APPUNTI ANALISI MATEMATICA
|
|
|
- Marta Sacco
- 9 anni fa
- Visualizzazioni
Transcript
1 MAURIZIO TROMBETTA APPUNTI DEL CORSO DI ANALISI MATEMATICA PER IL DIPLOMA UNIVERSITARIO PARTE PRIMA
2
3 INDICE Capitolo Primo: INSIEMI, APPLICAZIONI, RELAZIONI 1 Gli insiemi... Pag 1 2 Operazioni fra insiemi Applicazioni Relazioni binarie Relazioni di equivalenza Relazioni d'ordine Esercizi Capitolo Secondo: GLI INSIEMI NUMERICI 1 I numeri naturali... Pag 17 2 Il Principio di Induzione Gli interi relativi I numeri razionali Insufficienza del campo razionale - I numeri reali Proprietà fondamentali di  Intervalli e intorni I numeri complessi Esercizi Capitolo Terzo: CALCOLO COMBINATORIO 1 Introduzione, insieme prodotto... Pag 39 2 Permutazioni semplici Disposizioni semplici Combinazioni semplici La formula di Newton Permutazioni e disposizioni con ripetizione Esercizi Capitolo Quarto: LE FUNZIONI ELEMENTARI 1 Funzioni reali di variabile reale... Pag 55 2 Polinomi e funzioni razionali La funzione esponenziale La funzione logaritmo Il numero e Le funzioni trigonometriche La forma trigonometrica dei numeri complessi Esercizi... 75
4 Capitolo Quinto: LIMITI E CONTINUITÀ 1 Limite di una successione... Pag 77 2 Limiti delle funzioni I teoremi sui limiti delle funzioni Le funzioni continue Continuità delle funzioni elementari Limiti notevoli I teoremi fondamentali sulle funzioni continue Esercizi Capitolo Sesto: INFINITI E INFINITESIMI 1 Ordini di infinito... Pag Ordini di infinitesimo Ordini di infinito o di infinitesimo e operazioni fra funzioni... 4 Ordini di infinito o di infinitesimo reali, soprareali, 114 sottoreali, infrareali Esercizi Capitolo Settimo: CALCOLO DIFFERENZIALE PER LE FUNZIONI DI UNA VARIABILE 1 Il rapporto incrementale e la nozione di derivata... Pag Regole di derivazione Derivate delle funzioni elementari Le funzioni iperboliche Approssimante lineare Proprietà locali del primo ordine Funzioni derivabili su un intervallo La formula di Taylor Concavità, convessità, flessi Esercizi Capitolo Ottavo: L'INTEGRALE INDEFINITO 1 Il problema delle primitive, integrali immediati... Pag I metodi d'integrazione Integrale indefinito delle funzioni razionali Integrazione di alcune classi di funzioni Esercizi
5 PIERPAOLO OMARI MAURIZIO TROMBETTA APPUNTI DEL CORSO DI ANALISI MATEMATICA PER IL DIPLOMA UNIVERSITARIO PARTE SECONDA
6
7 INDICE Capitolo Nono: SERIE NUMERICHE 1 Richiami sulle successioni... Pag 1 2 Serie numeriche Tre esempi importanti Teoremi fondamentali sulle serie Serie a termini positivi Serie a termini di segno qualunque Serie numeriche nel campo complesso Esercizi Capitolo Decimo: SERIE DI FUNZIONI 1 Successioni di funzioni Serie di funzioni Serie di potenze Serie di potenze e derivazione Sviluppabilità in serie di Taylor Sviluppo in serie di Taylor delle funzioni elementari Serie di potenze nel campo complesso Esercizi Capitolo Undicesimo: TOPOLOGIA DI  n 1 Struttura metrica di  n Applicazioni Struttura lineare di  n Esercizi e complementi Capitolo Dodicesimo: CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI 1 Campi scalari Campi vettoriali Il differenziale secondo per i campi scalari Forme quadratiche Estremi liberi per funzioni scalari Estremi vincolati per funzioni scalari Esercizi Capitolo Tredicesimo: INTEGRALE DI RIEMANN IN  n 1 La definizione di integrale Proprietà dell'integrale La funzione integrale e il Teorema fondamentale del Calcolo Formule di riduzione su rettangoli per integrali doppi e tripli Integrali su insiemi limitati, la misura di Peano - Jordan Integrali su domini ammissibili di  Integrali su domini ammissibili di  Cenno sugli integrali impropri unidimensionali Esercizi
8 Capitolo Quattordicesimo: EQUAZIONI DIFFERENZIALI 1 Introduzione... Pag Equazioni differenziali ordinarie del primo ordine Equazioni differenziali lineari del primo ordine Equazioni differenziali ordinarie del secondo ordine Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari di ordine n a coefficienti costanti Sistemi di due equazioni differenziali lineari del primo ordine a coefficienti costanti Esercizi Capitolo Quindicesimo: CURVE IN Â n (n = 2, 3) 1 La nozione di curva Curve rettificabili Integrali curvilinei di campi scalari Integrali curvilinei di campi vettoriali Campi conservativi I teoremi bidimensionali di Stokes e della divergenza Esercizi Capitolo Sedicesimo: CENNO SULLE SUPERFICI 1 La nozione di superficie Linee coordinate, versore normale e piano tangente Area di una superficie regolare semplice Integrali superficiali Esercizi Capitolo Diciasettesimo: RICHIAMI DI GEOMETRIA ANALITICA 1 Equazioni di rette e piani... Pag Trasformazioni di coordinate Le coniche come luoghi geometrici Forme quadratiche, matrici simmetriche e autovalori Classificazione delle coniche Classificazione delle quadriche Esercizi
Indice V. Indice. Capitolo Primo. Insiemi
V Prefazione XIII Capitolo Primo Insiemi 1.1. Quantificatori e simboli logici 1 1.2. Insiemi, sottoinsiemi ed operazioni 2 1.3. Applicazioni 8 1.4. Relazioni binarie 11 1.5. Strutture algebriche 16 Capitolo
Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate
Indice breve I PARTE I Elementi di base Capitolo 1 Introduzione 1 Capitolo 2 Funzioni 34 PARTE II Funzioni di una variabile Capitolo 3 Introduzione alle proprietà locali e al concetto di limite 73 Capitolo
Analisi Matematica II
Claudio Canuto, Anita Tabacco Analisi Matematica II Teoria ed esercizi con complementi in rete ^ Springer Indice 1 Serie numeriche 1 1.1 Richiami sulle successioni 1 1.2 Serie numeriche 4 1.3 Serie a termini
Appendici Definizioni e formule notevoli Indice analitico
Indice 1 Serie numeriche... 1 1.1 Richiami sulle successioni................................. 1 1.2 Serie numeriche........................................ 4 1.3 Serie a termini positivi...................................
APPUNTI ED ESERCIZI DI MATEMATICA
APPUNTI ED ESERCIZI DI MATEMATICA Per Scienze Naturali e Biologiche S.Console - M.Roggero - D.Romagnoli A.A. 2005/2006 Indice Capitolo 1 - Nozioni introduttive e notazioni 6 Gli insiemi...................................
iv Indice c
Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale
Integrali semplici Primitive. Integrali indefiniti. Formula di integrazione per parti per gli
Programma di Analisi Matematica 2 Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M-Z a.a. 2011/2012 - Prof. M.Patrizia Pera (Ultimo aggiornamento: 8/06/12) Prerequisiti
Integrali semplici Primitive. Integrali indefiniti. Formula di integrazione per parti per gli
Programma di Analisi Matematica 1 e 2 Università di Firenze - Scuola di Ingegneria Corso di Laurea in Ingegneria Meccanica e Ingegneria Gestionale E-N a.a. 2017/2018 - Prof. M.Patrizia Pera (Ultimo aggiornamento:
Indice Funzioni e limiti 1 Lo spazio numerico R Il campo dei numeri reali (3). Valore assoluto e distanza euclidea (5). Insiemi di numeri reali (7). E
Indice Funzioni e limiti 1 Lo spazio numerico R Il campo dei numeri reali (3). Valore assoluto e distanza euclidea (5). Insiemi di numeri reali (7). Estremo superiore e inferiore di un insieme di numeri
9.9.1 Applicazione al calcolo di aree Esercizi Soluzioni...361
Indice 1 Nozioni di base... 1 1.1 Insiemi... 1 1.2 Elementi di logica matematica... 5 1.2.1 Connettivi logici... 5 1.2.2 Predicati... 7 1.2.3 Quantificatori... 7 1.3 Insiemi numerici... 9 1.3.1 L ordinamento
Programmazione per competenze del corso Matematica, Quinto anno 2015-16
Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Competenze di aree Traguardi per lo sviluppo dellle competenze Abilità Conoscenze Individuare le principali proprietà di una - Individuare
ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A
ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A. 2016-17 Programma Provvisorio del corso di Analisi Matematica A Il programma che segue è solo indicativo. Il programma definitivo
PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.
PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri
Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta
Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,
Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana
Argomenti da studiare sui testi di riferimento: Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana P - Preliminari 1 Limiti e continuità 1.1 Velocità, rapidità di crescita, area: alcuni esempi Velocità
A.A. 2016/17 - Analisi Matematica 1
A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.
Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A )
Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A. 2018-19) NB. Le indicazioni bibliografiche si riferiscono al libro di testo. Lezione nr. 1, 24/9/2018.
PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa Gli assiomi dei numeri reali Alcune conseguenze degli assiomi dei
PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa 23 2. Gli assiomi dei numeri reali 24 3. Alcune conseguenze degli assiomi dei numeri reali 25 4. Cenni di teoria degli insiemi 30
Corso di Analisi Matematica 2-9 CFU
Corsi di Laurea in Ingegneria Elettronica e Biomedica Corso di Analisi Matematica 2-9 CFU PRESENTAZIONE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Prerequisiti e Testi
ITCG Sallustio Bandini
ANNO SCOLASTICO 2015/2016 PROGRAMMA DI MATEMATICA CLASSE I sez. A corso GRAFICA INSEGNANTE: prof. MARIO SCACCIA Libro di Testo: Matematica.verde Vol. 1 multimediale- Algebra, Geometria, Statistica M.Bergamini
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni
3 ore Integrali di Fresnel Serie bilatere. Sviluppo in serie di Laurent. Teorema di Laurent, sviluppabilità in serie bilatera.
Lezioni Svolte Curve (14 ore) Presentazione del corso. Funzioni a valori vettoriali. Definizione di limite e di funzione continua. Curve (arco di curva parametrica). Definizione di curva continua, semplice
Analisi Matematica 1
Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia
4. Sottospazi vettoriali Piani e rette in E 3 O
Indice Prefazione i Capitolo 0. Preliminari 1 1. Insiemistica e logica 1 1.1. Insiemi 1 1.2. Insiemi numerici 2 1.3. Logica matematica elementare 5 1.4. Ancora sugli insiemi 7 1.5. Funzioni 10 1.6. Composizione
Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno
Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad
Analisi Matematica 2 (prof.g.cupini) A.A CdL Astronomia - Univ. Bologna REGISTRO DELLE LEZIONI
Analisi Matematica 2 (prof.g.cupini) A.A.2016-2017 - CdL Astronomia - Univ. Bologna REGISTRO DELLE LEZIONI GLI ARGOMENTI IN GIALLO SARANNO OGGETTO DI VERIFICA SOLO NELL'ESAME DI TEORIA. Lu, 26 settembre
matematica classe terza Liceo scientifico
LICEO SCIENTIFICO STATALE LEONARDO DA VINCI Anno scolastico 2013/2014 LE COMPETENZE ESSENZIALI CONSIDERATE ACCETTABILI PER LA SUFFICIENZA Si precisa che gli obiettivi indicati sono da raggiungere in relazione
Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.
Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la
UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza)
UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) PROGRAMMA DI MATEMATICA A, A.A. 2007-08 CANALI 1 E 2 - Prof. F. Albertini e M. Motta Testi Consigliati: Elementi di Analisi Matematica
UNIVERSITA DEGLI STUDI DI SALERNO. Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica
UNIVERSITA DEGLI STUDI DI SALERNO Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica Anno Accademico 2016/17 Disciplina: Matematica I Docente: Roberto Capone Modulo di Analisi
Contenuti del programma di Matematica. Classe Terza
Contenuti del programma di Matematica Classe Terza A.S. 2014/2015 Tema Contenuti GEOMETRIA Misura della lunghezza della circonferenza e NEL PIANO area del cerchio. COMLEMENT Equazioni e disequazioni con
Indice. P Preliminari 3. 1 Limiti e continuità 59
Indice Prefazione ix Per lo studente xii Ringraziamenti xiv Che cos èilcalcolodifferenziale? 1 P Preliminari 3 P.1 Numeri reali e retta reale 3 Intervalli 5 Il valore assoluto 8 Equazioni e disequazioni
Giuseppina Anatriello Matteo Allegro Calcolo con GeoGebra
A01 Giuseppina Anatriello Matteo Allegro Calcolo con GeoGebra III edizione Copyright MMXVI Aracne editrice int.le S.r.l. www.aracneeditrice.it [email protected] via Quarto Negroni, 15 00040 Ariccia
Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.
Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.
Diario del Corso di Analisi Matematica II
Diario del Corso di Analisi Matematica II 1. Martedì 1 ottobre 2013 Presentazione del corso. Insieme di punti nel piano: retta, coniche canoniche (ellisse, iperbole, parabola). Esempi ed esercizi. 2. Mercoledì
LICEO SCIENTIFICO STATALE G. GALILEI SIENA ANNO SCOLASTICO 2016/2017
LICEO SCIENTIFICO STATALE G. GALILEI SIENA ANNO SCOLASTICO 2016/2017 PIANO DI LAVORO CLASSI : II E, III B, IV D, IV S MATERIA : MATEMATICA DOCENTE : ANTONELLA TODARO CLASSE II E ALGEBRA : richiami (scomposizione
CEDAM GIUSEPPE ZWIRNER PARTE SECONDA. nuova edizione
GIUSEPPE ZWIRNER per gli studenti delle facoltà dj chimica, agraria, scienze naturali, economia commercio e statistica PARTE SECONDA nuova edizione CEDAM... IUAV - VENEZIA AREA SERV. BIBLIOGRAFICI E DOCUMENTALI
LICEO SCIENTIFICO G. GALILEI - SIENA MATEMATICA - PIANO DI LAVORO
LICEO SCIENTIFICO G. GALILEI - SIENA classe IV sez. B - E Anno scolastico 2015/2016 Prof.ssa Pacini Paola MATEMATICA - PIANO DI LAVORO Settembre La modellizzazione matematica. Esempi di problemi contestualizzati.
