Esercizi sull Association Analysis

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sull Association Analysis"

Transcript

1 Data Mining: Esercizi sull Association Analysis 1 Esercizi sull Association Analysis 1. Si consideri il mining di association rule da un dataset T di transazioni, rispetto a delle soglie minsup e minconf. Si chiamino standard le regole estratte secondo il framework tradizionale. Una regola standard r : X Y è detta anche essenziale se X = 1 oppure per ogni X X, con X, confidenza(x Y (X X ) < confidenza(r). (a) Si consideri un dataset T con le seguenti 5 transazioni: (ABCD), (ABCE), (ABC), (ABE), (BCD). Usando minsup=0.5 e minconf=0.5, trovare una regola standard X Y con X > 1 che non sia essenziale. (b) Di quali regole standard non essenziali una regola essenziale può essere considerata rappresentante? (c) Per un generico dataset T, si consideri una regola standard r : X Y con confidenza c minconf. Si supponga che per un certo item a X valga che supporto(x) = supporto({a}). (i) Dimostrare che per un qualsiasi itemset X X, con a X, si ha che confidenza(x Y (X X )) = c. (ii) In base al risultato del punto (i), dimostrare che se X = m, esistono in T Ω (2 m ) regole standard non essenziali. (a) L itemset ABC ha supporto 3/5 > 0.5. Le regole A BC e AB C hanno entrambe confidenza 3/4 > 0.5, quindi la seconda di esse è standard ma non essenziale. (b) Una regola essenziale r : X Y con confidenza c può essere considerata rappresentante di tutte le regole r : X Y (X X ), con X X che hanno confidenza(r ) = confidenza(r). Infatti, relativamente a queste regole X è l itemset minimale la cui presenza in una transazione implica la presenza di X Y con confidenza c. (c) (i) Sia X X, con a X. Dalla antimonotonicità del supporto si ha che supporto({a}) supporto(x ) supporto(x). Ma poiché per ipotesi supporto(x) = supporto({a}), allora deve valere che supporto(x ) = supporto(x), e quindi confidenza(x (X Y ) X ) = supporto(x Y ) supporto(x ) = supporto(x Y ) supporto(x) = c.

2 Data Mining: Esercizi sull Association Analysis 2 (ii) Dal punto precedente si deduce che tutte le 2 m 1 regole del tipo X Y (X X ), con a X X, sono standard con lo stesso supporto e la stessa confidenza c di r, ma l unica essenziale è quella con X = {a}. 2. Sia T un dataset di transazioni sull insieme di item I. Per ogni i I sia s i il supporto dell itemset {i}. Per ogni itemset X I sia max(x) = max{s i : i X}. Si definisca la misura µ(x) = Supporto(X). max(x) (Si noti che µ coincide con l h-confidence definita a lezione.) (a) Si dimostri che µ( ) è una misura antimonotona. (b) Data una regola associativa r : X Y, provare che Confidenza(r) µ(x Y ). (c) Data una soglia minmu (0, 1), sia F k l insieme di itemset X di lunghezza k tali che µ(x) minmu, per ogni k 1. Fissato k > 1, e definito C k = {X {i} : (X F k 1 ) (i I X) (s i max(x))}, dimostrare che F k C k. (a) Si considerino due itemset X, Y I con X Y. Per l antimonotonicità del supporto si ha che Supporto(X) Supporto(Y ), ed è facile vedere che max(y ) max(x). Quindi µ(x) = Supporto(X) max(x) Supporto(Y ) max(x) Supporto(Y ) max(y ) = µ(y ) (b) È facile vedere che Supporto(X) max(x) max(x Y ). Di consegeunza Confindenza(r) = Supporto(X Y ) Supporto(X) Supporto(X Y ) max(x Y ) = µ(x Y ) (c) Sia X = {i 1, i 2,..., i k } un itemset di lunghezza k con µ(x) minmu, e sia s ik = max(x). Per l antimonotonicità di µ( ) provata precedentemente, si ha che X = {i 1, i 2,..., i k 1 } X è tale per cui µ(x ) µ(x) minmu, e quindi X F k 1. Inoltre vale che s ik max(x ). Quindi l itmeset X = X {i k } fa parte di C k.

3 Data Mining: Esercizi sull Association Analysis 3 3. Si consideri un dataset T di transazioni sull insieme di item I. Per un itemset X si definisca T X come l insieme di transazioni che contengono X, e si definisca Chiusura(X) = t T X t. Dimostrare le seguenti proprietà: (a) Supporto(Chiusura(X)) = Supporto(X); (b) Chiusura(X) è un itemset chiuso; (c) Se X è chiuso, allora X = Chiusura(X). Per comodità di notazione, definiamo Y = Chiusura(X). (a) È facile vedere che X Y e quindi, per l antimonotonicità del supporto, si ha che Supporto(X) Supporto(Y ). Inoltre, dato che Y è contenuto per definizione in tutte le transazioni di T X, si ha che Supporto(Y ) T X / T = Supporto(X). Ne consegue che Supporto(Y ) = Supporto(X). (b) Per assurdo, supponiamo che Y non sia un itemset chiuso e, quindi, che esista un item a Y tale che Y {a} abbia lo stesso supporto di Y. Allora, sfruttando quanto provato nel punto precedente, possiamo affermare che X Y Y {a}, e che Supporto(X) = Supporto(Y ) = Supporto(Y {a}). Ne consegue che T X = T Y = T Y {a}. Ciò implica che l item a è presente in tutte le transazioni che contengono X, ovvero nella loro intersezione, e quindi, per definizione di chiusura, si ha che a Y, contraddicendo la scelta di a. (c) Supponiamo che X sia chiuso. Sappiamo già che X Y e che X e Y hanno lo stesso supporto. Se X fosse diverso da Y esisterebbe un sovrainsieme proprio di X che ha lo stesso suo supporto, e quindi X non sarebbe chiuso. 4. Si consideri un dataset T di transazioni sull insieme di item I. Per un itemset X si definisca T X come l insieme di transazioni che contengono X, e si ricordi che se X è chiuso allora vale che X = Chiusura(X) = t T X t. (a) Siano X, Y I due itemset chiusi e sia Z = X Y. Trovare una relazione che lega T Z a T X e T Y (motivando la risposta) e dimostrare che Z è chiuso. (b) Per un itemset X si definisca la seguente misura: µ(x) = max{confidenza(w X) : W I, W X = }. Dimostrare che µ( ) è antimonotona.

4 Data Mining: Esercizi sull Association Analysis 4 (a) Poichè Z è contenuto in una qualsiasi transazione di T X e in una qualsiasi transazione di T Y, si ha che T X T Y T Z. Se Z non fosse chiuso esisterebbe un item a Z tale che l itemset V = Z {a} avrebbe lo stesso supporto di Z e quindi sarebbe contenuto in tutte le transazioni che contengono Z. Quindi a sarebbe contenuto in tutte le transazioni di T X e in tutte le transazioni di T Y, e quindi poiché X = t T X t e Y = t T Y t, si avrebbe che a X e a Y e quindi a X Y = Z che contraddice la scelta di a. (b) Siano X, X due itemset con X X, e supponiamo che µ(x ) = max{confidenza(w X ) : W I, W X = } = Confidenza( W X ), per un qualche itemset W disgiunto da X. Chiaramente si ha che W è anche disgiunto da X e che µ(x) Confidenza( W X) = Supporto( W X) Supporto( W ) Quindi la misura è antimonotona. Supporto( W X ) Supporto( W ) = µ(x ). 5. Siano I 1 = {a 1, a 2,..., a n } e I 2 = {b 1, b 2,..., b m } due insiemi distinti di item, con n pari ed m log 2 n. Si consideri un dataset T = {t 1, t 2,..., t n } di n transazioni su I 1 I 2, dove I 1 t i I 1 I 2 per ogni 1 i n/2 t i I 2 per ogni n/2 < i n (a) Fare un esempio di un tale dataset T con n = 8 e m = 3, in cui non ci siano due transazioni uguali. (N.B. Per i punti successivi non usare questo particolare dataset ma uno arbitrario che soddisfi le ipotesi date.) (b) Dimostrare che rispetto a T esistono almeno 2 n 1 itemset non vuoti di supporto 1/2. (c) Sia X un itemset chiuso rispetto a T. Dimostrare che se X contiene almeno un item di I 1 allora deve contenere per forza tutto I 1. (d) Usare il punto precedente per dare un limite superiore al numero di itemset chiusi rispetto a T. (a) Esercizio. (b) Un qualsiasi X I 1 ha supporto 1/2. Esistono 2 n 1 sottoinsiemi non vuoti di I 1.

5 Data Mining: Esercizi sull Association Analysis 5 (c) Sia X chiuso tale che X I 1 e sia T X l insieme delle transazioni che contengono X. Chiarmente T X {t 1, t 2,..., t n/2 }, e quindi ogni transazione che contiene X contiene anche tutto I 1. Ne consegue che Supporto(X) = Supporto(X I 1 ), e se X non contenesse tutto I 1 si avrebbe un superset di X, X I 1, con lo stesso supporto di X, contraddicendo l ipotesi di chiusura di X. (d) Partizioniamo l insieme di itemset chiusi in due gruppi: il gruppo A degli itemset chiusi che contengono item di I 1 ; e il gruppo B degli itemset chiusi che non contengono item di I 1. Dal punto precedente sappiamo che ciascun itemset in A deve contenere tutto I 1. Quindi gli itemset in A possono distinguersi solo in base agli item di I 2. Allora, due itemset nel gruppo A non possono contenere lo stesso sottoinsieme di item di I 2, e quindi ci possono essere al più 2 m itemset in A. Analogamente, due itemset nel gruppo B non possono contenere lo stesso sottoinsieme di item di I 2, e quindi ci possono essere al più 2 m 1 itemset in B (escludendo l itemset vuoto). Quindi gli itemset chiusi sono meno di 2 2 m = 2 m Sia dato un insieme I = {a 1, a 2,..., a n } {b 1, b 2,..., b n } di 2n item, e un dataset T = {t 1, t 2,..., t n } di n transazioni su I, dove t i = {a 1, a 2,... a n, b i } per 1 i n. Per minsup = 1/n, determinare il numero di itemset chiusi frequenti e il numero di itemset massimali. Sia A = {a 1, a 2,..., a n } e B = {b 1, b 2,..., b n }. Ogni sottoinsieme di A ha supporto 1, mentre ogni itemset formato da un sottoinsieme di A e un item di B ha supporto 1/n. Tutti gli altri itemset hanno supporto 0. In questo caso gli itemset chiusi frequenti sono n + 1, ovvero, l itemset A e tutti gli itemset del tipo A {b i }, per 1 i n. Tutti questi itemset, tranne A sono anche massimali, quindi il numero di itemset massimali è n. 7. Si consideri l algoritmo apriori per la determinazione degli itemset frequenti in un dataset D di transazioni su un insieme ordinato di item I. Per ogni k 1, sia F k, l insieme degli itemset frequenti di lunghezza k. Per ogni X F k, siano X[1], X[2],..., X[k] i suoi item in ordine crescente. Per k > 1, nell algoritmo si usa il metodo apriori-gen(f k 1 ) per generare itemset di lunghezza k candidati a essere frequenti. Si supponga di implementare apriori-gen(f k 1 ) come segue:

6 Data Mining: Esercizi sull Association Analysis 6 C k ; for each X F k 1 do for each (i F 1 ) do if (i > X[k 1]) then aggiungi X {i} a C k rimuovi da C k ogni candidato che contiene itemset di taglia k 1 non in F k 1 return C k Dimostrare che l insieme C k restituito coincide con quello restituito nella implementazione standard di apriori-gen. Sia C k l insieme di candidati restituiti dall implementazione standard di apriori-gen. Per dimostrare che C k = C k, dimostriamo le seguenti due relazioni: (1) C k C k ; e (2) C k C k. Dimostriamo C k C k. Sia Z C k, e quindi Z = X {i} per un qualche X F k 1 e i F 1, con i > X[k 1]. Definito Y = X[1 k 2] {i}, si vede che sia X che Y fanno parte di F k 1 e condividono un prefisso di lunghezza k 2. Quindi Z = X Y sarà inserito in C k nella fase di candidate generation dell implementazione standard e non potrà essere tolto nella successiva fase di candidate pruning dato che sopravvive alla identica fase di pruning dell implementazione data nell esercizio. Dimostriamo ora che C k C k. Sia Z C k. Allora deve essere che Z = X Y, dove X, Y F k 1, X Y, e X[1... k 2] = Y [1... k 2]. Senza perdita di generalità, assumiamo che X[k] < Y [k]. Allora, Z = X {Y [k]}. Dato che X F k 1 e, per l antimonotonicità del supporto, Y [k] F 1, si ha che Z viene aggiunto a C k nei due cicli for innestati dell implementazione data nell esercizio. Dato che Z C k significa che sopravvive alla fase di pruning dell implementazione standard, e quindi deve sopravvivere alla fase di pruning dell implementazione data nell esercizio. Ne consegue che Z C k. 8. Si consideri una sequenza S[0, n 1] di simboli sull alfabeto Σ. Un motivo per S è una sequenza X[0, k 1] su Σ, con k < n, e il suo supporto (assoluto) è Supporto(X) = {i : 0 i < n and S[i, i + k 1] = X}. Ad esempio, aab è un motivo per bcaabdeaabaab con supporto 3. (a) Dimostrare che per il supporto dei motivi vale una proprietà di antimonotonia. (b) Data una soglia minsup [1, n], e dato k 1, sia F k l insieme di motivi di lunghezza k frequenti (cioè con supporto almeno minsup). Dati X, Y F k tali che X[1, k 1] = Y [0, k 2] si definisca fusione(x, Y ) il motivo X[0]Y (ad es., abcd = fusione(abc,bcd)). Sia C k+1 = {fusione(x, Y ) : X, Y F k and X[1, k 1] = Y [0, k 2]}. Dimostrare che F k+1 C k+1.

7 Data Mining: Esercizi sull Association Analysis 7 (a) Sia X[0, k 1] una sequenza su Σ e X = X[l, r] una sua sottosequenza, con 0 l r < k. Si ha che per ogni indice i tale che S[i, i + k 1] = X allora S[i + l, i + r] = X. E quindi, Supporto(X ) Supporto(X). (b) Si consideri una sequenza Z[0, k] F k+1 arbitraria, e si definisca X = Z[0, k 1] e Y = Z[1, k]. Per l antimonotonicità del supporto illustrata nel punto precedente, si deve avere che X, Y F k. Poiché Z = fusione(x, Y ), allora Z C k+1.

1 Giochi a due, con informazione perfetta e somma zero

1 Giochi a due, con informazione perfetta e somma zero 1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Regole di Associazione

Regole di Associazione Metodologie per Sistemi Intelligenti Regole di Associazione Prof. Pier Luca Lanzi Laurea in Ingegneria Informatica Politecnico di Milano Polo regionale di Como Esempio Esempio Regole di Associazione Scopo

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 26 marzo 2015 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html COOPERAZIONE Esempio: strategie correlate e problema

Dettagli

Mining Positive and Negative Association Rules:

Mining Positive and Negative Association Rules: Mining Positive and Negative Association Rules: An Approach for Confined Rules Alessandro Boca Alessandro Cislaghi Premesse Le regole di associazione positive considerano solo gli item coinvolti in una

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:...

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:... Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

Rappresentare i nessi logici con gli insiemi

Rappresentare i nessi logici con gli insiemi Rappresentare i nessi logici con gli insiemi È un operazione molto utile in quesiti come quello nell Esempio 1, in cui gruppi di persone o cose vengono distinti in base a delle loro proprietà. Un elemento

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che:

Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che: Teoria dei Giochi, Trento, 2004/05 c Fioravante Patrone 1 Teoria dei Giochi Corso di laurea specialistica: Decisioni economiche, impresa e responsabilità sociale, A.A. 2004/05 Soluzioni degli esercizi

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

ESERCIZI SVOLTI. 1) Dimostrare che l insieme. non è ricorsivo. Soluzione: Definiamo l insieme

ESERCIZI SVOLTI. 1) Dimostrare che l insieme. non è ricorsivo. Soluzione: Definiamo l insieme ESERCIZI SVOLTI 1) Dimostrare che l insieme Allora notiamo che π non è vuoto perché la funzione ovunque divergente appartiene all insieme avendo per dominio l insieme. Inoltre π non coincide con l insieme

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j. LEZIONE 31 31.1. Domini di funzioni di più variabili. Sia ora U R n e consideriamo una funzione f: U R m. Una tale funzione associa a x = (x 1,..., x n ) U un elemento f(x 1,..., x n ) R m : tale elemento

Dettagli

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno NORMALIZZAZIONE DI SCHEMI RELAZIONALI Prof.ssa Rosalba Giugno PROBLEMA GENERALE La progettazione concettuale e logica produce uno schema relazionale che rappresenta la realta dei dati nella nostra applicazione.

Dettagli

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11 Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005 Docente: Ugo Vaccaro Lezione 11 In questa lezione vedremo alcune applicazioni della tecnica greedy al progetto di algoritmi on-line. Vediamo

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI Il criterio più semplice è il seguente. CRITERI DI CONVERGENZA PER LE SERIE Teorema(condizione necessaria per la convergenza). Sia a 0, a 1, a 2,... una successione di numeri reali. Se la serie a k è convergente,

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

INdAM QUESITI A RISPOSTA MULTIPLA

INdAM QUESITI A RISPOSTA MULTIPLA INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova

Dettagli

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Rappresentazione di numeri Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Un numero e un entità teorica,

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

1 Insiemi e terminologia

1 Insiemi e terminologia 1 Insiemi e terminologia Assumeremo come intuitiva la nozione di insieme e ne utilizzeremo il linguaggio come strumento per studiare collezioni di oggetti. Gli Insiemi sono generalmente indicati con le

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa 10 Correttezza A. Miola Novembre 2007 http://www.dia.uniroma3.it/~java/fondinf1/ Correttezza 1 Contenuti Introduzione alla correttezza

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero

Dettagli

Insiemi di livello e limiti in più variabili

Insiemi di livello e limiti in più variabili Insiemi di livello e iti in più variabili Insiemi di livello Si consideri una funzione f : A R, con A R n. Un modo per poter studiare il comportamento di una funzione in più variabili potrebbe essere quello

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS INTRODUZIONE Per conoscere la struttura di un grafo connesso è importante individuare nel grafo la distribuzione di certi punti detti cutpoints (punti

Dettagli

Introduzione alla teoria dei database relazionali. Come progettare un database

Introduzione alla teoria dei database relazionali. Come progettare un database Introduzione alla teoria dei database relazionali Come progettare un database La struttura delle relazioni Dopo la prima fase di individuazione concettuale delle entità e degli attributi è necessario passare

Dettagli

Moto uniforme sul toro bidimensionale

Moto uniforme sul toro bidimensionale 4/3/06 Luigi Chierchia Moto uniforme sul toro bidimensionale 1. Il toro bidimensionale Denotiamo con R l insieme dei numeri reali e con Z l insieme dei numeri interi (con segno) {..., 2, 1, 0, 1, 2,...};

Dettagli

Funzioni continue. ) della funzione calcolata in x 0, ovvero:

Funzioni continue. ) della funzione calcolata in x 0, ovvero: Funzioni continue Dal punto di vista intuitivo dire che una funzione è continua in un intervallo è come dire che nel disegnare il suo grafico non stacchiamo mai la penna dal foglio. Scriviamo adesso la

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

void funzioneprova() { int x=2; cout<<"dentro la funzione x="<<x<<endl; }

void funzioneprova() { int x=2; cout<<dentro la funzione x=<<x<<endl; } FUNZIONI 57. Cosa servono le funzioni? A spezzare il programma in diverse parti relativamente indipendenti fra loro, ovvero interagenti sono attraverso i parametri di input ed IL VALORE di uscita. In questo

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Note su quicksort per ASD 2010-11 (DRAFT)

Note su quicksort per ASD 2010-11 (DRAFT) Note su quicksort per ASD 010-11 (DRAFT) Nicola Rebagliati 7 dicembre 010 1 Quicksort L algoritmo di quicksort è uno degli algoritmi più veloci in pratica per il riordinamento basato su confronti. L idea

Dettagli

Raffinamento dello schema e forme normali. T. Catarci, M. Scannapieco, Corso di Basi di Dati, A.A. 2008/2009, Sapienza Università di Roma

Raffinamento dello schema e forme normali. T. Catarci, M. Scannapieco, Corso di Basi di Dati, A.A. 2008/2009, Sapienza Università di Roma Raffinamento dello schema e forme normali 1 Forme Normali Le forme normali consentono di valutare la qualità delle relazione Sono state proposte diverse forme normali che includono, in ordine di generalità:

Dettagli

Attributi e domini. A per {A}; XY per X Y (pertanto A 1 A 2 A 3 denota

Attributi e domini. A per {A}; XY per X Y (pertanto A 1 A 2 A 3 denota Attributi e domini Assumiamo un universo infinito numerabile U = {A 0, A 1, A 2...} di attributi. Denotiamo gli attributi con A, B, C, B 1, C 1... e gli insiemi di attributi con X, Y, Z, X 1,... per brevità

Dettagli

F (x) = f(x) per ogni x I. Per esempio:

F (x) = f(x) per ogni x I. Per esempio: Funzioni Primitive (Integrali Indefiniti) (l.v.) Pur essendo un argomento che fa parte del Calcolo Differenziale, molti autori inseriscono funzioni primitive nel capitolo sul Calcolo Integrale, in quanto

Dettagli

DOMINI A FATTORIZZAZIONE UNICA

DOMINI A FATTORIZZAZIONE UNICA DOMINI A FATTORIZZAZIONE UNICA CORSO DI ALGEBRA, A.A. 2012-2013 Nel seguito D indicherà sempre un dominio d integrità cioè un anello commutativo con unità privo di divisori dello zero. Indicheremo con

Dettagli

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006 PROGETTO OLIMPII I MTEMTI U.M.I. UNIONE MTEMTI ITLIN SUOL NORMLE SUPERIORE IGiochidirchimede-Soluzioniiennio novembre 006 Griglia delle risposte corrette Problema Risposta corretta E 4 5 6 7 8 9 E 0 Problema

Dettagli

Calcolatori Elettronici A a.a. 2008/2009

Calcolatori Elettronici A a.a. 2008/2009 Calcolatori Elettronici A a.a. 2008/2009 PRESTAZIONI DEL CALCOLATORE Massimiliano Giacomin Due dimensioni Tempo di risposta (o tempo di esecuzione): il tempo totale impiegato per eseguire un task (include

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Luigi Piroddi piroddi@elet.polimi.it

Luigi Piroddi piroddi@elet.polimi.it Automazione industriale dispense del corso 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul grafo di raggiungibilità,

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio 1. Sia f: R 3 R 2 (x, y, z) (x + 2y + z, y + z). (1) Verificare che f è lineare. (2) Determinare una base di ker(f) e stabilire se f è iniettiva. (3) Calcolare w

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ 1 Esercitazione di laboratorio: Problema del venditore Terza parte 2 1 Esercizio del venditore

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Matematica 1 - Corso di Laurea in Ingegneria Meccanica Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Il problema La CMC produce automobili in uno stabilimento

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli