Support Vector Machines

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Support Vector Machines"

Transcript

1 F94) Metodi statistici per l apprendimento Support Vector Machines Docente: Nicolò Cesa-Bianchi versione 28 maggio 208 La Support Vector Machine d ora in poi SVM) è un algoritmo di apprendimento per classificatori lineari che, fissato un training set linearmente separabile x, y ),..., x m, y m ) R d {, +}, genera il classificatore lineare corrispondente all unica soluzione w R d del seguente problema di ottimizzazione convessa con vincoli lineari w R d 2 w 2 s.t. y t w x t t =,..., m. ) Geometricamente, w rappresenta l iperpiano separatore a margine massimo, come dimostrato nel seguito. eorema. Per ogni x, y ),..., x m, y m ) R d {, +} linearmente separabile, il vettore u che realizza il margine massimo γ = max u : u = soddisfa u = γ w, dove w è soluzione di ). y t u x t t=,...,m Dimostrazione. Si noti che u è identificato dalla soluzione del seguente problema di ottimizzazione max γ>0 γ 2 s.t. u 2 = y t u x t γ t =,..., m. Infatti, u che massimizza γ è lo stesso u che massimizza γ 2 dato che la funzione fγ) = γ 2 è monotona crescente per γ > 0. Dividendo per γ > 0 entrambi i membri di ciascun vincolo y t u x t γ otteniamo il vincolo equivalente y t u )/ x t γ. Eseguendo il cambio di variabile w = u/γ, e notando che w 2 = /γ 2 a causa del vincolo u 2 =, otteniamo quindi il problema equivalente w 2 w R d s.t. γ 2 w 2 = y t w x t t =,..., m. Si noti ora che il vincolo γ 2 w 2 = è superfluo in quanto, per ogni w R d, posso trovare γ > 0 tale che il vincolo è soddisfatto. Quindi lo possiamo eliare. Scalando la funzione obiettivo per la costante 2 otteniamo w R d 2 w 2 s.t. y t w x t t =,..., m che conclude la dimostrazione

2 Abbiamo quindi mostrato l equivalente fra il problema di massimizzare il margine di u mantenendo la norma u costante ed il problema di imizzare la norma w mantenendo il margine di w costante. La seguente nozione ci aiuta a calcolare la forma della soluzione ottima w. Lemma 2 Condizione di ottimalità di Fritz John). Si consideri il problema w R d fw) s.t. g t w) 0 t =,..., m dove le funzioni f, g,..., g m sono differenziabili. Se w 0 è una soluzione ottima, allora esiste un vettore α R m tale che fw 0 ) + α t g t w 0 ) = 0 t I dove I = { t m : g t w 0 ) = 0}. Applicando la condizione di Fritz John alla funzione obiettivo SVM, con fw) = 2 w 2 e g t w) = y t w x t otteniamo che w α t y t x t = 0. t I Quindi la soluzione ha forma w = t I α t y t x t dove I denota l insieme di quegli esempi di training x t, y t ) tali che y t w ) x t =. Questi x t sono i cosiddetti vettori di supporto, ovvero quelle istanze di training sulle quali w ha margine esattamente pari a. Se levassimo dal training set tutti gli esempi tranne quelli di supporto la soluzione SVM non cambierebbe. Passiamo ora a considerare il caso di un training set non linearmente separabile. Come dobbiamo cambiare la funzione obiettivo SVM? Un modo di farlo è il seguente, w R d λ 2 w 2 + m t= s.t. y t w x t ξ t t =,..., m ξ t 0 t =,..., m. Le quantità ξ t vengono dette variabili di slack e misurano di quanto ciascun vincolo di margine è violato da una potenziale soluzione w. La media delle violazioni viene poi aggiunta alla funzione obiettivo. Un coefficiente di regolarizzazione λ > 0 è introdotto per bilanciare i due teri della funzione obiettivo. Consideriamo ora i vincoli che coinvolgono le ξ t, ovvero ξ t y t w x t e ξ t 0. Per imizzare ciascun ξ t, possiamo porre { yt w ξ t = x t se y t w x t < 0 altrimenti. 2 ξ t

3 Ovvero, se il vincolo y t w x t è soddisfatto da w, allora ξ t non serve e la poniamo a zero. Altrimenti, se il vincolo non è soddisfatto da w, allora scegliamo il imo valore di ξ t che lo soddisfa, cioè y t w x t. Riassumendo, ξ t = y t w x t, che corrisponde alla definizione + hinge loss. Ponendo h t w) = y t w x t, il problema di SVM nel caso non linearmente separabile può + allora essere riscritto come F w), dove w Rd F w) = m h t w) + λ 2 w 2. t= Dimostriamo ora che, anche nel caso di training set non linearmente separabili, la soluzione w appartiene al sottospazio delle combinazioni lineari di esempi del training set moltiplicati dalle loro etichette. eorema 3. Il imo di F è rappresentabile come combinazione lineare di y x,..., y m x m. Dimostrazione. Sia w il imo di F. Per assurdo, supponiamo che w = α t y t x t + u t= dove u R d è la componente di w ortogonale al sottospazio descritto da x,..., x m. Quindi, in particolare, y t u x t = 0 t =,..., m. 2) Ora sia v = w u. Primo, v 2 w 2 dato che abbiamo tolto a w una componente ortogonale a v, e quindi la sua lunghezza è diuita. Secondo, h t v) = y t v x t + = y t w u ) xt + = y t w ) x t + y t u x t + = h tw ) usando 2). Quindi F v) F w ), che contraddice l ottimalità di w. Di conseguenza, u = 0. Notiamo che, come nel caso linearmente separabile, anche in questo caso più generale w dipenderà da un sottoinsieme di vettori di supporto. Ovvero, α t 0 solo per alcuni t. A differenza del caso lineare, questi vettori di supporto non saranno soltanto i punti del training set a margine imo rispetto a w, ma tutti i punti corrispondenti a variabili slack ξ t > 0. Dato che w è deterato da un sottinsieme dei punti del training set, possiamo limitare il rischio statistico del classificatore lineare h x) = w ) x usando le tecniche dei Compression bounds. In particolare, erh ) ẽrh ) + m N + N + ) ln m + ln ) δ con probabilità almeno δ rispetto all estrazione del training set, dove N è il numero dei vettori di supporto di w e ẽrh ) è la frazione degli esempi che non sono supporti e che sono classificati scorrettamente da h. 3

4 Proseguiamo mostrando come imizzare F usando OGD. Prima di tutto osserviamo che F w) = m l t w) dove l t w) = h t w) + λ 2 w 2 è una funzione λ-fortemente convessa. Infatti, λ 2 w 2 è λ-fortemente convessa e h t è convessa, il che implica che la loro somma è λ-fortemente convessa. Possiamo quindi applicare l algoritmo OGD per funzioni fortemente convesse alle funzioni l,..., l m. Questa particolare istanza di OGD prende il nome di Pegasos e può essere descritta come segue. t= Parametri: numero di cicli, coefficiente λ di regolarizzazione Input: raining set x, y ),..., x m, y m ) R d {, +} Inizializza w = 0 Per t =,...,. Estrai uniformemente a caso un elemento x Zt, y Zt ) del training set 2. w t+ = w t η t l Zt w t ) Output: w = w + + w ). Procediamo quindi ad analizzare Pegasos. Sia x Z, y Z ),..., x Z, y Z ) la sequenza di esempi del training set che sono stati estratti nel passo dell algoritmo, e sia l Z,..., l Z la corrispondente sequenza di funzioni di perdita. Cioè, l Zt w) = h Zt w) + λ 2 w 2 dove h Zt w) = y Zt w x Zt +. Sia w la soluzione della funzione obiettivo SVM, ) w = arg h t w) + λ w R d m 2 w 2 t=. 3) Per ogni realizzazione s,..., s delle variabili casuali Z,..., Z, l analisi di OGD per funzioni fortemente convesse dà immediatamente il risultato l st w t ) t= t= l st w ) + G2 2λ ln + ) 4) dove G = max l s t w t ) è anch essa una variabile casuale. t=,..., Per mostrare come questo risultato possa essere usato per maggiorare F w) useremo il fatto seguente E l Zt w t ) Z,..., Z t = l s w t ) = F w t ). 5) m Ovvero, condizionato sulle prime t estrazioni le quali deterano w t ), il valore atteso di l Zt w t ) è pari a F w t ). L altro fatto che useremo è che per ogni coppia di variabili casuali X, Y s= 4

5 vale EX = E EX Y. Quindi possiamo scrivere E F w) ) = E F w t t= E F w t ) usando la dis. di Jensen, dato che F è convessa t= = E E l Zt w t ) Z,..., Z t usando 5) t= = E l Zt w t ) usando EX = E EX Y t= E l Zt w ) + E G 2 ) ln + usando 4) 2λ t= = E E l Zt w ) Z,..., Z t + E G 2 ) ln + usando EX = E EX Y 2λ t= = F w ) + E G 2 ln + ) usando 5). 2λ Abbiamo così ottenuto E F w) F w ) + E G 2 ) ln +. 6) 2λ Quindi, se E G 2 è limitato da una costante, la media w dei vettori generati da OGD converge in valore atteso rispetto all estrazione a caso dei esempi dal training set) a w con tasso ln. Con un po di fatica in più è possibile dimostrare ma non lo facciamo qui) che w converge a w non solo in valore atteso ma anche in probabilità. Ora maggioriamo il valore di G per ogni realizzazione s,..., s delle variabili casuali Z,..., Z. Abbiamo l st w t ) = y st x st I{h st w t ) > 0} + λ w t. Sia v t = y st x st I{h st w t ) > 0}. Dato che η t = /λt), notiamo che l aggiornamento di w t ha una forma particolarmente semplice, w t+ = w t η t l t w t ) = w t + η t v t η t λw t = t ) w t + λt v t. Sia X = max s=,...,m x s. Dato che l st w t ) v t +λ w t X +λ w t, dobbiamo calcolare un maggiorante di w t. Per far ciò, esaiamo la ricorrenza w t+ = ) w t + t λt v t. Come è facilmente dimostrabile per induzione, w t+ è esprimibile come una combinazione lineare di v s per s =,..., t ma con quali coefficienti? Fissiamo un s t e notiamo che quando v s è aggiunto a questa somma esso ha coefficiente /λs). Quando viene calcolato w t+, v s avrà coefficiente pari a λs t r=s+ ) = r λs 5 t r=s+ r r = λt.

6 Quindi otteniamo una semplice espressione per w t+, w t+ = λt t v s. 7) Dato che w t+ è una media dei v s divisi per λ, abbiamo infine w t+ λ max s v s λ X. Questo ci fa concludere che l t w t ) X + λ w t 2X. s= Riportando questo maggiorante di G in 6) otteniamo E F w) F w ) + 2X2 λ ln + ). Il eorema 3 stabilisce che la soluzione w del problema SVM è rappresentabile come w = s S y s α s x s dove α s > 0 e S {t =,..., m : h t w ) > 0}. Una importante conseguenza di questo risultato è che possiamo risolvere il problema 3) in uno spazio di kernel H K, dove la funzione obiettivo F diventa F K g) = h t g) + λ m 2 g 2 K g H K t= con h t g) = y t gx t ) +. Nello spazio H K, la soluzione SVM diventa rappresentabile come y s α s Kx s, ) s S che è chiaramente un elemento dello spazio kernel { N } H K α i Kx i, ) : x,..., x N R d, α,..., α N R, N N i= Così come avevamo fatto per il Perceptrone, possiamo implementare Pegasos nello spazio kernel. In H K il predittore Pegasos 7) diventa con f t = y st Kx st, )I{h st g t ) > 0}. g + = λ t= f t 6

Il teorema di dualità forte

Il teorema di dualità forte Complementi di Algoritmi e Strutture Dati Il teorema di dualità forte Docente: Nicolò Cesa-Bianchi versione 13 maggio 2018 Ricordiamo la formulazione del problema di programmazione lineare nella sua forma

Dettagli

Online Gradient Descent

Online Gradient Descent F94 Metodi statistici per l apprendimento Online Gradient Descent Docente: Nicolò Cesa-Bianchi versione 30 aprile 08 L analisi del Perceptrone ha rivelato come sia possibile ottenere dei maggioranti sul

Dettagli

Rischio statistico e sua analisi

Rischio statistico e sua analisi F94 Metodi statistici per l apprendimento Rischio statistico e sua analisi Docente: Nicolò Cesa-Bianchi versione 7 aprile 018 Per analizzare un algoritmo di apprendimento dobbiamo costruire un modello

Dettagli

Online Gradient Descent

Online Gradient Descent F94 Metodi statistici per l apprendimento Online Gradient Descent Docente: Nicolò Cesa-Bianchi versione 9 aprile 06 L analisi del Perceptrone ha rivelato come sia possibile ottenere dei maggioranti sul

Dettagli

Funzioni kernel. Docente: Nicolò Cesa-Bianchi versione 18 maggio 2018

Funzioni kernel. Docente: Nicolò Cesa-Bianchi versione 18 maggio 2018 F94) Metodi statistici per l apprendimento Funzioni kernel Docente: Nicolò Cesa-Bianchi versione 18 maggio 2018 I predittori lineari possono soffrire di un errore di bias molto elevato in quanto predittore

Dettagli

Apprendimento statistico (Statistical Learning)

Apprendimento statistico (Statistical Learning) Apprendimento statistico (Statistical Learning) Il problema dell apprendimento Inquadriamo da un punto di vista statistico il problema dell apprendimento di un classificatore Un training set S={(x,y ),,(x

Dettagli

10. Il gruppo Speciale Lineare SL(V )

10. Il gruppo Speciale Lineare SL(V ) 1 2 3 4 5 6 7 8 9 1 10. Il gruppo Speciale Lineare SL(V ) Siano F un campo e V uno spazio vettoriale di dimensione n su F. Indichiamo con GL(V ) l insieme delle applicazioni lineari biiettive di V in sé.

Dettagli

ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno

ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 27 Gennaio 21 ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno Cognome : Nome : Esercizio 1. Si consideri il seguente problema: min

Dettagli

Apprendimento statistico (Statistical Learning)

Apprendimento statistico (Statistical Learning) Apprendimento statistico (Statistical Learning) Il problema dell apprendimento Inquadriamo da un punto di vista statistico il problema dell apprendimento di un classificatore Un training set S={(x,y ),,(x

Dettagli

7.9 Il caso vincolato: vincoli di disuguaglianza

7.9 Il caso vincolato: vincoli di disuguaglianza 7.9 Il caso vincolato: vincoli di disuguaglianza Il problema con vincoli di disuguaglianza: g i (x) 0, i = 1,..., p, (51) o, in forma vettoriale: g(x) 0, può essere trattato basandosi largamente su quanto

Dettagli

Kernel Methods. Corso di Intelligenza Artificiale, a.a Prof. Francesco Trovò

Kernel Methods. Corso di Intelligenza Artificiale, a.a Prof. Francesco Trovò Kernel Methods Corso di Intelligenza Artificiale, a.a. 2017-2018 Prof. Francesco Trovò 14/05/2018 Kernel Methods Definizione di Kernel Costruzione di Kernel Support Vector Machines Problema primale e duale

Dettagli

3 La curva di Peano. insieme di misura nulla in R m. Definiamo, ora,

3 La curva di Peano. insieme di misura nulla in R m. Definiamo, ora, Versione del 5/0/04 3 La curva di Peano Proposizione (a) Sia f : A R n R m con n < m. Se f è una funzione lipschitziana, allora f(a) è un insieme di misura nulla in R m. (b) Esiste una funzione ϕ C ( [0,

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Si noti che questa definizione dice esattamente che

Si noti che questa definizione dice esattamente che DISUGUAGLIANZA INTEGRALE DI JENSEN IN DIMENSIONE FINITA LIBOR VESELY integrazione. Prima disuguaglianza integrale di Jensen.. Motivazione. Siano un insieme convesso in uno spazio vettoriale, f : (, + ]

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 8-9 Soluzioni di alcuni esercizi Esercizi - I 3. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

10 Proprietà di Equipartizione Asintotica

10 Proprietà di Equipartizione Asintotica FX Teoria dell Informazione e della Trasmissione 0 Proprietà di Equipartizione Asintotica Docente: Nicolò Cesa-Bianchi versione 6 aprile 206 Come nel caso della codifica sorgente, anche nel caso della

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Prof. P. Piazza Soluzione compito a casa del 24/10/09

Corso di Laurea in Fisica. Geometria. a.a Prof. P. Piazza Soluzione compito a casa del 24/10/09 Corso di Laurea in Fisica. Geometria. a.a. 29-. Prof. P. Piazza Soluzione compito a casa del 24//9 Soluzione esercizio. Siano A e B due matrici simmetriche e λ un numero reale. Dobbiamo mostrare che anche

Dettagli

Appunti sui Codici di Reed Muller. Giovanni Barbarino

Appunti sui Codici di Reed Muller. Giovanni Barbarino Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità

Dettagli

Data Mining and Machine Learning Lab. Lezione 8 Master in Data Science for Economics, Business and Finance 2018

Data Mining and Machine Learning Lab. Lezione 8 Master in Data Science for Economics, Business and Finance 2018 Data Mining and Machine Learning Lab. Lezione 8 Master in Data Science for Economics, Business and Finance 2018 18.05.18 Marco Frasca Università degli Studi di Milano SVM - Richiami La Support Vector Machine

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 grafica Si consideri il seguente problema di programmazione lineare: max 3x 1 + 2x 2 s.t. + 2x 1 + x 2 4 2x 1 + x 2 2 + x 1 x 2 1 x 1, x 2 0 a) Risolvere il problema

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Nozioni di geometria Definizione: Un vettore y R n è combinazione conica dei vettori { 1,, k } se esistono k coefficienti reali λ

Dettagli

Spazi Vettoriali ed Applicazioni Lineari

Spazi Vettoriali ed Applicazioni Lineari Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it 12 ottobre 2010 1 Vero o falso? Per ciascuna delle seguenti affermazioni, dire se è vera o falsa, fornendo una dimostrazione:

Dettagli

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI Consideriamo l insieme R = R {, + } ottenuto aggiungendo all insieme dei numeri reali i simboli e +. Introduciamo in

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 7-8 Soluzioni di alcuni esercizi Esercizi - I. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

Fattorizzazione QR e matrici di Householder

Fattorizzazione QR e matrici di Householder Fattorizzazione QR e matrici di Householder ottobre 009 In questa nota considereremo un tipo di fattorizzazione che esiste sempre nel caso di matrici quadrate non singolari ad entrate reali. Definizione

Dettagli

Geometria per Fisica e Astrofisica

Geometria per Fisica e Astrofisica Geometria per Fisica e Astrofisica Soluzione esercizi - Foglio 3 Esercizio. Risolvere i seguenti sistemi lineari al variare dei parametri reali α β e k < < (a) x + y z = αx + αy + βz = x + y z = β. (b)

Dettagli

Esercizi di geometria per Fisica / Fisica e Astrofisica

Esercizi di geometria per Fisica / Fisica e Astrofisica Esercizi di geometria per Fisica / Fisica e Astrofisica Foglio 3 - Soluzioni Esercizio. Stabilire se i seguenti sottoinsiemi di R 3 sono sottospazi vettoriali: (a) S = {(x y z) R 3 : x + y + z = }. (b)

Dettagli

5.3 Alcune classi di funzioni integrabili

5.3 Alcune classi di funzioni integrabili 3. Si verifichi che per ogni f, g : [a, b] R si ha f g = g + (f g) 0, f g = f + g f g; dedurne che se f, g R(a, b) allora f g, f g R(a, b). [Traccia: si osservi che basta verificare che f 0 R(a, b), e

Dettagli

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44;

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; 1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; c 24 = 15; c 25 = 12; c 34 = 32; c 35 = 55; c 45 = 24 Si calcoli l ottimo duale (formulazione

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare p. 1/39 Geometria della programmazione lineare Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria Geometria della programmazione

Dettagli

Esercizi di Geometria 1 - Foglio 3bis

Esercizi di Geometria 1 - Foglio 3bis Esercizi di Geometria - Foglio 3bis Alessandro Rubin (alex.rubin@outlook.com) Si ringrazia Ricardo Tzantzoglou per il codice L A TEX condiviso dicembre 7 Esercizio. Sia f : V W un applicazione e G = {(v,

Dettagli

Si considera, come al solito, un problema di programmazione lineare in forma standard:

Si considera, come al solito, un problema di programmazione lineare in forma standard: LA FASE I DEL METODO DEL SIMPLESSO 149 6.5 LA FASE I DEL METODO DEL SIMPLESSO Comegiàdetto, il primoobiettivo dellafase Idel metododelsimplessoèquellodi verificare l ammissibilità del problema da risolvere.

Dettagli

Spazi affini e combinazioni affini.

Spazi affini e combinazioni affini. Spazi affini e combinazioni affini. Morfismi affini. Giorgio Ottaviani Abstract Introduciamo il concetto di combinazione affine in uno spazio affine, e in base a questo, ne caratterizziamo i sottospazi.

Dettagli

Apprendimento Automatico

Apprendimento Automatico Apprendimento Automatico Fabio Aiolli www.math.unipd.it/~aiolli Sito web del corso www.math.unipd.it/~aiolli/corsi/1516/aa/aa.html Rappresentazione dei dati con i kernel Abbiamo una serie di oggetti S

Dettagli

9. Test del χ 2 e test di Smirnov-Kolmogorov. 9.1 Stimatori di massima verosimiglianza per distribuzioni con densità finita

9. Test del χ 2 e test di Smirnov-Kolmogorov. 9.1 Stimatori di massima verosimiglianza per distribuzioni con densità finita 9. Test del χ 2 e test di Smirnov-Kolmogorov 9. Stimatori di massima verosimiglianza per distribuzioni con densità finita Supponiamo di avere un campione statistico X,..., X n e di sapere che esso è relativo

Dettagli

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da NOTE INTEGRATIVE PER IL CORSO DI ANALISI MATEMATICA 2 ANNO ACCADEMICO 2012/13 NOTE SULLA CONTINUITÀ UNIFORME D.BARTOLUCCI, D.GUIDO Sia f(x) = x 3, x [ 1, 1]. Si ha 1. La continuità uniforme x 3 y 3 = x

Dettagli

Trasformazione di Problemi Non Lineari

Trasformazione di Problemi Non Lineari Capitolo 2 Trasformazione di Problemi Non Lineari 2.1 Trasformazione in problema di PL In questa sezione, verranno presentati tre classi di problemi di programmazione non lineare che, attraverso l uso

Dettagli

1 Addendum su Diagonalizzazione

1 Addendum su Diagonalizzazione Addendum su Diagonalizzazione Vedere le dispense per le definizioni di autovettorre, autovalore e di trasformazione lineare (o matrice) diagonalizzabile. In particolare, si ricorda che una condizione necessaria

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 8

Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 8 Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005 Docente: Ugo Vaccaro Lezione 8 Ricordiamo ancora una volta il nostro meta-algoritmo per il progetto di algoritmi di approssimazione: 1.

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 5 Rango Definizione 1 Sia A M m,n (K) una matrice m n a coefficienti nel campo K Il rango

Dettagli

Studio qualitativo. Emanuele Paolini 2 luglio 2002

Studio qualitativo. Emanuele Paolini 2 luglio 2002 Studio qualitativo Emanuele Paolini 2 luglio 2002 Non sempre è possibile determinare esplicitamente le soluzione di una equazione differenziale. Ci proponiamo quindi di trovare dei metodi per determinare

Dettagli

Esistenza ed unicità per equazioni differenziali

Esistenza ed unicità per equazioni differenziali Esistenza ed unicità per equazioni differenziali Per concludere queste lezioni sulle equazioni differenziali vogliamo dimostrare il teorema esistenza ed unicità per il problema di Cauchy. Faremo la dimostrazione

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 5. Funzioni continue Soluzione dell Esercizio 76. Osserviamo che possiamo scrivere p() = n (a n + u()) e q() = m (b m + v()) con lim

Dettagli

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione.

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione. Se è unimodulare e è intero allora il poliedro 0 ha vertici interi. Sia un vertice di Per definizione esiste allora una base di tale che, 0 Poiché è non singolare ( invertibile det 0) si ha che det 1 è

Dettagli

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Data

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 3. Sistemi di equazioni lineari

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 3. Sistemi di equazioni lineari Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 3 Sistemi di equazioni lineari Siano m, n N \ {}, sia K un campo Definizione a) Un sistema

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Corso interno di Matematica compito scritto del n n+1

Corso interno di Matematica compito scritto del n n+1 Corso interno di Matematica compito scritto del 4.07.05 1. Dire se la serie converge e giustificare la risposta. n=1 1 n n+1 n Soluzione: Il criterio della radice o del rapporto falliscono; proviamo col

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

Massimo limite e minimo limite di una funzione

Massimo limite e minimo limite di una funzione Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

19 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

19 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

ELEMENTI DI LOGICA MATEMATICA LEZIONE VII

ELEMENTI DI LOGICA MATEMATICA LEZIONE VII ELEMENTI DI LOGICA MATEMATICA LEZIONE VII MAURO DI NASSO In questa lezione introdurremo i numeri naturali, che sono forse gli oggetti matematici più importanti della matematica. Poiché stiamo lavorando

Dettagli

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem Introduzione al Column Generation Caso di Studio: il Bin Packing Problem November 15, 2014 1 / 26 Introduzione Il column generation è una metodologia che può essere usata per risolvere problemi di ottimizzazione

Dettagli

Complementi ed Esercizi di Informatica Teorica II

Complementi ed Esercizi di Informatica Teorica II Complementi ed Esercizi di Informatica Teorica II Vincenzo Bonifaci 21 maggio 2008 4 Problemi di ottimizzazione: il Bin Packing Il problema bin packing è il seguente: dato un insieme di n oggetti di dimensioni

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

15 Informazione e Predizione

15 Informazione e Predizione (FX) Teoria dell Informazione e della Trasmissione 5 Informazione e Predizione Docente: Nicolò Cesa-Bianchi versione 4 maggio 03 Consideriamo una sorgente X, p. Dallo studio della codifica sorgente, sappiamo

Dettagli

A T x b x 0. che chiameremo problema primale, possiamo associare ad esso un altro problema di PL, detto problema duale, definito come segue.

A T x b x 0. che chiameremo problema primale, possiamo associare ad esso un altro problema di PL, detto problema duale, definito come segue. 1 Dualitá Dato un problema di PL in forma canonica max c T x A T x b x 0 che chiameremo problema primale, possiamo associare ad esso un altro problema di PL, detto problema duale, definito come segue min

Dettagli

Esercizi su ottimizzazione vincolata

Esercizi su ottimizzazione vincolata Esercizi su ottimizzazione vincolata 1. Rispondere alle seguenti domande (a) Quando un vincolo di disuguaglianza è detto attivo? (b) Cosa è l insieme delle soluzioni ammissibili? Gli algoritmi di ricerca

Dettagli

Analisi Matematica 2 - A

Analisi Matematica 2 - A Analisi Matematica 2 - A Soluzione Appello scritto del 29 Gennaio 2013 Esercizio 1 (10 punti Si consideri il Problema di Cauchy { y = y + y(0 = 0, dove y è la funzione incognita ed è la sua variabile.

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila

Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sommario 1. Sistemi di disequazioni lineari e poliedri 2. Poliedri e insiemi convessi 3. Disequazioni

Dettagli

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata.

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata. Scuola Normale Superiore, ammissione al IV anno del corso ordinario Prova scritta di Analisi Matematica per Fisica, Informatica, Matematica 26 Agosto 2 Esercizio. Siano (a n ) e (b n ) successioni di numeri

Dettagli

Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2017/2018. Giovanni Lafratta

Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2017/2018. Giovanni Lafratta Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2017/2018 Giovanni Lafratta ii Indice 1 Spazi, Disegni e Strategie Campionarie 1 2 Campionamento casuale

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1)

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1) Soluzioni Foglio 1. Rette e piani. Esercizio 1. Se n è la normale al piano, sia c = n x 0. Dimostriamo prima che se x π, allora x soddisfa Si ha Sostituendo dentro (1) si ottiene n x + c = 0. (1) x = x

Dettagli

Sistemi di Elaborazione dell Informazione 170. Caso Non Separabile

Sistemi di Elaborazione dell Informazione 170. Caso Non Separabile Sistemi di Elaborazione dell Informazione 170 Caso Non Separabile La soluzione vista in precedenza per esempi non-linearmente separabili non garantisce usualmente buone prestazioni perchè un iperpiano

Dettagli

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B =

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B = Corso di Laurea in Fisica. Geometria. a.a. 26-7. Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 7//6 Soluzione esercizio. Sia B {e, e 2 } e sia B {v, v 2 }. La matrice B del cambiamento di base

Dettagli

Soluzione. 8.1 Campagna pubblicitaria. Exercise session 8 Optimization Prof. E. Amaldi. Insiemi. I = {1,...,m}: insieme delle radio

Soluzione. 8.1 Campagna pubblicitaria. Exercise session 8 Optimization Prof. E. Amaldi. Insiemi. I = {1,...,m}: insieme delle radio Soluzione 8.1 Campagna pubblicitaria Insiemi I = {1,...,m}: insieme delle radio J = {1,...,n}: insieme dei giornali Variabili r i r 1 i : minuti sulla stazione radiofonica i I (sotto i 25) : minuti sulla

Dettagli

MIGLIOR APPROSSIMAZIONE IN SPAZI EUCLIDEI

MIGLIOR APPROSSIMAZIONE IN SPAZI EUCLIDEI MIGLIOR APPROSSIMAZIONE IN SPAZI EUCLIDEI A. SOMMARIVA Conoscenze richieste. Spazio vettoriale. Spazio normato. Vettori linearmente indipendenti. Sistemi lineari. Operatore delta di Kronecker. Conoscenze

Dettagli

1 Serie temporali. 1.1 Processi MA

1 Serie temporali. 1.1 Processi MA 1 Serie temporali Un processo stocastico 1 {X t, t T }, dove T = N o T = Z, si dice stazionario se (X 1,..., X n ) e (X k+1,...,x k+n ) hanno la stessa distribuzione per ogni n 1 e per ogni k T. Un processo

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) =

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) = LEZIONE 13 13.1. Il metodo degli scarti. Sia dato uno spazio vettoriale V su k = R, C e siano v 1,..., v n V. Quanto visto nella lezione precedente ci suggerisce il seguente algoritmo per stabilire se

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

LA STRUTTURA DEI PROBLEMI DI OTTIMIZZAZIONE. L'ipotesi di razionalità implica che un decisore cerchi di

LA STRUTTURA DEI PROBLEMI DI OTTIMIZZAZIONE. L'ipotesi di razionalità implica che un decisore cerchi di LA STRUTTURA DEI PROBLEMI DI OTTIMIZZAZIONE L'ipotesi di razionalità implica che un decisore cerchi di individuare la migliore tra tutte le alternative a sua disposizione. Problemi di ottimizzazione =

Dettagli

Miglior approssimazione in spazi euclidei

Miglior approssimazione in spazi euclidei Miglior approssimazione in spazi euclidei 15 gennaio 2009 1 Introduzione astratta Sia E uno spazio vettoriale dotato di un prodotto interno (, ) (talvolta un tale spazio è detto euclideo, cf. [7, p.148]),

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Real-Time Visual Tracking Fabio Baldo matr , Luigi Carozza matr Sommario Introduzione Teoria di base Support Vector Machines Newton Raph

Real-Time Visual Tracking Fabio Baldo matr , Luigi Carozza matr Sommario Introduzione Teoria di base Support Vector Machines Newton Raph Applicazione del filtraggio alla Kalman e ottimizzazione mediante Corso di Progettazione dei Sistemi di Controllo - Università degli studi di Padova 29 Febbraio 2012 Il comprende tutti quegli algoritmi

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

Il teorema di Ascoli-Arzelà

Il teorema di Ascoli-Arzelà Il teorema di Ascoli-Arzelà Alcuni risultati sugli spazi metrici Spazi metrici (e topologici) compatti Richiamiamo le definizioni di compattezza negli spazi metrici. Sia (X, d) una spazio metrico e sia

Dettagli

Geometria BAER I canale Foglio esercizi 3

Geometria BAER I canale Foglio esercizi 3 Geometria BAER I canale Foglio esercizi 3 Esercizio. Discutere le soluzioni del seguente sistema lineare nelle incognite,, z al variare del parametro k. 3 + kz = k k + 3z = k k + z = Soluzione: Il determinante

Dettagli

ANALISI MATEMATICA A SECONDO MODULO SOLUZIONI DEGLI ESERCIZI DELLA SETTIMANA 15. x 2 i

ANALISI MATEMATICA A SECONDO MODULO SOLUZIONI DEGLI ESERCIZI DELLA SETTIMANA 15. x 2 i ANALISI MATEMATICA A SECONDO MODULO SOLUZIONI DEGLI ESERCIZI DELLA SETTIMANA 15 (1) (Es 9 pag 117) Se per ogni x R n ( x := x 2 i ) 1/2 verificate che per ogni x, y R n vale la seguente legge del parallelogramma:

Dettagli

Università degli Studi di Bergamo Intelligenza Artificiale (Codice: 38066) 12 Giugno 2019

Università degli Studi di Bergamo Intelligenza Artificiale (Codice: 38066) 12 Giugno 2019 DIPARTIMENTO DI INGEGNERIA GESTIONALE, DELL INFORMAZIONE E DELLA PRODUZIONE Università degli Studi di Bergamo Intelligenza Artificiale (Codice: 38066) 12 Giugno 2019 Nome: Cognome: Matricola: Riga: Colonna:

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

INDUZIONE E NUMERI NATURALI

INDUZIONE E NUMERI NATURALI INDUZIONE E NUMERI NATURALI 1. Il principio di induzione Il principio di induzione è una tecnica di dimostrazione molto usata in matematica. Lo scopo di questa sezione è di enunciare tale principio e di

Dettagli

8 Derivati dell entropia

8 Derivati dell entropia (F1X) Teoria dell Informazione e della Trasmissione 8 Derivati dell entropia Docente: Nicolò Cesa-Bianchi versione 23 marzo 2016 Siano X e Y due variabili casuali con valori in insiemi finiti X e Y. Detta

Dettagli

Università degli Studi di Roma Tor Vergata

Università degli Studi di Roma Tor Vergata Funzioni kernel Note dal corso di Machine Learning Corso di Laurea Specialistica in Informatica a.a. 2010-2011 Prof. Giorgio Gambosi Università degli Studi di Roma Tor Vergata 2 Queste note derivano da

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare

Dettagli

Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se

Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se 1 Numeri naturali, interi e razionali Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se 1. 1 A. per ogni x A, si ha x + 1 A Definizione 1.. Chiamo insieme

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli