTIVITA' SPECIALISTICHE STUDIO ALTIERI S.p.A. Direttore Tecnico : Ing.

CAVRIGLIA. RESPONSABILE INTEGRAZIONE SINGOLE ATTIVITA' SPECIALISTICHE STUDIO ALTIERI S.p.A. Direttore Tecnico : Ing. COMUNE DI S.GIOVANNI Valdarno COMUNE DI Valdarno COMUNE DI CAVRIGLIA 080 TITOLO: TECNICI: RESPONSABILE DEL PROCEDIMENTO: ing. Lorenzo CURSI PROGETTISTI: RESPONSABILE INTEGRAZIONE SINGOLE ATTIVITA' SPECIALISTICHE

Dettagli

REALIZZAZIONE DI IMPIANTO FOTOVOLTAICO DI PERTINENZA DELLA SCUOLA COMUNALE: PROGETTO ESECUTIVO

REALIZZAZIONE DI IMPIANTO FOTOVOLTAICO DI PERTINENZA DELLA SCUOLA COMUNALE: PROGETTO ESECUTIVO PROGETTO ESECUTIVO IMPIANTO FOTOVOLTAICO ENRICO PESTALOZZI - REL DI CALCOLO Servizio Lavori Pubblici REALIZZAZIONE DI IMPIANTO FOTOVOLTAICO DI PERTINENZA DELLA SCUOLA COMUNALE: 4F Scuola dell infanzia

Dettagli

Sistema / Edificio / Argomento. Elaborato Livello Tipo / S tipo. Data 03/02/2014. Centrale / Impianto: Titolo Elaborato: GR AD 00135

Sistema / Edificio / Argomento. Elaborato Livello Tipo / S tipo. Data 03/02/2014. Centrale / Impianto: Titolo Elaborato: GR AD 00135 Elaborato Livello Tipo / S tipo RT - Relazioni ETQ-031282 D Sistema / Edificio / Argomento EMR - Edificio immagazzinamento rifiuti solidi radioattivi Rev. Data 03/02/2014 Centrale / Impianto: GR - Sito

Dettagli

SO.GE.M.I. S.p.A. MERCATO ITTICO DI MILANO RELAZIONE DI CALCOLO DELLE STRUTTURE REV00 MERCATO ITTICO

SO.GE.M.I. S.p.A. MERCATO ITTICO DI MILANO RELAZIONE DI CALCOLO DELLE STRUTTURE REV00 MERCATO ITTICO SO.GE.M.I. S.p.A. MERCATO ITTICO DI MILANO RELAZIONE DI CALCOLO DELLE STRUTTURE REV00 MERCATO ITTICO PROGETTAZIONE ESECUTIVA, COORDINAMENTO DELLA SICUREZZA IN FASE DI PROGETTAZIONE/ESECUZIONE PER LA CHIUSURA

Dettagli

RELAZIONE SUI MATERIALI (N_B2)

RELAZIONE SUI MATERIALI (N_B2) RELAZIONE SUI MATERIALI (N_B2) MATERIALI IN GENERE I materiali, i prodotti ed i componenti occorrenti, realizzati con materiali base e tecnologie tradizionali e/o artigianali, per la costruzione delle

Dettagli

COMUNE DI COMO. Committente: SC EVOLUTION S.p.A. RELAZIONE DI CALCOLO STRUTTURALE

COMUNE DI COMO. Committente: SC EVOLUTION S.p.A. RELAZIONE DI CALCOLO STRUTTURALE COMUNE DI COMO Committente: SC EVOLUTION S.p.A. RELAZIONE DI CALCOLO STRUTTURALE (Legge 05.11.1971 n. 1086, art. 4, DPR 380/01, art. 65) RELATIVA ALLA REALIZZAZIONE DI UN NUOVO MARCIAPIEDE PREVISTO NEL

Dettagli

LAVORI DI RISTRUTTURAZIONE EDILIZIA DELLA TENSOSTRUTTURA DEGLI IMPIANTI SPORTIVI DI VIA NAPOLEONICA COMMITTENTE. Comune di Bagnolo di Po

LAVORI DI RISTRUTTURAZIONE EDILIZIA DELLA TENSOSTRUTTURA DEGLI IMPIANTI SPORTIVI DI VIA NAPOLEONICA COMMITTENTE. Comune di Bagnolo di Po Pag. 1 di 11 totali LAVORI DI RISTRUTTURAZIONE EDILIZIA DELLA TENSOSTRUTTURA DEGLI IMPIANTI SPORTIVI DI VIA NAPOLEONICA COMMITTENTE Comune di Bagnolo di Po UBICAZIONE TENSOSTRUTTURA PRESSO COMUNE DI BAGNOLO

Dettagli

1 Azione sismica Vita nominale e classe d uso Classificazione della tipologia di suolo Fattore di struttura...

1 Azione sismica Vita nominale e classe d uso Classificazione della tipologia di suolo Fattore di struttura... Sommario 1 Azione sismica... 2 1.1.1 Vita nominale e classe d uso... 2 1.1.2 Classificazione della tipologia di suolo... 2 1.1.3 Fattore di struttura... 2 1.1.4 Pericolosità sismica... 3 1.1.5 Spettro

Dettagli

LA VALUTAZIONE DELLE AZIONI SISMICHE SECONDO LE NTC08. D.M. Infrastrutture 14 gennaio 2008 Circolare 2 febbraio 2009 n 617 / C.S.LL.PP.

LA VALUTAZIONE DELLE AZIONI SISMICHE SECONDO LE NTC08. D.M. Infrastrutture 14 gennaio 2008 Circolare 2 febbraio 2009 n 617 / C.S.LL.PP. LA VALUTAZIONE DELLE AZIONI SISMICHE SECONDO LE NTC08 D.M. Infrastrutture 14 gennaio 2008 Circolare 2 febbraio 2009 n 617 / C.S.LL.PP. Azione sismica L azione sismica è valutata riferendosi non ad una

Dettagli

COMUNE DI BOLOGNA Dipartimento Cura e Qualità del territorio Settore Edilizia e Patrimonio

COMUNE DI BOLOGNA Dipartimento Cura e Qualità del territorio Settore Edilizia e Patrimonio COMUNE DI BOLOGNA Dipartimento Cura e Qualità del territorio Settore Edilizia e Patrimonio CENTRO PASTI LAZZARETTO VIA TERRACINI - VIA ALBERTO MANZI Dati Catastali: FOGLIO 41 - MAPPALI VARI Codice Intervento:

Dettagli

RELAZIONE MATERIALI IMPIEGATI

RELAZIONE MATERIALI IMPIEGATI RELAZIONE MATERIALI IMPIEGATI 1 Premessa Norme Tecniche vigenti prescrivono che i materiali ed i prodotti utilizzati per la realizzazione delle strutture debbano rispondere ai requisiti di seguito indicati:

Dettagli

RELAZIONE SUI MATERIALI IMPIEGATI

RELAZIONE SUI MATERIALI IMPIEGATI RELAZIONE SUI MATERIALI IMPIEGATI A4 Durante la verifica sismica effettuata nel 2012 per la caratterizzazione dei materiali si è optato per un insieme di indagini in sito estese, sulla muratura e sul calcestruzzo,

Dettagli

RELAZIONE SUI MATERIALI

RELAZIONE SUI MATERIALI RELAZIONE SUI MATERIALI 1 CEMENTO ARMATO.... 3 1.1 CALCESTRUZZI PER C.A.... 3 1.2 ACCIAIO PER C.A.... 5 1.3 COPRIFERRO... 5 2 LEGNO... 6 2.1 LEGNO PER PILASTRI E TRAVI/TRAVETTI DI COPERTURA... 6 2.2 LEGNO

Dettagli

PROGETTO DEFINITIVO/ESECUTIVO

PROGETTO DEFINITIVO/ESECUTIVO 1. Premessa La presente relazione di calcolo è relativa agli interventi strutturali realizzati nell ambito del progetto di Lavori di ripristino funzionale del manufatto di sostegno del Lago Superiore denominato

Dettagli

CAVRIGLIA. RESPONSABILE INTEGRAZIONE SINGOLE ATTIVITA' SPECIALISTICHE STUDIO ALTIERI S.p.A. Direttore Tecnico : Ing.

CAVRIGLIA. RESPONSABILE INTEGRAZIONE SINGOLE ATTIVITA' SPECIALISTICHE STUDIO ALTIERI S.p.A. Direttore Tecnico : Ing. COMUNE DI S.GIOVANNI Valdarno COMUNE DI Valdarno COMUNE DI CAVRIGLIA 081 TITOLO: TECNICI: RESPONSABILE DEL PROCEDIMENTO: ing. Lorenzo CURSI PROGETTISTI: RESPONSABILE INTEGRAZIONE SINGOLE ATTIVITA' SPECIALISTICHE

Dettagli

Provincia Autonoma di Trento Comune di STORO. INTERVENTI DI MESSA IN SICUREZZA DELL IMPIANTO SPORTIVO GRILLI DI STORO Committente: AD CALCIOCHIESE

Provincia Autonoma di Trento Comune di STORO. INTERVENTI DI MESSA IN SICUREZZA DELL IMPIANTO SPORTIVO GRILLI DI STORO Committente: AD CALCIOCHIESE Provincia Autonoma di Trento Comune di STORO INTERVENTI DI MESSA IN SICUREZZA DELL IMPIANTO SPORTIVO GRILLI DI STORO Committente: AD CALCIOCHIESE RELAZIONE DI CALCOLO STRUTTURE Storo, ottobre 2016 Ing.

Dettagli

PROGETTO DEFINITIVO STRUTTURE PORTANTI

PROGETTO DEFINITIVO STRUTTURE PORTANTI Regione Autonoma Friuli Venezia Giulia Provincia di Udine COMUNE DI PREMARIACCO Progetto CUP: E16J16000690006 Lavori di ristrutturazione, ampliamento e adeguamento alle norme di sicurezza della scuola

Dettagli

Premessa identificati qualificati accettati Produttori controllo di produzione di fabbrica (FPC):

Premessa identificati qualificati accettati Produttori controllo di produzione di fabbrica (FPC): Premessa I materiali ed i prodotti per uso strutturale utilizzati devono rispondere ai requisiti minimi indicati dalla documentazione di progetto e riportati nella presente relazione. Tali materiali e

Dettagli

SO.GE.M.I. S.p.A. MERCATO ORTOFRUTTICOLO DI MILANO

SO.GE.M.I. S.p.A. MERCATO ORTOFRUTTICOLO DI MILANO SO.GE.M.I. S.p.A. MERCATO ORTOFRUTTICOLO DI MILANO INTERVENTI DI MANUTENZIONE ALL INTERNO DEL MERCATO ORTOFRUTTICOLO PROGETTAZIONE ESECUTIVA LOTTO 1 RELAZIONE DI CALCOLO REV 01 Data: 24/07/2018 Pag. 1

Dettagli

Comune di Castelgomberto. Provincia di Vicenza

Comune di Castelgomberto. Provincia di Vicenza Comune di Castelgomberto Provincia di Vicenza relazione di calcolo oggetto: progetto nuova viabilità via Pederiva - via Capovilla: strada Del Rio committente: Comune di Castelgomberto il progettista (Dott.

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO RELAZIONE DI CALCOLO ANALISI DEI CARICHI ANALISI DEL CARICO NEVE NORMATIVE DI RIFERIMENTO [D.M. 14/01/2008]: Norme tecniche per le costruzioni NTC2008 [Circ. Ministero delle Infrastrutture e dei Trasporti

Dettagli

Committente A.U.S.L. Piacenza. R.U.P. Ing. Luigi Gruppi. Progetto. -strutture Ingg. Antonio Sproccati. -impianti Ing.

Committente A.U.S.L. Piacenza. R.U.P. Ing. Luigi Gruppi. Progetto. -strutture Ingg. Antonio Sproccati. -impianti Ing. COMUNE DI CARPANETO PIACENTINO PROVINCIA DI PIACENZA Committente A.U.S.L. Piacenza PROGETTO ESECUTIVO R.U.P. Ing. Luigi Gruppi Progetto ARCHITETTURA E CITTA' studio associato -strutture Ingg. Antonio Sproccati

Dettagli

COMUNE DI SARACENA. Provincia di Cosenza. Lavori di Miglioramento sismico edificio strategico - OCDPC 171 del 19/06/2014 -

COMUNE DI SARACENA. Provincia di Cosenza. Lavori di Miglioramento sismico edificio strategico - OCDPC 171 del 19/06/2014 - COMUNE DI SARACENA Provincia di Cosenza Lavori di Miglioramento sismico edificio strategico - OCDPC 171 del 19/06/2014 - Municipio e sede C.O.C. Comune di Saracena Progetto Esecutivo R02 RELAZIONE TECNICA

Dettagli

Resistenza al fuoco delle strutture in C.A: norma UNI 9502 ed eurocodici

Resistenza al fuoco delle strutture in C.A: norma UNI 9502 ed eurocodici Corso di specializzazione antincendio ex legge 818/84 Resistenza al fuoco delle strutture in C.A: norma UNI 9502 ed eurocodici Docente: Vicedirigente 1 Resistenza al fuoco di elementi in conglomerato cementizio

Dettagli

INQUADRAMENTO SISMICO...

INQUADRAMENTO SISMICO... INDICE 1. PREMESSA... 2 2. QUADRO NORMATIVO... 2 3. INQUADRAMENTO SISMICO... 3 4. MATERIALI - INQUADRAMENTO DELLE CONDIZIONI AMBIENTALI... 4 5. SOLLECITAZIONI SULLE STRUTTURE - COMBINAZIONI AZIONI... 5

Dettagli

COMUNE DI FIRENZE PROGETTO DI UNA PLATEA DI FONDAZIONE

COMUNE DI FIRENZE PROGETTO DI UNA PLATEA DI FONDAZIONE COMUNE DI FIRENZE PROGETTO DI UNA PLATEA DI FONDAZIONE A3 - RELAZIONE TECNICA GENERALE A4 - Relazione sui materiali A8 Relazione di calcolo Progettista: Ing. Marco Gori Ordine Ingegneri di Firenze n 3546

Dettagli

RT - Relazioni. Adeguamento Ex-Compattatore - Relazione sui materiali

RT - Relazioni. Adeguamento Ex-Compattatore - Relazione sui materiali Elaborato Livello Tipo / S tipo RT - Relazioni ETQ-022317 Sistema / Edificio / Argomento EMR - Edificio immagazzinamento rifiuti solidi radioattivi Rev. Data 13/11/2012 Centrale / Impianto: GR - Sito di

Dettagli

Comune di MINERBIO REALIZZAZIONE DI n.2 ROTATORIE SU VIA RONCHI INFERIORE Progetto ESECUTIVO Relazione sui materiali SOMMARIO

Comune di MINERBIO REALIZZAZIONE DI n.2 ROTATORIE SU VIA RONCHI INFERIORE Progetto ESECUTIVO Relazione sui materiali SOMMARIO SOMMARIO 1 PREMESSA... 2 2 NORMATIVA DI RIFERIMENTO... 3 3 CARATTERISTICHE DEI MATERIALI... 4 3.1 Calcestruzzo per magrone... 4 3.2 Calcestruzzo per fondazioni ed elevazioni... 4 3.3 Acciaio per cemento

Dettagli

INDICE 1. PREMESSA NORMATIVE DI RIFERIMENTO... 1

INDICE 1. PREMESSA NORMATIVE DI RIFERIMENTO... 1 VERIFICA DI ASSOGGETTABILITA' EX ART. 20 D.LGS. 152/06 STRALCIO DI INDICE 1. PREMESSA... 1 2. NORMATIVE DI RIFERIMENTO... 1 3. SISMICITA... 3 3.1 CARATTERIZZAZIONE DELLA PERICOLOSITÀ SISMICA... 5 3.2 CALCOLO

Dettagli

COMUNE DI CASTELCOVATI Via Chiari n Castelcovati (Bs) Telefono: Fax:

COMUNE DI CASTELCOVATI Via Chiari n Castelcovati (Bs) Telefono: Fax: COMUNE DI CASTELCOVATI Via Chiari n. 60-25030 - Castelcovati (Bs) Telefono: 030 7080319 Fax: 030 7080304 e-mail: tecnico@comune.castelcovati.bs.it PRESTAZIONI DI PROGETTAZIONE DEFINITIVA, ESECUTIVA, COORDINAMENTO

Dettagli

INDICE GENERALE PREMESSA OGGETTO SICUREZZA E PRESTAZIONI ATTESE PRINCIPI FONDAMENTALI... 17

INDICE GENERALE PREMESSA OGGETTO SICUREZZA E PRESTAZIONI ATTESE PRINCIPI FONDAMENTALI... 17 INDICE GENERALE PREMESSA......................................................... 15 1. OGGETTO....................................................... 15 2. SICUREZZA E PRESTAZIONI ATTESE.............................

Dettagli

INDICE 1. PREMESSA VERIFICA PROGETTO ESECUTIVO - Comune di Cascia. Progetto n. 261 Pagina 1 A1- RELAZIONE DI CALCOLO

INDICE 1. PREMESSA VERIFICA PROGETTO ESECUTIVO - Comune di Cascia. Progetto n. 261 Pagina 1 A1- RELAZIONE DI CALCOLO INDICE 1. PREMESSA... 2 2. VERIFICA... 2 Progetto n. 261 Pagina 1 1. PREMESSA La presente relazione viene redatta nell ambito del Progetto per la messa in sicurezza della chiesa parrocchiale di S. Martino

Dettagli

2 LIVELLO DI CONOSCENZA Oggeto delle verifiche... 2

2 LIVELLO DI CONOSCENZA Oggeto delle verifiche... 2 SOMMARIO 1 PREMESSA... 2 2 LIVELLO DI CONOSCENZA... 2 2.1 Oggeto delle verifiche... 2 3 NORMATIVA DI RIFERIMENTO... 2 4 CRITERI DI PROGETTO E LIVELLI PRESTAZIONALI... 4 5 MATERIALI... 4 5.1 Materiali delle

Dettagli

RELAZIONE DI CALCOLO (P_C1) La presente relazione di calcolo strutturale, in conformità al punto 10.1 del DM 14/01/08, comprende una nite al

RELAZIONE DI CALCOLO (P_C1) La presente relazione di calcolo strutturale, in conformità al punto 10.1 del DM 14/01/08, comprende una nite al RELAZIONE DI CALCOLO (P_C1) 1.PREMESSA La presente relazione di calcolo strutturale, in conformità al punto 10.1 del DM 14/01/08, comprende una nite al Sono riportati i principali elementi di inquadramento

Dettagli

Via Pinarella. Relazione geotecnica e sulle fondazioni Edificio Sud. Comune di Cervia (Ra)

Via Pinarella. Relazione geotecnica e sulle fondazioni Edificio Sud. Comune di Cervia (Ra) Via Pinarella Relazione geotecnica e sulle fondazioni Relazione geotecnica e sulle fondazioni Edificio Sud Via Pinarella Comune di Cervia (Ra) INDICE INDICE... 1 1 Descrizione della struttura di fondazione...

Dettagli

A3-Relazione tecnica generale

A3-Relazione tecnica generale A3-Relazione tecnica generale L intervento prevede la realizzazione di una centrale termica a biomasse (cippato di legno); l edificio viene organizzato in tre vani: 1) locale caldaia: all interno del quale

Dettagli

REGIONE ABRUZZO Dipartimento Opere Pubbliche, Governo del Territorio e Politiche Ambientali

REGIONE ABRUZZO Dipartimento Opere Pubbliche, Governo del Territorio e Politiche Ambientali REGIONE ABRUZZO Dipartimento Opere Pubbliche, Governo del Territorio e Politiche Ambientali Attività di vigilanza e controllo sulla progettazione mediante liste di controllo (L.R. 28/2011 e Decreto n.

Dettagli

Relazione sulla pericolosità sismica del sito

Relazione sulla pericolosità sismica del sito Relazione sulla pericolosità sismica di base del sito interessato dalle costruzioni PROGETTO PER L'ADEGUAMENTO SISMICO DELLA SCUOLA MATERNA "V.Foscolo" Relazione sulla pericolosità sismica del sito f l

Dettagli

ORDINE DEI GEOLOGI DEL LAZIO

ORDINE DEI GEOLOGI DEL LAZIO ORDINE DEI GEOLOGI DEL LAZIO CORSO DI AGGIORNAMENTO PROFESSIONALE Roma 26 settembre 2013 CONFRONTI DELLE CATEGORIE DI SOTTOSUOLO FRA LE NTC08 E LE NUOVE FUTURE NTC: CASI APPLICATIVI Geol. Antonio Colombi

Dettagli

F3 - Azioni sismiche secondo le NTC08

F3 - Azioni sismiche secondo le NTC08 F3 - Azioni sismiche secondo le NTC08 Le seguenti slides costituiscono solo una base per lo sviluppo delle lezioni e, pertanto, non sostituiscono i testi consigliati Azione sismica L azione sismica è valutata

Dettagli

Lezione PONTI E GRANDI STRUTTURE. Ing. Eugenio Ferrara Università degli Studi di Catania

Lezione PONTI E GRANDI STRUTTURE. Ing. Eugenio Ferrara Università degli Studi di Catania Lezione PONTI E GRANDI STRUTTURE Ing. Eugenio Ferrara Università degli Studi di Catania Inizio progetto Introduzione 3 Scelta dei materiali 4 Scelta dei materiali 5 Scelta dei materiali Seguendo la norma

Dettagli

Relazione illustrativa e scheda sintetica dell intervento

Relazione illustrativa e scheda sintetica dell intervento Relazione illustrativa e scheda sintetica dell intervento Nuova costruzione: Intervento su costruzione esistente: Lavori di. Proprietà Comune.. Provincia. Via.. Zona sismica amministrativa: 1 2 3 4 Coordinate

Dettagli

RELAZIONE SUI MATERIALI E-ST CLZ FRT E-ST - Relazione sui materiali-00.doc

RELAZIONE SUI MATERIALI E-ST CLZ FRT E-ST - Relazione sui materiali-00.doc RELAZIONE SUI MATERIALI FRT 2839-01-E-ST - Relazione sui materiali-00.doc E-ST-00-03 CLZ INDICE 1 MATERIALI DELLE OPERE DI PROGETTO...3 1.1 Elenco dei materiali impiegati e loro modalità di posa...3 1.2

Dettagli

QUADRO COMPARATIVO. Comune di Colle di Val D'Elsa Provincia di Siena

QUADRO COMPARATIVO. Comune di Colle di Val D'Elsa Provincia di Siena Comune di Colle di Val D'Elsa Provincia di Siena pag. 1 QUADRO COMPARATIVO OGGETTO: Realizzazione della Nuova Scuola Materna di Via Volterrana Lotto 1 e Lotto 2 PROGETTO STRUTTURALE 1 LOTTO COMMITTENTE:

Dettagli

Analisi dinamica lineare

Analisi dinamica lineare Analisi dinamica lineare 5.1 Introduzione. Nel presente capitolo è illustrata l analisi dinamica lineare del Nuovo Mercato delle Vettovaglie di Livorno secondo la normativa tecnica italiana attualmente

Dettagli

COMUNE DI VIGGIANO (Provincia di Potenza)

COMUNE DI VIGGIANO (Provincia di Potenza) COMUNE DI VIGGIANO (Provincia di Potenza) PALESTRA COMUNALE PROGETTO ESECUTIVO FASCICOLO DEI CALCOLI 1 INDICE CORPO PALESTRA... 3 DATI DI INPUT... 3 ANALISI DINAMICA... 37 VERIFICHE PILASTRI SLV-SLE...

Dettagli

Comune di Zelo Buon Persico

Comune di Zelo Buon Persico Comune di Zelo Buon Persico Provincia di Lodi PROGETTO PRELIMINARE REALIZZAZIONE SCUOLA PRIMARIA RELAZIONE STRUTTURALE Criteri generali relazione di calcolo sulla struttura impostata e redatta secondo

Dettagli

R.09 - RELAZIONE SUI MATERIALI PROGETTO ESECUTIVO PER LA REALIZZAZIONE DI UN CAMPO POLIVALENTE COPERTO NEL COMUNE DI RAFFADALI IN CONTRADA RIBECCHI

R.09 - RELAZIONE SUI MATERIALI PROGETTO ESECUTIVO PER LA REALIZZAZIONE DI UN CAMPO POLIVALENTE COPERTO NEL COMUNE DI RAFFADALI IN CONTRADA RIBECCHI COMUNE DI RAFFADALI PROGETTO ESECUTIVO PER LA REALIZZAZIONE DI UN CAMPO POLIVALENTE COPERTO NEL COMUNE DI RAFFADALI IN CONTRADA RIBECCHI CUP E69B110000005 R.09 - RELAZIONE SUI MATERIALI RAFFADALI LÌ PROGETTISTA:

Dettagli

RELAZIONE TECNICA 1 - Descrizione delle strutture 2 - Strumenti di calcolo utilizzati

RELAZIONE TECNICA 1 - Descrizione delle strutture 2 - Strumenti di calcolo utilizzati 1 RELAZIONE TECNICA 1 - Descrizione delle strutture Il progetto in questione si occupa della realizzazione di un locale tecnico adibito a sede di quadri e trasformatori elettrici nonché di una cabina Enel

Dettagli

INDICE 1 VITA NOMINALE, CLASSE D USO, PERIODO DI RIFERIMENTO LOCALIZZAZIONE GEOGRAFICA E CLASSIFICAZIONE SISMICA... 2

INDICE 1 VITA NOMINALE, CLASSE D USO, PERIODO DI RIFERIMENTO LOCALIZZAZIONE GEOGRAFICA E CLASSIFICAZIONE SISMICA... 2 REL B.2. RELAZIONE SISMICA PAG. 1 REL B.2. RELAZIONE SISMICA INDICE 1 VITA NOMINALE, CLASSE D USO, PERIODO DI RIFERIMENTO... 2 2 LOCALIZZAZIONE GEOGRAFICA E CLASSIFICAZIONE SISMICA... 2 3 PERICOLOSITA

Dettagli

PORTO DI BARI PROGETTO DI FATTIBILITA TECNICA ED ECONOMICA REALIZZAZIONE DI UN TERMINAL PASSEGGERI ALLA BANCHINA 10 NEL PORTO DI BARI

PORTO DI BARI PROGETTO DI FATTIBILITA TECNICA ED ECONOMICA REALIZZAZIONE DI UN TERMINAL PASSEGGERI ALLA BANCHINA 10 NEL PORTO DI BARI Piazzale Cristoforo Colombo, 1 70122 BARI (BA) PORTO DI BARI PROGETTO DI FATTIBILITA TECNICA ED ECONOMICA REALIZZAZIONE DI UN TERMINAL PASSEGGERI ALLA BANCHINA 10 NEL PORTO DI BARI RELAZIONE SISIMICA E

Dettagli

Allegato f - Secondo stralcio. Calcolo delle Strutture

Allegato f - Secondo stralcio. Calcolo delle Strutture Allegato f Lavori di: Riqualificazione lungo lago denominato Passeggiata degli Ulivi Realizzazione marciapiede - Secondo stralcio. PROGETTO DEFINITIVO Calcolo delle Strutture Loc. Bogn Secondo stralcio

Dettagli

Doc. N. C4133 REV. A. FOGLIO 2 di 25 CODIFICA DOCUMENTO C4133_E_C_AC4_MAJ05_0_IA_RC_007_A CCT

Doc. N. C4133 REV. A. FOGLIO 2 di 25 CODIFICA DOCUMENTO C4133_E_C_AC4_MAJ05_0_IA_RC_007_A CCT CODIFIC DOCUMENTO 2 di 25 INDICE 1. INTRODUZIONE... 3 2. NORMTIVE DI RIFERIMENTO... 4 3. VERIFIC DEI MICROPLI DELLE SPLLE... 5 3.1. Calcolo delle sollecitazioni massime 5 3.2. Calcolo della resistenza

Dettagli

COMUNE DI BOLOGNA Dipartimento Cura e Qualità del territorio Settore Edilizia e Patrimonio

COMUNE DI BOLOGNA Dipartimento Cura e Qualità del territorio Settore Edilizia e Patrimonio COMUNE DI BOLOGNA Dipartimento Cura e Qualità del territorio Settore Edilizia e Patrimonio CENTRO PASTI LAZZARETTO VIA TERRACINI - VIA ALBERTO MANZI Dati Catastali: FOGLIO 41 - MAPPALI VARI Codice Intervento:

Dettagli

(L.R. 12 ottobre 2015, n. 33) Coordinate geografiche (ED50):.

(L.R. 12 ottobre 2015, n. 33) Coordinate geografiche (ED50):. MODULO 12 Relazione illustrativa e scheda sintetica dell intervento (L.R. 12 ottobre 2015, n. 33) Nuova costruzione: Intervento su costruzione esistente: Lavori di.. Proprietà Comune.. Provincia. Via.

Dettagli

MATERIALI DELLE OPERE DI PROGETTO...

MATERIALI DELLE OPERE DI PROGETTO... 1. MATERIALI DELLE OPERE DI PROGETTO... 3 1.1 ELENCO DEI MATERIALI IMPIEGATI E LORO MODALITÀ DI POSA... 3 1.2 VALORI DI CALCOLO... 5 2. CARATTERISTICHE DEI MATERIALI ESISTENTI... 8 2.1 SOLAI TIPO MONIER

Dettagli

Richiesta di prove di compressione di calcestruzzo, trazione e piegamento di campioni di acciaio secondo il D.M , Legge 05/11/1971 n 1086

Richiesta di prove di compressione di calcestruzzo, trazione e piegamento di campioni di acciaio secondo il D.M , Legge 05/11/1971 n 1086 . Via.. Città Tel... li,.. Laboratorio Sperimentale Richiesta di prove di compressione di calcestruzzo, trazione e piegamento di campioni di acciaio secondo il D.M. 14.01.2008, Legge 05/11/1971 n 1086

Dettagli

RELAZIONE GENERALE DI CALCOLO

RELAZIONE GENERALE DI CALCOLO COMUNE DI CERCHIO RELAZIONE GENERALE DI CALCOLO EDIFICIO IN C.A. ADIBITO A SCUOLA INDICE PREMESSA... 2 QUADRO NORMATIVO DI RIFERIMENTO... 3 1. DESCRIZIONE GENERALE DEL FABBRICATO... 4 2. SICUREZZA E PRESTAZIONI

Dettagli

Relazione strutturale

Relazione strutturale Relazione strutturale Soario 1. GEERALITA... 11. QUADRO ORMATIVO... 11 3. MATERIALI... 1 4. CALCOLI STATICI... 13 10 1. GEERALITA La presente relazione è redatta per illustrare il calcolo della soletta

Dettagli

INDICE 1. INTRODUZIONE

INDICE 1. INTRODUZIONE INDICE 1. INTRODUZIONE 2. NORMATIVA E MATERIALI 2.1 Normativa adottata 2.2 Caratteristiche dei materiali 2.2.1 Acciaio 2.2.1.1 Acciaio laminato a caldo per profili 3. MODELLAZIONE 3.1 Caratteristiche geometriche

Dettagli

S t r u t t u r e d i s o s t e g n o i n l e g n o p e r c o p e r t u r e i n t e l i V i a B e l l e A r t i B o l o g n a 0.

S t r u t t u r e d i s o s t e g n o i n l e g n o p e r c o p e r t u r e i n t e l i V i a B e l l e A r t i B o l o g n a 0. 0. INDICE 0. INDICE 2 1. RELAZIONE TECNICA 3 2. NORMATIVA DI RIFERIMENTO 4 3. RELAZIONE SUI MATERIALI 5 4. RELAZIONE DI CALCOLO 7 4.1. CORPO TETTOIA 7 4.1.1.1. Analisi dei Carichi 7 4.1.1.2. Sezioni 10

Dettagli

ESERCITAZIONE 19 NOVEMBRE 2015

ESERCITAZIONE 19 NOVEMBRE 2015 UNIVERSITÁ DEGLI STUDI DI BRESCIA Corso di ESERCITAZIONE 19 NOVEMBRE 2015 DOCENTE: Ing. Fausto Minelli ESERCITATORE: Ing. Luca Facconi 1 Esercitazione 19 Novembre 2015 PROGETTAZIONE DEGLI EDIFICI IN C.A.:

Dettagli

D.M. 14/01/08 Norme tecniche per le costruzioni

D.M. 14/01/08 Norme tecniche per le costruzioni 1) NORME ADOTTATE D.M. 14/01/08 Norme tecniche per le costruzioni Circ. Min. II. TT. 02/02/09 n 617 AA.GG/S.T.C. Istruzioni per l applicazione delle nuove norme tecniche per le costruzioni di cui al D.M.

Dettagli