Linguaggio C. Problemi di Ricerca e Ordinamento: Algoritmi e Complessità.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Linguaggio C. Problemi di Ricerca e Ordinamento: Algoritmi e Complessità."

Transcript

1 Linguaggio C Problemi di Ricerca e Ordinamento: Algoritmi e Complessità. 1

2 Complessità degli Algoritmi Si definisce Complessità di un Algoritmo C(A) la funzione dei parametri rilevanti per A che determina il numero di operazioni necessarie per l esecuzione di A. Quindi: C ( A) = f ( n, n2,..., n 1 k ) Questo modello non dipende dal tipo di Hardware o implementazione dell Algoritmo (Software), ma si concentra esclusivamente sulla natura del Problema che viene affrontato. 2

3 Complessità degli Algoritmi In generale, l unico parametro rilevante (o comunque il più significativo) è la dimensione del data set su cui lavora l Algoritmo (ad esempio: il numero di elementi memorizzati in un vettore); E possibile indicare degli ordini (o classi) di complessità principali ai quali in genere gli Algoritmi appartengono; Tra questi ordini principali, vale la seguente relazione di dominanza: Θ(1) α β* n <Θ(ln2 ( n)) <Θ( n ) <Θ(2 ) α, β > 0 3

4 Problema della Ricerca Dato un insieme di informazioni (semplici o strutturate) memorizzate nella Struttura Dati D (Vettore, Matrice, Lista, Albero, ) l obiettivo è quello di determinare se un dato elemento target k appartiene o meno all insieme. Due possibili approcci sono: La Ricerca Sequenziale, La Ricerca Binaria. 4

5 Ricerca Sequenziale Quando non esistono ipotesi di alcun tipo sui valori memorizzati in D, l unica possibilità è quella di scandire D elemento per elemento. Appena il valore target k viene trovato la ricerca termina con successo. Se l insieme è stato esaminato tutto senza aver trovato k la ricerca termina con fallimento. La Ricerca Sequenziale è un approccio possibile per tutte le Strutture Dati fin qui esaminate, e la complessità esprime il numero massimo di confronti che devono essere effettuati, che in questo caso è direttamente proporzionale alla dimensione n del data set, quindi: Θ(n) 5

6 Ricerca Sequenziale typedef int boolean; #define TRUE 1 #define FALSE 0 #define N //Dimensione del Vettore int V[N]; boolean Ric_Seq(int *V, int k) { boolean Trovato = FALSE; int i = 0; while (!Trovato && i<n) { if (V[i]==k) Trovato = TRUE; else i++; } } return Trovato; 6

7 Ricerca Binaria Se i valori in D sono ordinati, allora l esito di un solo test può escludere più di un elemento di D dallo spazio della ricerca (si pensi all elenco telefonico ); Inoltre, se la Struttura Dati D è un Vettore, diviene conveniente applicare la cosiddetta Ricerca binaria (o dicotomica): Il target k viene confrontato con l elemento di posizione mediana (ossia D[n/2]), Se è uguale la ricerca termina con successo, altrimenti Se è maggiore la ricerca prosegue nella metà destra di D, Altrimenti la ricerca prosegue nella metà sinistra di D. 7

8 Ricerca Binaria Ogni volta che il valore target k viene confrontato con il valore mediano di D, l insieme sul quale proseguire la ricerca si dimezza. Il numero massimo di confronti coincide con l altezza di un Albero binario bilanciato contenente lo stesso numero n di elementi di D, L altezza di un Albero binario bilanciato è legata alla profondità massima dell albero stesso, che cresce in maniera logaritmica su n, Segue quindi che la complessità dell Algoritmo di Ricerca Binaria è direttamente proporzionale al logaritmo sul numero di elementi n contenuti nella struttura D, ossia: Θ(log ( n)) 2 8

9 Ricerca Binaria L Algoritmo di Ricerca Binaria presenta una complessità logaritmica solo in determinate condizioni, ad esempio: Utilizzo in un Vettore ordinato, Utilizzo in un Albero binario di ricerca bilanciato. In una Lista, ad esempio, non essendo possibile accedere ai dati in tempo costante (Θ(1)), la complessità degenera a quella lineare (Θ(n)) indipendentemente dall ordinamento. In un Albero binario di ricerca non bilanciato, la proprietà relativa alla profondità massima non è in generale rispettata, e questo può portare la complessità, nei casi limite, a degenerare a quella lineare. Esistono comunque delle tecniche che permettono di preservare il bilanciamento di un Albero binario di ricerca durante l inserimento dei dati. 9

10 Ricerca Binaria in un Vettore typedef int boolean; #define TRUE 1 #define FALSE 0 #define N //Dimensione del Vettore int V[N]; boolean Trovato; Trovato = Ric_Bin(V,N,k); boolean Ric_Bin(int *V, int n, int k) { if (n>0) { if (k == V[n/2]) return TRUE; else if (k < V[n/2]) return Ric_Bin(V,n/2,k); else return Ric_Bin(&V[n/2+1],n-n/2-1,k); } else return FALSE; } 10

11 Ordinamento Si possono individuare due possibili approcci: Mantenimento dell ordine di un insieme, Creazione di un insieme ordinato a partire da uno non ordinato. Nel primo caso, si opera in maniera tale da preservare l ordine man mano che vengono aggiunti nuovi elementi nell insieme già ordinato (ordinamento per inserzione). La complessità dell ordinamento per inserzione dipende strettamente dal tipo di struttura dati utilizzata: 11

12 Ordinamento per inserzione Nel caso di un Albero binario bilanciato, l ordinamento è preservato dalla struttura stessa dell albero, e dato che inserire un nuovo elemento ha complessità logaritmica, inserire n elementi costerà al più: Θn ( log ) 2 n Per restituire in uscita gli elementi ordinati è sufficiente visitare l albero con visita simmetrica, con costo lineare, ossia pari a Θ(n). 12

13 Ordinamento per inserzione Nel caso di una Lista concatenata ordinata, trovare la posizione del nuovo elemento implica dover scandire la struttura, con un costo lineare. L inserimento nella posizione corretta è reso efficiente dall utilizzo dei puntatori, rendendo, dal punto di vista della complessità, irrilevante (Θ(1)) tale operazione. In conclusione, supponendo di dover inserire n elementi, nel suo complesso la procedura costerà al più: Θ( n 2 ) 13

14 Ordinamento per inserzione Se la struttura utilizzata è un Vettore, trovare la posizione dove inserire il nuovo elemento ha costo Θ(log 2 (n)), se si utilizza l algoritmo di ricerca binaria. Nel caso del Vettore però è necessario spostare fisicamente gli elementi maggiori del nuovo elemento, in modo da fargli posto. L operazione di spostare gli elementi del Vettore, ha un costo lineare con la dimensione del Vettore, quindi l inserimento di ogni nuovo elemento costa in media log 2 (n) + n, dove n è la dimensione corrente del vettore. Dovendo inserire un totale di n elementi, la complessità sarà pari a n*(log 2 (n) + n), ossia nlog 2 (n) + n 2 e questo significa che la complessità dell intera procedura sarà al più: Θ( n 2 ) 14

15 Considerazioni sulla complessità dell Ordinamento Quando una procedura di ordinamento effettua solo confronti e spostamenti, il numero minino di operazioni necessarie è proporzionale a Θ(nlog 2 (n)), dove n è la dimensione della struttura. L Albero binario di ricerca si rivela una struttura molto efficiente oltre che per la ricerca, anche per l ordinamento, essendo questo garantito per costruzione. L Algoritmo di ordinamento per inserzione in una Lista o in un Vettore appartengono alla medesima classe di complessità (hanno lo stesso comportamento asintotico), ma si può affermare che in una Lista la procedura è più efficiente. 15

16 Ordinamento per affioramento (Bubble Sort) In talune situazioni può rendersi necessario ordinare un insieme di elementi disordinato, ad esempio un vettore. Consideriamo le procedure che effettuano confronti e spostamenti per l ordinamento di un Vettore. Uno degli Algoritmi più semplici, ma non il più efficiente, è il cosiddetto Bubble Sort. L idea è quella di confrontare tra loro gli elementi di tutte le coppie consecutive e scambiare gli elementi della coppia quando questi non sono ordinati. Il procedimento è iterativo, e alla fine di ciascuna iterazione un elemento del Vettore si troverà nella sua posizione finale. 16

17 Bubble Sort: un esempio Consideriamo il vettore V = {6,10,4,1,8} e supponiamo di volerlo ordinare in modo crescente. La prima coppia esaminata è 6,10 e siccome 10 > 6 allora non effettuo lo scambio, La seconda coppia da prendere in esame è 10,4 e questa volta effettuo lo scambio Alla fine della prima iterazione ho esaminato tutte le coppie consecutive di V, e V = {6,4,1,8,10}. Adesso l Algoritmo procederà sulle coppie del sottovettore V 1 = {6,4,1,8} Al termine di ciascuna iterazione, l elemento massimo del vettore affiora fino ad occupare l ultima posizione, e in generale gli altri elementi tendono ad assumere la loro posizione finale. 17

18 Bubble Sort: analisi della complessità Quanti confronti e spostamenti si effettuano al più? In generale, se il Vettore V è di dimensione n, allora il numero massimo di confronti e spostamenti equivale al numero di coppie consecutive coinvolte nelle varie iterazioni, ossia: ( n 1) + ( n 2) = ( n 1) = n 2 n 2 = Θ( n Il Bubble Sort ha quindi complessità polinomiale di ordine 2. 2 ) 18

19 Bubble Sort void BubleSort(int *V, int size) { int i,j; } for (i=size; i>=1; i--) for (j=0; j<i; j++) if (V[j] > V[j+1]) scambia(&v[j], &V[j+1]); NOTA: l Algoritmo potrebbe essere modificato in modo da terminare nel caso il vettore V sia già ordinato alla generica iterazione i. 19

20 Quicksort (ordinamento veloce) Alla base del Quicksort vi è un procedimento che porta un elemento del Vettore (pivot o perno) scelto secondo un qualche criterio (generalmente il primo elemento del Vettore) ad occupare la sua posizione finale. Contemporaneamente effettua degli spostamenti in maniera tale che tutti gli elementi minori di pivot siano a sinistra, e gli elementi maggiori a destra. La procedura descritta viene chiamata di partizionamento, e se si applica ricorsivamente ai sottovettori (partizioni) così determinati, si otterrà l ordinamento sperato. Alla base dell Algoritmo Quicksort vi è dunque la procedura di partizionamento del Vettore. 20

21 Quicksort (ordinamento veloce) La procedura Partiziona utilizza due indici, l e r, per scandire simultaneamente V dal primo elemento in poi, e dall ultimo all indietro, ed effettuando lo scambio dei due elementi in esame se l ordine non è rispettato, finché l < r. All inizio tengo fisso l e faccio scorrere r all indietro; dopo aver effettuato uno scambio, tengo fisso r e faccio scorrere l. Esempio, sia V = {34,27,64,25,18,29,76,81} e 34 il pivot, {34,27,64,25,18,29,76,81} quando V[l] = 34 e V[r] = 29, viene effettuato lo scambio, {29,27,64,25,18,34,76,81} adesso faccio scorrere l {29,27,64,25,18,34,76,81} effettuo lo scambio {29,27,34,25,18,64,76,81} adesso faccio scorrere r {29,27,34,25,18,64,76,81} effettuo lo scambio {29,27,18,25,34,64,76,81} adesso faccio scorrere l {29,27,18,25,34,64,76,81} l == r, la partizione è fatta! 21

22 Quicksort: analisi della complessità Supponiamo che la dimensione del Vettore e la distribuzione degli elementi contenuti siano tali da generare dei partizionamenti sempre bilanciati (caso migliore ). Quanti partizionamenti devo effettuare? La prima suddivisione produce 2 sottovettori di n/2 elementi ciascuno, la seconda 4 sottovettori di n/4 elementi ciascuno L ultima suddivisione, diciamo la p-esima, genera 2p sottovettori di n/2 p = 1 elementi ciascuno, quindi p = log 2 (n). La scansione dei singoli sottovettori è lineare; la suddivisione del Vettore V viene fatta in n passi, la seconda suddivisione prevede la scansione di 2 sottovettori di dimensione n/2, che in totale da n passi, poi 4 sottovettori di dimensione n/4 che in totale da ancora n passi In generale, se p è il numero di partizionamenti del Vettore, il numero totale di passi sarà n*p, quindi in questo caso la complessità del Quicksort sarà: Θ ( np) = Θn ( log ( )) 2 n 22

23 Quicksort: analisi della complessità L algoritmo del Quicksort è considerato ottimo tra quelli che operano confronti e spostamenti, ma il comportamento dell algoritmo dipende strettamente da come sono distribuiti i dati e anche dalla scelta del pivot. Se per esempio gli elementi sono già ordinati, il partizionamento sarà fortemente sbilanciato (caso pessimo ) e la complessità degenera a quella quadratica, come nel Bubble Sort. Esistono metodi stabili la cui complessità è sempre proporzionale a Θ(nlog 2 (n)) (es: Mergesort). 23

24 Quicksort int Partiziona(int *V, int l, int r) { while (l < r) { while (V[l] <= V[r] && l < r) r--; if (l < r) { scambia(&v[l],&v[r]); while (V[l] <= V[r] && l < r) l++; if (l < r) scambia(&v[l],&v[r]); } } } return l; //l == r sarà l indice relativo al pivot 24

25 int main() { Quicksort(V,0,size-1); } Quicksort void Quicksort(int *V, int l, int r) { int perno; } if (l < r) { perno = Partiziona(V,l,r); Quicksort(V,l,perno-1); Quicksort(V,perno+1,r); } 25

Fondamenti di Informatica. Algoritmi di Ricerca e di Ordinamento

Fondamenti di Informatica. Algoritmi di Ricerca e di Ordinamento Fondamenti di Informatica Algoritmi di Ricerca e di Ordinamento 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare se un elemento fa parte della sequenza oppure l elemento

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Algoritmi

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Algoritmi UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA Algoritmi Algoritmi classici Alcuni problemi si presentano con elevata frequenza e sono stati ampiamente studiati Ricerca di un elemento in un vettore

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Algoritmi di ordinamento Gli ordinamenti interni sono fatti su sequenze in memoria centrale Fondamenti di Informatica 18. Algoritmi di ordinamento in C++ Gli ordinamenti esterni sono fatti su sequenze

Dettagli

Algoritmi di ricerca. Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati.

Algoritmi di ricerca. Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati. E. Calabrese: Fondamenti di Informatica Algoritmi-1 Algoritmi di ricerca Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati. Per esempio: - cercare

Dettagli

Algoritmi di ordinamento

Algoritmi di ordinamento Algoritmi di ordinamento! Selection Sort! Quick Sort! Lower bound alla complessità degli algoritmi di ordinamento Ordinamento 1 Selection Sort SelectionSort(dati[]) { for (i=0; idati.length-1; i++) { min

Dettagli

Costo di esecuzione e complessità. Modello di costo e complessità di un algoritmo

Costo di esecuzione e complessità. Modello di costo e complessità di un algoritmo Costo di esecuzione e complessità Modello di costo e complessità di un algoritmo Il costo di esecuzione di un algoritmo quantifica le risorse necessarie per l esecuzione dell algoritmo stesso numero di

Dettagli

QUICKSORT. Basato sul paradigma divide-et-impera (come MERGE-SORT)

QUICKSORT. Basato sul paradigma divide-et-impera (come MERGE-SORT) QUICKSORT Basato sul paradigma divide-et-impera (come MERGE-SORT) Divide: stabilisce un valore di q tale da dividere l array A[p.. r] in due sottoarray non vuoti A[p.. q] e A[q+1.. r], dove ogni elemento

Dettagli

Albero di Riscorsione

Albero di Riscorsione Albero di Riscorsione Albero di ricorsione Un albero di ricorsione è un modo di visualizzare cosa accade in un algoritmo divide et impera L etichetta della radice rappresenta il costo non ricorsivo della

Dettagli

Algoritmi di Ricerca. Esempi di programmi Java

Algoritmi di Ricerca. Esempi di programmi Java Fondamenti di Informatica Algoritmi di Ricerca Esempi di programmi Java Fondamenti di Informatica - D. Talia - UNICAL 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it Ultimo aggiornamento: 3 novembre 2010 1 Trova la somma/1 Scrivere un algoritmo che dati in input un array A[1... n] di n interi

Dettagli

Algoritmi di ordinamento: Array e ricorsione

Algoritmi di ordinamento: Array e ricorsione Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ 1 Algoritmi di ordinamento: Array e ricorsione 2 1 Indice Algoritmi di ordinamento: Insertion

Dettagli

Nell informatica esistono alcuni problemi particolarmente rilevanti, poiché essi:

Nell informatica esistono alcuni problemi particolarmente rilevanti, poiché essi: Pag 24 3) Il problema della ricerca Nell informatica esistono alcuni problemi particolarmente rilevanti, poiché essi: si incontrano in una grande varietà di situazioni reali; appaiono come sottoproblemi

Dettagli

Scopo: ordinare una sequenza di elementi in base a una certa relazione d ordine. Ipotesi: gli elementi siano memorizzati in un array.

Scopo: ordinare una sequenza di elementi in base a una certa relazione d ordine. Ipotesi: gli elementi siano memorizzati in un array. ALGORITMI DI ORDINAMENTO Scopo: ordinare una sequenza di elementi in base a una certa relazione d ordine lo scopo finale è ben definito algoritmi equivalenti diversi i algoritmi i possono avere efficienza

Dettagli

LE STRUTTURE DATI DINAMICHE: GLI ALBERI. Cosimo Laneve

LE STRUTTURE DATI DINAMICHE: GLI ALBERI. Cosimo Laneve LE STRUTTURE DATI DINAMICHE: GLI ALBERI Cosimo Laneve 1 argomenti 1. definizione di alberi e nozioni relative 2. implementazione degli alberi, creazione, visita 3. algoritmo di visita iterativa e sua implementazione

Dettagli

RICERCA IN UN VETTORE

RICERCA IN UN VETTORE RICERCA IN UN ETTORE La ricerca controlla se gli elementi di un vettore contengono un certo valore dato (detto anche chiave K) e comunica se l'elemento cercato esiste non esiste e nel caso che esista può

Dettagli

Algoritmi di Ricerca. Esempi di programmi Java

Algoritmi di Ricerca. Esempi di programmi Java Fondamenti di Informatica Algoritmi di Ricerca Esempi di programmi Java Fondamenti di Informatica - D. Talia - UNICAL 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare

Dettagli

Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti

Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente,

Dettagli

Calcolare x n = x x x (n volte)

Calcolare x n = x x x (n volte) Calcolare x n = x x x (n volte) Abbiamo bisogno di: una variabile ris in cui ad ogni iterazione del ciclo si ha un risultato parziale, e che dopo l ultima iterazione contiene il risultato finale; una variabile

Dettagli

Corso di Fondamenti di Informatica

Corso di Fondamenti di Informatica Corso di Fondamenti di Informatica Gli algoritmi di base sul tipo array: ordinamento e ricerca Claudio De Stefano - Corso di Fondamenti di Informatica 1 Algoritmi di ordinamento gli algoritmi si differenziano

Dettagli

Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti

Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Alberto Montresor 27 marzo 2012 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente,

Dettagli

Note per la Lezione 4 Ugo Vaccaro

Note per la Lezione 4 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 2016 2017 Note per la Lezione 4 Ugo Vaccaro Ripasso di nozioni su Alberi Ricordiamo che gli alberi rappresentano una generalizzazione delle liste, nel senso che

Dettagli

public static boolean occorre (int[] a, int n) { int i = 0; boolean trovato = false;

public static boolean occorre (int[] a, int n) { int i = 0; boolean trovato = false; Metodi iterativi con array monodimensionali 1. Scrivere un metodo che, dato un array di interi a, restituisce il valore minimo in a. public static int minimo (int[] a) { int min = a[0]; for (int i=1; i

Dettagli

Heap e code di priorità

Heap e code di priorità Heap e code di priorità Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica AA 2009/2010

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/20010 I. Castelli Alberi binari di ricerca, A.A. 2009/20010

Dettagli

Analisi algoritmi ricorsivi e relazioni di ricorrenza

Analisi algoritmi ricorsivi e relazioni di ricorrenza Analisi algoritmi ricorsivi e relazioni di ricorrenza Punto della situazione Finora abbiamo affrontato: il tempo di esecuzione di un algoritmo, l analisi asintotica con le notazioni asintotiche e la tecnica

Dettagli

Problemi di ordinamento

Problemi di ordinamento Problemi di ordinamento Input: una sequenza di n numeri a 1, a 2,..., a n ; Output: una permutazione a 1, a 2,..., a n di a 1, a 2,..., a n tale che a 1 a 2... a n. Generalmente, la sequenza è rappresentata

Dettagli

Complessità degli algoritmi. Obiettivi: Calcolare (valutare) la complessità di un algoritmo Confrontare algoritmi risolutivi del medesimo problema

Complessità degli algoritmi. Obiettivi: Calcolare (valutare) la complessità di un algoritmo Confrontare algoritmi risolutivi del medesimo problema Complessità degli algoritmi Obiettivi: Calcolare (valutare) la complessità di un algoritmo Confrontare algoritmi risolutivi del medesimo problema 1 Algoritmo Sequenza logica di istruzioni elementari (univocamente

Dettagli

La ricerca. Sequenziale Binaria L ordinamento. Selection Sort Appendice: Quick Sort. Sommario FONDAMENTI DI INFORMATICA 1. Ricapitolando un po

La ricerca. Sequenziale Binaria L ordinamento. Selection Sort Appendice: Quick Sort. Sommario FONDAMENTI DI INFORMATICA 1. Ricapitolando un po Università degli Studi di Cagliari Corso di Laurea in Ingegneria Biomedica (Industriale), Chimica, Meccanica, Elettrica FONDAMENTI DI INFORMATICA 1 http://www.diee.unica.it/~marcialis/fi1 A.A. 2010/2011

Dettagli

Algoritmo di ordinamento per scambio (a bolle o bubble sort)

Algoritmo di ordinamento per scambio (a bolle o bubble sort) Algoritmo di ordinamento per scambio (a bolle o bubble sort) Per ottenere un ordinamento crescente con l algoritmo di ordinamento per scambio (bubble sort) si prenno in considerazione i primi due elementi

Dettagli

GLI ALBERI BINARI DI RICERCA. Cosimo Laneve

GLI ALBERI BINARI DI RICERCA. Cosimo Laneve GLI ALBERI BINARI DI RICERCA Cosimo Laneve argomenti 1. alberi binari di ricerca 2. la ricerca di elementi e la complessità computazionale 3. operazione di cancellazione di elementi 4. esempi/esercizi

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

Tecniche Algoritmiche: divide et impera

Tecniche Algoritmiche: divide et impera Tecniche Algoritmiche: divide et impera Una breve presentazione F. Damiani - Alg. & Lab. 04/05 Divide et impera (o Divide and conquer) Per regnare occorre tenere divisi i nemici e trarne vantaggio F. Damiani

Dettagli

Algoritmi di ordinamento: Array e ricorsione

Algoritmi di ordinamento: Array e ricorsione Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ 1 Algoritmi di ordinamento: Array e ricorsione 2 1 Insertion Sort Quicksort Heapsort Indice

Dettagli

ELEMENTI DI INFORMATICA L-B. Ing. Claudia Chiusoli

ELEMENTI DI INFORMATICA L-B. Ing. Claudia Chiusoli ELEMENTI DI INFORMATICA L-B Ing. Claudia Chiusoli Materiale Lucidi delle lezioni Date degli appelli Testi di esami precedenti Informazioni e contatti http://www.lia.deis.unibo.it/courses/ Programma del

Dettagli

LA COMPLESSITA DEGLI ALGORITMI

LA COMPLESSITA DEGLI ALGORITMI LA COMPLESSITA DEGLI ALGORITMI Tra i problemi che ammettono soluzione esistono problemi facili e difficili. Teoria della complessità (anni 70): complessità di un problema; valutazione dell efficienza degli

Dettagli

Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007

Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007 Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007 Dott.Davide Di Ruscio Dipartimento di Informatica Università degli Studi di L Aquila Lezione del 07/02/07 Nota Questi lucidi sono tratti

Dettagli

COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI

COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI Fondamenti di Informatica a.a.200.2005/06 Prof. V.L. Plantamura Dott.ssa A. Angelini Ω (grande omega) Diciamo che T(n) = Ω (f(n)), - leggiamo T(n) ha complessità

Dettagli

Algoritmi e Strutture Dati. Capitolo 4 Ordinamento: Selection e Insertion Sort

Algoritmi e Strutture Dati. Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati Capitolo 4 Ordinamento: Selection e Insertion Sort Ordinamento Dato un insieme S di n elementi presi da un dominio totalmente ordinato, ordinare S in ordine non crescente o non

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it Ultimo aggiornamento: 10 novembre 2010 1 La bandiera nazionale (problema 4.7 del libro di testo). Il problema della bandiera

Dettagli

Sapendo che il vettore è ordinato, la ricerca può essere ottimizzata Vettore ordinato in senso non decrescente: Vettore ordinato in senso crescente:

Sapendo che il vettore è ordinato, la ricerca può essere ottimizzata Vettore ordinato in senso non decrescente: Vettore ordinato in senso crescente: Sapendo che il vettore è ordinato, la ricerca può essere ottimizzata Vettore ordinato in senso non decrescente: Esiste una relazione d ordine totale sul dominio degli elementi se i

Dettagli

Array e Oggetti. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 12. A. Miola Dicembre 2006

Array e Oggetti. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 12. A. Miola Dicembre 2006 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa 12 Array e Oggetti A. Miola Dicembre 2006 http://www.dia.uniroma3.it/~java/fondinf1/ Array e Oggetti 1 Contenuti Array paralleli

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2 Dispensa 06 Algoritmi di ordinamento C. Limongelli Febbraio 2008 http://www.dia.uniroma3.it/~java/fondinf2/ Algoritmi di Ordinamento 1

Dettagli

Complessità degli algoritmi

Complessità degli algoritmi Complessità degli algoritmi Il problema della ricerca e dell ordinamento Complessità Tra i problemi che ammettono soluzione esistono problemi facili e problemi difficili. complessità di un problema; complessità

Dettagli

Esercizi Capitolo 12 - Divide-et-Impera

Esercizi Capitolo 12 - Divide-et-Impera Esercizi Capitolo 12 - Divide-et-Impera Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

La programmazione nel linguaggio C

La programmazione nel linguaggio C Cancellazione : versione ricorsiva Sfruttiamo la visione ricorsiva della struttura dati per realizzare la cancellazione in modo ricorsivo 1. la cancellazione della vuota non richiede alcuna azione 2. la

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati schifano@fe.infn.it Laurea di Informatica - Università di Ferrara 2011-2012 [1] I Dizionari I dizionari sono un caso particolare di insieme in cui sono possibili le seguenti operazioni: verificare l appartenenza

Dettagli

Quicksort e qsort() Alessio Orlandi. 28 marzo 2010

Quicksort e qsort() Alessio Orlandi. 28 marzo 2010 Quicksort e qsort() Alessio Orlandi 28 marzo 2010 Intro Quicksort è l algoritmo di ordinamento più implementato, insieme con Mergesort. Tutte le librerie standard UNIX ne prevedono una implementazione.

Dettagli

Appunti di informatica. Lezione 10 anno accademico Mario Verdicchio

Appunti di informatica. Lezione 10 anno accademico Mario Verdicchio Appunti di informatica Lezione 10 anno accademico 2016-2017 Mario Verdicchio Esercizio Scrivere un programma che, data una sequenza di 10 interi (scelta dall utente), la ordini in ordine crescente Soluzione

Dettagli

Alberi Binari di Ricerca

Alberi Binari di Ricerca Alberi Binari di Ricerca Algoritmi su gli alberi binari: visite Dato un puntatore alla radice di un albero vogliamo scandire in modo sistematico tutti i nodi di tale albero In una lista abbiamo una unica

Dettagli

INTRODUZIONE INTRODUZIONE TABELLE HASH FUNZIONE HASH

INTRODUZIONE INTRODUZIONE TABELLE HASH FUNZIONE HASH INTRODUZIONE INTRODUZIONE Una tabella hash è una struttura dati che permette operazioni di ricerca e inserimento molto veloci: in pratica si ha un costo computazionale costante O(1). Si ricorda che la

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

Algoritmi di ordinamento. Sequential-sort, Bubble-sort, Quicksort

Algoritmi di ordinamento. Sequential-sort, Bubble-sort, Quicksort Algoritmi di ordinamento Sequential-sort, Bubble-sort, Quicksort Definizione Dato un multi-insieme V={Vn} N-1 n=0 di valori in D, il problema dell ordinamento è trovare una permutazione n(j) degli indici

Dettagli

Algoritmi e strutture di dati 2

Algoritmi e strutture di dati 2 Algoritmi e strutture di dati 2 Paola Vocca Lezione 1: Divide et Impera 1 Paradigma del divide et impera Strutturato in tre fasi. Sia Π() istanza di dimensione di un problema computazionale Π (dove è immediato

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Alberi AVL Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 26/7 Alberi AVL Definizione (bilanciamento in altezza): un albero è bilanciato

Dettagli

Laboratorio di Algoritmi e Strutture Dati. Aniello Murano. people.na.infn.it/~murano/ Murano Aniello - Lab. di ASD Terza Lezione

Laboratorio di Algoritmi e Strutture Dati. Aniello Murano. people.na.infn.it/~murano/ Murano Aniello - Lab. di ASD Terza Lezione Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ Heap e Heapsort Algoritmi di ordinamento Insertion Sort Quicksort Heapsort Insertion Sort L

Dettagli

Esercizi vari. Alberto Montresor. 19 Agosto, 2014

Esercizi vari. Alberto Montresor. 19 Agosto, 2014 Esercizi vari Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle rispettive soluzioni

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 I conigli di Fibonacci Ricerca Binaria L isola dei conigli

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Il concetto di dato Il concetto di tipo di dato Insertion Sort for j 2 to lenght[a]

Dettagli

n n 1 n = > Il calcolo del fattoriale La funzione fattoriale, molto usata nel calcolo combinatorio, è così definita

n n 1 n = > Il calcolo del fattoriale La funzione fattoriale, molto usata nel calcolo combinatorio, è così definita Il calcolo del fattoriale La funzione fattoriale, molto usata nel calcolo combinatorio, è così definita n! = 1 n( n 1)! se se n n = > 0 0 dove n è un numero intero non negativo Il calcolo del fattoriale

Dettagli

Algoritmi e Strutture Dati Geometria Computazionale. Daniele Loiacono

Algoritmi e Strutture Dati Geometria Computazionale. Daniele Loiacono Algoritmi e Strutture Dati Geometria Computazionale Riferimenti 2 T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Introduction to Algorithms, Second Edition Queste trasparenze sono disponibili su http://dei.polimi.it/upload/loiacono

Dettagli

Ordinamento per inserzione e per fusione

Ordinamento per inserzione e per fusione Ordinamento per inserzione e per fusione Alessio Orlandi 15 marzo 2010 Fusione: problema Problema Siano A e B due array di n A e n B interi rispettivamente. Si supponga che A e B siano ordinati in modo

Dettagli

Capitolo 9. Tipi enumerativi, tipi generici e interfacce. c 2005 Pearson Education Italia Capitolo 9-1 / 73

Capitolo 9. Tipi enumerativi, tipi generici e interfacce. c 2005 Pearson Education Italia Capitolo 9-1 / 73 Capitolo 9 Tipi enumerativi, tipi generici e interfacce c 2005 Pearson Education Italia Capitolo 9-1 / 73 Sommario: Tipi enumerativi, tipi generici e interfacce 1 Definizione di tipi enumerativi La classe

Dettagli

Esercizi riassuntivi (Fondamenti di Informatica 2 Walter Didimo) Soluzioni

Esercizi riassuntivi (Fondamenti di Informatica 2 Walter Didimo) Soluzioni Esercizi riassuntivi (Fondamenti di Informatica 2 Walter Didimo) Soluzioni Esercizio 1 Dire quale è la complessità temporale del seguente metodo, espressa con notazione asintotica O(.) (con la migliore

Dettagli

Esercizi C su array e matrici

Esercizi C su array e matrici Politecnico di Milano Esercizi C su array e matrici Massimo, media e varianza,, ordinamento, ricerca e merge, matrice simmetrica, puntatori Array Array o vettore Composto da una serie di celle int vett[4]

Dettagli

Un vettore è una struttura dati che permette di memorizzare sequenze di dati omogeneii (sequenze di interi, di valori booleani,...

Un vettore è una struttura dati che permette di memorizzare sequenze di dati omogeneii (sequenze di interi, di valori booleani,... Vettori (array) Un vettore è una struttura dati che permette di memorizzare sequenze di dati omogeneii (sequenze di interi, di valori booleani,...) I vettori sono caratterizzati da dimensione tipo Es.

Dettagli

Trasformare array paralleli in array di record

Trasformare array paralleli in array di record Trasformare array paralleli in array di record Un array è una struttura di dati omogenea: gli elementi dell array sono tutti dello stesso tipo (che è il tipo dell array). A volte è necessario gestire informazioni

Dettagli

Esercitazione 6. Alberi binari di ricerca

Esercitazione 6. Alberi binari di ricerca Esercitazione 6 Alberi binari di ricerca Struttura base Rappresentabile attraverso una struttura dati concatenata in cui ogni nodo è un oggetto di tipo struttura Ogni nodo contiene: campo chiave (key)

Dettagli

Algoritmi e Strutture di Dati I 1. Algoritmi e Strutture di Dati I Massimo Franceschet francesc

Algoritmi e Strutture di Dati I 1. Algoritmi e Strutture di Dati I Massimo Franceschet  francesc Algoritmi e Strutture di Dati I 1 Algoritmi e Strutture di Dati I Massimo Franceschet http://www.sci.unich.it/ francesc Algoritmi e Strutture di Dati I 2 Oggetti e puntatori Un oggetto è un area di memoria

Dettagli

Si può fare di meglio?

Si può fare di meglio? Si può fare di meglio? Gli algoritmi visti fino ad ora hanno costo O(n 2 ) È possibile fare di meglio? Quanto meglio? Algoritmi e Strutture Dati 1 Algoritmi divide et impera Idea generale Divide: Scomporre

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi Asintotica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Un graduale processo di astrazione Passo 1: abbiamo ignorato il costo effettivo

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e strutture dati Roberto Cordone A. A. 2015-16 Capitolo 3 Implementazioni dei dizionari ordinati Nota: queste dispense sono un rapido riassunto delle lezioni svolte nel dicembre 2015 e gennaio

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA

UNIVERSITA DEGLI STUDI DI PERUGIA UNIVERSITA DEGLI STUDI DI PERUGIA REGISTRO DELLE LEZIONI E DELLE ALTRE ATTIVITÀ DIDATTICHE Anno accademico 2006-2007 Dott./Prof. Pinotti Maria Cristina Settore scientifico-disciplinare INF01 Facoltà Scienze

Dettagli

Inserimento in una lista ordinata

Inserimento in una lista ordinata Inserimento in una lista ordinata Vogliamo inserire un nuovo elemento in una lista in cui gli elementi sono memorizzati in ordine crescente: Passo 1: creare un nuovo nodo della lista Passo 2: trovare il

Dettagli

Prof. E. Occhiuto INFORMATICA 242AA a.a. 2010/11 pag. 1

Prof. E. Occhiuto INFORMATICA 242AA a.a. 2010/11 pag. 1 Operazioni sulle liste Definiamo una serie di procedure e funzioni per operare sulle liste. Usiamo liste di interi per semplicità, ma tutte le operazioni sono realizzabili in modo del tutto analogo su

Dettagli

Corso di Fondamenti di Programmazione canale E-O. Un esempio. Funzioni ricorsive. La ricorsione

Corso di Fondamenti di Programmazione canale E-O. Un esempio. Funzioni ricorsive. La ricorsione Corso di Fondamenti di Programmazione canale E-O Tiziana Calamoneri Ricorsione DD Cap. 5, pp. 160-184 KP Cap. 5, pp. 199-208 Un esempio Problema: prendere in input un intero e calcolarne il fattoriale

Dettagli

alberi binari di ricerca (BST)

alberi binari di ricerca (BST) Le tabelle di simboli e gli alberi binari di ricerca (BT) ianpiero abodi e Paolo amurati Dip. utomatica e Informatica Politecnico di Torino Tabelle di simboli Definizione: una tabella di simboli è una

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 9 Agosto, 204 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Lezione 9 Alberi binari di ricerca

Lezione 9 Alberi binari di ricerca Lezione 9 Alberi binari di ricerca Rossano Venturini rossano.venturini@unipi.it Pagina web del corso http://didawiki.cli.di.unipi.it/doku.php/informatica/all-b/start Esercizio 1 Lista monodirezionale Scrivere

Dettagli

Complessità algoritmi su strutture dati (riassunto)

Complessità algoritmi su strutture dati (riassunto) Complessità algoritmi su strutture dati (riassunto) Struttura di dato Algoritmo di ricerca Complessità (caso peggiore) applicabile Tavola come array non Ricerca sequenziale O(N) ordinato (N elementi) Tavola

Dettagli

La ricorsione. Sommario. Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino

La ricorsione. Sommario. Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino La ricorsione Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino Sommario! Definizione di ricorsione e strategie divide et impera! Semplici algoritmi ricorsivi! Merge

Dettagli

Programmazione I - corso B a.a prof. Viviana Bono

Programmazione I - corso B a.a prof. Viviana Bono Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica Programmazione I - corso B a.a. 2009-10 prof. Viviana Bono Blocco 15 Algoritmi su array: selection sort, insertion sort, fusione

Dettagli

Fondamenti di Informatica II 9. Complessità computazionale

Fondamenti di Informatica II 9. Complessità computazionale Scelta di un algoritmo Fondamenti di Informatica II 9. Complessità computazionale Dato un problema, esistono diversi algoritmi che permettono di risolverlo. I fattori che possono influenzare la scelta

Dettagli

Esercizio 1. E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1. livello 0 FB = -1. livello 1 FB = -1.

Esercizio 1. E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1. livello 0 FB = -1. livello 1 FB = -1. Esercizio 1 E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1 livello 0 FB = -1 FB = -1 livello 1 FB = -1 livello 2 livello 3 L altezza è 3, il minimo si trova nel

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e strutture dati Roberto Cordone A. A. 2015-16 Capitolo 4 Implementazioni delle partizioni Nota: queste dispense sono un rapido riassunto delle lezioni svolte nel dicembre 2015 e gennaio 2016.

Dettagli

SOMMARIO IL PROBLEMA DELLA RICERCA. Algoritmi di ricerca: Algoritmi di ordinamento: RICERCA LINEARE

SOMMARIO IL PROBLEMA DELLA RICERCA. Algoritmi di ricerca: Algoritmi di ordinamento: RICERCA LINEARE SOMMARIO IL PROBLEMA DELLA RICERCA Algoritmi di ricerca: Ricerca lineare; Ricerca binaria (su elenchi già ordinati). Dato un array e un oggetto, stabilire se l oggetto è contenuto in un elemento dell array,

Dettagli

Tecniche di Ordinamento dei Vettori

Tecniche di Ordinamento dei Vettori Tecniche di Ordinamento dei Vettori Corso di Laurea Ingegneria Corso B A.A. 2010-2011 1 Contenuto 1) Generalità 2) Metodi a Minimo Ingombro di Memoria 2.1) Ordinamento per selezione ( Selection Sort )

Dettagli

Corso di Tecniche di Programmazione

Corso di Tecniche di Programmazione Corso di Tecniche di Programmazione Corsi di Laurea in Ingegneria Informatica ed Automatica Anno Accedemico 003/004 Proff. Giuseppe De Giacomo, Luca Iocchi, Domenico Lembo Dispensa : Algoritmi di Ordinamento

Dettagli

alberi completamente sbilanciati

alberi completamente sbilanciati alberi completamente sbilanciati Il numero dei nodi al livello i è 1, per 0 i altezza L altezza h di un albero completamente sbilanciato con n nodi è h = n-1 1 Un albero completamente bilanciato o pieno

Dettagli

Dati e Algoritmi I (Pietracaprina) Esercizi su Alberi Binari di Ricerca e (2,4)-Tree

Dati e Algoritmi I (Pietracaprina) Esercizi su Alberi Binari di Ricerca e (2,4)-Tree Dati e Algoritmi I (Pietracaprina) Esercizi su Alberi Binari di Ricerca e (2,4)-Tree Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1 Si definisca Interval Tree un albero binario di ricerca le

Dettagli

B-Alberi Esercitazioni

B-Alberi Esercitazioni B-Alberi Esercitazioni Introduzione B-Trees: alberi bilanciati di ricerca progettati per essere memorizzati su dischi magnetici. Dischi magnetici molto più lenti delle memorie ad accesso casuale. La misura

Dettagli

Esercizi di preparazione alla prova scritta

Esercizi di preparazione alla prova scritta Esercizi di preparazione alla prova scritta ARGOMENTI: Istruzione dominante, complessità ESERCIZIO n 1 Si analizzi il seguente frammento di codice C: #define N 10 int V[N]={1,2,3,4,5,6,7,8,9,10;... main()

Dettagli

Ricerca binaria (o dicotomica) di un elemento in un vettore

Ricerca binaria (o dicotomica) di un elemento in un vettore Ricerca binaria (o dicotomica) di un elemento in un La ricerca binaria o dicotomica è utilizzata per ricercare i dati in un ORDNATO. L algoritmo di ricerca binaria, dopo ogni confronto, scarta metà degli

Dettagli

Argomenti della lezione. Introduzione agli Algoritmi e alle Strutture Dati. Lista Lineare. Lista Lineare come Tipo di Dato Astratto

Argomenti della lezione. Introduzione agli Algoritmi e alle Strutture Dati. Lista Lineare. Lista Lineare come Tipo di Dato Astratto Argomenti della lezione Introduzione agli Algoritmi e alle Strutture Dati Operazioni su Liste Dr. Emanuela Merelli Tipi di Dato Astratto Lista Lineare Pila Coda Concetto di Struttura dati dinamiche Lista

Dettagli

Informatica 3. Informatica 3. LEZIONE 17: Alberi generici. Lezione 17 - Modulo 1. Introduzione. ADT dell albero generico.

Informatica 3. Informatica 3. LEZIONE 17: Alberi generici. Lezione 17 - Modulo 1. Introduzione. ADT dell albero generico. Informatica 3 Informatica 3 LEZIONE 17: lberi generici Lezione 17 - Modulo 1 Modulo 1: Definizione e DT Modulo 2: Implementazione Modulo 3: lberi e classi di equivalenza Definizione e DT Politecnico di

Dettagli

Lezione 8 programmazione in Java. Anteprima. La ricorsione. Nicola Drago Dipartimento di Informatica Università di Verona

Lezione 8 programmazione in Java. Anteprima. La ricorsione. Nicola Drago Dipartimento di Informatica Università di Verona Lezione 8 programmazione in Java Nicola Drago nicola.drago@univr.it Dipartimento di Informatica Università di Verona Anteprima Programmazione ricorsiva Fattoriale Somma di n numeri Torre di Hanoi Array

Dettagli

Un albero completamente bilanciato o pieno (full) alberi completamente sbilanciati. Un albero binario completo

Un albero completamente bilanciato o pieno (full) alberi completamente sbilanciati. Un albero binario completo alberi completamente sbilanciati Un albero completamente bilanciato o pieno (full) Definizione: Un albero è pieno se tutte le foglie sono sullo stesso livello e ogni nodo non foglia ha due figli. Il numero

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2 Dispensa 05 Complessità C. Limongelli Febbraio 2008 http://www.dia.uniroma3.it/~java/fondinf2/ Complessita' 1 Contenuti!Costo computazionale

Dettagli

Divide et impera. Divide et impera. Divide et impera. Divide et impera

Divide et impera. Divide et impera. Divide et impera. Divide et impera Divide et impera Divide et impera La tecnica detta divide et impera è una strategia generale per impostare algoritmi (par. 9.4). Consideriamo un problema P e sia n la dimensione dei dati, la strategia

Dettagli

Sommario. Le strutture dati elementari per implementare sequenze: Vettori Liste

Sommario. Le strutture dati elementari per implementare sequenze: Vettori Liste Sequenze Sommario Le strutture dati elementari per implementare sequenze: Vettori Liste Strutture dati elementari Le strutture dati vettore e lista sono fra le strutture dati più usate e semplici Il loro

Dettagli

Ordinamento. Ordinamento. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona

Ordinamento. Ordinamento. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Gli array in java Problema ordinamento Selection sort per array di oggetti:

Dettagli