Indice. P Preliminari 3. 1 Limiti e continuità 59
|
|
|
- Beata Tonelli
- 9 anni fa
- Visualizzazioni
Transcript
1 Indice Prefazione ix Per lo studente xii Ringraziamenti xiv Che cos èilcalcolodifferenziale? 1 P Preliminari 3 P.1 Numeri reali e retta reale 3 Intervalli 5 Il valore assoluto 8 Equazioni e disequazioni con i valori assoluti 9 P.2 Coordinate cartesiane del 12 piano Scale degli assi 12 Incrementi e distanze 13 Grafici 14 Linee rette 15 Equazioni delle rette 16 P.3 Grafici delle equazioni 19 quadratiche Cerchi e dischi 20 Equazione della parabola 21 Proprietà di riflessione delle parabole 22 Cambio di scala di un grafico 23 Traslazione di un grafico 23 Ellissi e iperboli 25 P.4 Funzioni e loro grafici 27 Convenzione del dominio 29 Grafici delle funzioni 30 Funzioni pari e dispari; simmetria e 32 riflessioni Riflessione in una linea retta 33 Definire funzioni e disegnare grafici con Maple 35 P.5 Operazioni tra funzioni 37 Somma, differenza, prodotto e divisione 37 Composizione di funzioni 39 Funzioni definite a tratti 40 P.6 Funzioni trigonometriche 44 Alcune identità utili 46 Coseni e seni di alcuni angoli particolari 47 Formule d addizione 49 Le altre funzioni trigonometriche 51 Funzioni trigonometriche con Maple 53 Riassunto di trigonometria 54 1 Limiti e continuità Velocità, rapidità di crescita, 59 area: alcuni esempi Velocità media e velocità istantanea 59 La crescita di una coltura di alghe 61 L area di un cerchio Limiti delle funzioni 64 Limiti unilateri 68 Regole per il calcolo dei limiti 70 Teorema di compressione Limiti all infinito e limiti 75 infiniti Limiti all infinito 74 Limiti all infinito delle funzioni razionali 76 Limiti infiniti 77 Calcolo di limiti mediante Maple Continuità 82 Continuità in un punto 82 Continuità in un intervallo 83 Le funzioni continue sono molto numerose 84 Estensioni continue e discontinuità 85 rimovibili Funzioni continue in intervalli finiti chiusi 86 Ricerca grafica di massimi e minimi 88 Ricerca delle radici delle equazioni Definzione formale di limite 93 Uso della definizione di limite per 95 dimostrare teoremi Altri tipi di limiti 96 Riassunto del capitolo 99
2 xvi 2 Derivazione Rette tangenti e loro 101 pendenza Rette normali La derivata 107 Alcune derivate importanti 108 Notazione di Leibniz 111 Differenziali 113 Derivata e proprietà del valore intermedio Regole di derivazione 116 Derivata della somma e moltiplicazione 117 per una costante Derivata del prodotto 118 Derivata del reciproco 121 Derivata del quoziente Derivata delle funzioni 125 composte Calcolo delle derivate con Maple 128 Regole di derivazione con inclusa la 128 funzione composta Dimostrazione del teorema 6 (derivata di funzioni composte) Derivate delle funzioni 130 trigonometriche Qualche limite particolare 131 Derivate del seno e del coseno 132 Derivate delle altre funzioni trigonometriche Teorema del valore medio 138 Funzioni crescenti e decrescenti 141 Dimostrazione del teorema del valore medio Uso delle derivate 145 Approssimazione delle piccole variazioni 146 Rapidità di variazione media e istantanea 147 Sensitività a una variazione 148 Derivate e problemi di economia Derivate d ordine superiore Derivazione implicita 157 Derivate di ordine superiore di funzioni 160 implicite Regola generale della derivata di una potenza Antiderivate e problemi ai valori iniziali 162 Antiderivate 163 Integrale indefinito 163 Equazioni differenziali e problemi ai 166 valori iniziali 2.11 Velocità e accelerazione 170 Velocità vettoriale e velocità in modulo 170 Accelerazione 171 Caduta dei gravi 173 Riassunto del capitolo Le funzioni trascendenti Funzioni inverse 181 Inversione di funzioni non biunivoche 185 Derivata delle funzioni inverse Funzioni esponenziali e 188 logaritmiche Esponenziali 188 Logaritmi Il logaritmo naturale e 192 l esponenziale Il logaritmo naturale 192 La funzione esponenziale 196 Esponenziali e logaritmi generali 198 Derivazione logaritmica Crescita e decadimento 203 Crescita degli esponenziali e dei logaritmi 203 Crescita esponenziale e modelli di 204 decadimento Interessi degli investimenti 207 Crescita logistica Funzioni trigonometriche 212 inverse La funzione inversa del seno o Arcoseno 212 La funzione inversa della tangente o 216 Arcotangente Altre funzioni trigonometriche inverse Funzioni iperboliche 221 Funzioni iperboliche inverse Equazioni del secondo ordine lineari a coefficienti costanti 227 Ricetta per risolvere ay + by + cy = Moto armonico semplice 230 Moto armonico smorzato 233 Equazioni non omogenee e risonanza 234 Riassunto del capitolo 239
3 xvii 4 Alcune applicazioni delle derivate Variazioni collegate 241 Procedimento per i problemi con 242 variazioni collegate 4.2 Valori estremi 248 Valori massimi e valori minimi 248 Punti critici, punti singolari e punti estremi 250 Ricerca dei valori estremi 251 Test della derivata prima 252 Funzioni definite non su intervalli finiti chiusi Concavità e punti di flesso 255 Test della derivata seconda Disegno del grafico di una 261 funzione Asintoti 262 Esempi di disegno formale di curve Ricerca di valori estremi 271 Procedimento per la ricerca dei valori estremi Calcolo delle radici delle 281 equazioni Metodo di Newton 281 Iterazione del punto fisso 285 Programmi per la risoluzione di equazioni Approssimazioni lineari 289 Approssimazione di valori delle funzioni 289 Analisi dell errore Polinomi di Taylor 295 Formula di Taylor 297 Notazione dell O grande Forme indeterminate 302 Regole de l Hôpital 304 Riassunto del capitolo Integrazione Somme e simbolo di 315 sommatoria Calcolo di alcune somme Aree come limiti di somme 321 Il problema fondamentale dell area 322 Calcolo di alcune aree Integrale definito 326 Partizioni e somme di Riemann 327 Integrale definito 329 Somme di Riemann generali Proprietà dell integrale 333 definito Teorema del valore medio per gli integrali 336 Integrali definiti di funzioni continue a pezzi Teorema fondamentale del 340 calcolo differenziale 5.6 Metodo di sostituzione 346 Integrali trigonometrici Area delle regioni piane 356 Area di superfici comprese fra due curve 355 Riassunto del capitolo Tecniche di integrazione integrazione per parti 363 Formule di riduzione Sostituzioni inverse 370 Sostituzioni trigonometriche inverse 370 Completamento del quadrato 374 Altre sostituzioni inverse 375 La sostituzione tan(θ/2) Integrali delle funzioni 378 razionali Denominatori lineari e quadratici 379 Frazioni parziali Integrazione mediante 386 algebra computazionale o tavole Uso di Maple per integrare 387 Uso delle tavole di integrali Integrali impropri 390 Integrali impropri di primo tipo 391 Integrali impropri di secondo tipo 394 Determinazione della convergenza o della divergenza Le formule del trapezio e del 399 punto medio La formula del trapezio 400 La formula del punto medio 403 Stime dell errore 404
4 xviii 6.7 La formula di Simpson Altri aspetti dell integrazione 412 approssimata Approssimazione degli integrali impropri 413 Uso della formula di Taylor 415 Integrazione di Romberg 414 Altri metodi 418 Riassunto del capitolo Applicazioni dell integrazione Volume dei solidi di 423 rivoluzione Volumi a fette 424 Solidi di rivoluzione 425 Gusci cilindrici Altri volumi a fette Lunghezza di un arco e area di 437 una superficie Lunghezza d arco 437 Lunghezza d arco del grafico di una 438 funzione Area delle superfici di rivoluzione Massa, momenti e centro di 446 massa Massa e densità 446 Momenti e centro di massa 449 Esempi bidimensionali e tridimensionali Centroidi 453 Teorema di Pappo Altre applicazioni fisiche 460 Pressione idrostatica 460 Lavoro 461 Energia potenziale ed energia cinetica Applicazioni in economia, 467 finanza ed ecologia Valore attuale di un flusso di pagamenti 468 Economia dello sfruttamento di risorse rinnovabili Probabilità 472 Media, varianza e deviazione standard 475 Distribuzione normale Equazioni differenziali del primo ordine 483 Equazioni separabili 483 Equazioni lineari del primo ordine 488 Riassunto del capitolo Curve piane Coniche 495 Parabole 496 Proprietà del fuoco della parabola 497 Ellissi 498 Proprietà dei fuochi dell ellisse 500 Le direttrici di un ellisse 500 Iperboli 501 Proprietà dei fuochi dell iperbole 502 Classificazione delle coniche Curve parametriche 507 Curve piane generali e parametrizzazioni 510 Alcune curve piane notevoli Curve parametriche lisce e loro pendenza 514 Pendenza di una curva parametrica 515 Studio delle curve parametriche Lunghezza e area di curve parametriche 519 Lunghezza di un arco e area di una 519 superficie Aree delimitate da curve parametriche Coordinate polari e curve polari 523 Alcune curve polari 526 Intersezione di curve polari 529 Coniche polari Pendenza, area e lunghezza 531 d arco di curve polari Aree delimitate da curve polari 533 Lunghezza d arco delle curve polari 534 Riassunto del capitolo Successioni e serie Successioni e convergenza 539 Convergenza delle successioni 542
5 xix 9.2 Serie infinite 548 Serie geometriche 550 Serie telescopiche e serie armoniche 552 Alcuni teoremi sulle serie Criteri di convergenza per le 556 serie positive Criterio di convergenza dell integrale 556 Uso di limitazioni integrali per sommare 558 una serie Criteri di convergenza di confronto 560 Criteri di convergenza del rapporto e 563 della radice Uso di limitazioni geometriche per la somma di una serie Convergenza assoluta e 568 convergenza semplice Criterio di convergenza per le serie 569 oscillanti Riordinamento dei termini di una serie Serie di potenze 575 Operazioni algebriche sulle serie di 578 potenze Derivazione e integrazione delle serie 580 di potenze Calcoli con Maple Serie di Taylor e di Maclaurin 586 Serie di Maclaurin di alcune funzioni 588 elementari Altre serie di Maclaurin e di Taylor Applicazioni delle serie di 595 Taylor e di Maclaurin Approssimazione dei valori delle funzioni 595 Funzioni definite da integrali 597 Forme indeterminate La formula di Taylor rivista 599 Serie di Taylor e di Maclaurin mediante 600 il teorema di Taylor Teorema di Taylor con il resto integrale Teorema binomiale e serie 603 binomiale La serie binomiale Soluzioni in serie di equazioni 607 differenziali Riassunto del capitolo 611 Appendice I A-1 Numeri complessi Definizione dei numeri complessi A-2 Rappresentazione grafica dei numeri A-3 complessi Aritmetica complessa A-5 Radici dei numeri complessi A-9 Appendice II A-12 Funzioni complesse Limiti e continuità A-13 Derivata complessa A-14 Funzione esponenziale A-17 Teorema fondamentale dell algebra A-18 Appendice III A-22 Funzioni continue Limiti delle funzioni A-23 Funzioni continue A-23 Completezza e limiti di successioni A-25 Funzioni continue in un intervallo A-26 limitato chiuso Appendice IV A-29 Integrale di Riemann Continuità uniforme A-32 Appendice V A-34 Equazioni differenziali ordinarie Classificazione delle equazioni A-36 differenziali Equazioni differenziali ordinarie lineari A-35 Equazioni differenziali del primo ordine A-37 Equazioni esatte A-39 Fattori integranti A-41 Campo della pendenza e curve integrali A-42 Esistenza e unicità delle soluzioni A-42 Metodi numerici A-44 Appendice VI A-52 Calcolo differenziale con Maple Elenco degli esempi dell uso di Maple A-53 Risposte degli esercizi dispari A-55 Indice analitico A-87
PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.
PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri
Contenuti del programma di Matematica. Classe Terza
Contenuti del programma di Matematica Classe Terza A.S. 2014/2015 Tema Contenuti GEOMETRIA Misura della lunghezza della circonferenza e NEL PIANO area del cerchio. COMLEMENT Equazioni e disequazioni con
9.9.1 Applicazione al calcolo di aree Esercizi Soluzioni...361
Indice 1 Nozioni di base... 1 1.1 Insiemi... 1 1.2 Elementi di logica matematica... 5 1.2.1 Connettivi logici... 5 1.2.2 Predicati... 7 1.2.3 Quantificatori... 7 1.3 Insiemi numerici... 9 1.3.1 L ordinamento
Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2
Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione
APPUNTI ED ESERCIZI DI MATEMATICA
APPUNTI ED ESERCIZI DI MATEMATICA Per Scienze Naturali e Biologiche S.Console - M.Roggero - D.Romagnoli A.A. 2005/2006 Indice Capitolo 1 - Nozioni introduttive e notazioni 6 Gli insiemi...................................
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore
iv Indice c
Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale
Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.
Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.
PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s
PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s. 2013-2014 GINNASIO CLASSI 4 sez. A-B-C SCIENZE UMANE CLASSI 1 sez. A-B-C-D-E-F Aritmetica e algebra Il primo anno sarà dedicato al passaggio dal calcolo
Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton
Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.
PROGRAMMA DI MATEMATICA
A.S. 2015/2016 ALGEBRA - Equazioni letterali fratte PROGRAMMA DI MATEMATICA - Disequazioni di 1 grado ad una incognita intere e frazionarie - Sistemi di disequazioni di 1 o grado in una incognita - Sistemi
Programma di matematica classe Prima
Programma di matematica classe Prima RELAZIONI E FUNZIONI Insiemi Definizione e rappresentazione con diagrammi di Venn, per elencazione, per caratteristica. Operazioni tra insiemi: intersezione, unione,
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte
PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà.
CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. Utilizzare le procedure del calcolo aritmetico(a mente, per iscritto, a macchina) per calcolare espressioni aritmetiche
Programma di Matematica A.S. 2013/14. Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI
Programma di Matematica A.S. 2013/14 Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI Insiemi e sottoinsiemi - Le operazioni fondamentali con gli insiemi - Prodotto cartesiano I NUMERI NATURALI
CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO
CLASSE terza SEZIONE E A.S. 2015-16 PROGRAMMA SVOLTO RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le
Diario del Corso Analisi Matematica I
Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio
PROGRAMMA DI MATEMATICA
Classe 2^ sez. A 1. Ripasso Operazioni tra polinomi, prodotti notevoli, equazioni di primo grado intere e frazionarie. Problemi risolvibili con le equazioni di primo grado. 2. Sistemi Sistemi di equazioni
PROGRAMMA DI MATEMATICA APPLICATA
PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra
Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta
Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,
ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta.
Anno scolastico 2011/12 Classe I Sezione E Insiemistica. - Concetto di insieme e rappresentazione di un insieme. - Sottoinsiemi - Principali operazioni fra insiemi: unione, intersezione, complementare
Programma del corso di Matematica per Tecnologia della Produzione Animale
Programma del corso di Matematica per Tecnologia della Produzione Animale Anno Accademico 2016/2017 3 agosto 2016 Il corso ha come scopo l acquisizione di conoscenze di matematica di base. A partire dai
Corso Online MATEMATICA PER LE SUPERIORI. Corso Matematica per le Superiori
Corso Matematica per le Superiori Corso Online MATEMATICA PER LE SUPERIORI Accademia Domani Via Pietro Blaserna, 101-00146 ROMA (RM) [email protected] Programma Generale del Corso Matematica per
ITCG Sallustio Bandini
ANNO SCOLASTICO 2015/2016 PROGRAMMA DI MATEMATICA CLASSE I sez. A corso GRAFICA INSEGNANTE: prof. MARIO SCACCIA Libro di Testo: Matematica.verde Vol. 1 multimediale- Algebra, Geometria, Statistica M.Bergamini
matematica classe terza Liceo scientifico
LICEO SCIENTIFICO STATALE LEONARDO DA VINCI Anno scolastico 2013/2014 LE COMPETENZE ESSENZIALI CONSIDERATE ACCETTABILI PER LA SUFFICIENZA Si precisa che gli obiettivi indicati sono da raggiungere in relazione
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni
2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica.
2ALS Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. Si consiglia il libro: Matematica-recupero dei debiti formativi e ripasso estivo 2 ISBN 978-88-24741279
Programmazione per Obiettivi Minimi. Matematica Primo anno
Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.
Sallustio Bandini. Programma di Matematica Classe 1^ A Tur a.s Prof.ssa Bruna Lopraino
Classe 1^ A Tur a.s. 2015-2016 Prof.ssa Bruna Lopraino Modulo 1: Gli insiemi numerici I Numeri naturali: L insieme dei numeri naturali e le operazioni su esso definite, proprietà delle operazioni, Le potenze
Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.
Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la
Programma di Matematica svolto durante l anno scolastico nella classe 2 sez.e
Programma di Matematica svolto durante l anno scolastico 2015-2016 nella classe 2 sez.e ALGEBRA 1) Richiami sul calcolo letterale e sulle equazioni algebriche lineari ad una incognita. 2) Disequazioni
ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A
ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A. 2016-17 Programma Provvisorio del corso di Analisi Matematica A Il programma che segue è solo indicativo. Il programma definitivo
Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3
Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,
LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele
PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni
Programma di Matematica Anno Scolastico 2012/2013 Classe III G
Liceo Scientifico Statale G. BATTAGLINI Corso Umberto I 74100 Taranto Programma di Matematica Anno Scolastico 2012/2013 Classe III G Prof. Paolo Pantano Richiami di Algebra Equazioni e disequazioni Definizioni.
Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.
Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:
ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA
ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA NAUTICO SAN GIORGIO NAUTICO C.COLOMBO PROGRAMMA SVOLTO NELLA CLASSE IAA MATERIA : MATEMATICA INSEGNANTE : PROF. Simona TRESCA Programma di Algebra: U.D. 1 : I
I LICEO CLASSICO. Le equazioni e le disequazioni di II grado e di grado superiore
CONOSCENZE indirizzo CLASSICO I LICEO CLASSICO Le equazioni e le disequazioni di II grado e di grado superiore Equazioni di secondo grado incomplete; equazioni di secondo grado complete; formula risolutiva
Programmazione per competenze del corso Matematica, Quinto anno 2015-16
Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Competenze di aree Traguardi per lo sviluppo dellle competenze Abilità Conoscenze Individuare le principali proprietà di una - Individuare
Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A
Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE
CLASSE 1 A O.M.T. Anno scolastico 2009/10
CLASSE 1 A O.M.T. Anno scolastico 2009/10 Testo: M.Scovenna A.Moretti - Appunti di Algebra 1 - Ed. Cedam ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA Cap. 1 (da pag.11) Cap. 2 (fino a pag 94) - Ordinamento,
Sallustio Bandini. Programma di Matematica Classe 1^ B Tur a.s Prof.ssa Bruna Lopraino
Sallustio Bandini Classe 1^ B Tur a.s. 2014-2015 Prof.ssa Bruna Lopraino Modulo 1: Gli insiemi numerici I Numeri naturali: L insieme dei numeri naturali e le operazioni su esso definite, proprietà delle
Anno Scolastico:
LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni
Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13
Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Modulo 1: Le coniche Geometria elementare retta e circonferenza nel piano
ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio.
Materia: Matematica. Docente : Varano Franco Antonio. Classe : 3 C Liceo Scientifico, opzione Scienze Applicate. ATTIVITA CONTENUTI PERIODO / DURATA LE ISOMETRIE. LE FUNZIONI. LA RETTA. Le isometrie, la
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IIIB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 DISEQUAZIONI Disequazioni razionali intere di secondo
Indice. Capitolo 1 Richiami di calcolo numerico 1. Capitolo 2 Rappresentazioni di dati 13
Autori Prefazione Nota dell Editore e istruzioni per l uso Guida alla lettura XI XIII XV XVII Richiami di calcolo numerico 1 1.1 Unità di misura e fattori di conversione; potenze del 10; notazioni scientifiche
ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO MATEMATICA
ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO LICEO ARTISTICO - Dipartimento di Matematica e Fisica MATEMATICA Finalità della Matematica nel triennio è di proseguire e ampliare il processo di preparazione
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IVB. Anno Scolastico
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IVB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 Le coniche nella discussione dei problemi (Richiami)
APPUNTI ANALISI MATEMATICA
MAURIZIO TROMBETTA APPUNTI DEL CORSO DI ANALISI MATEMATICA PER IL DIPLOMA UNIVERSITARIO PARTE PRIMA INDICE Capitolo Primo: INSIEMI, APPLICAZIONI, RELAZIONI 1 Gli insiemi... Pag 1 2 Operazioni fra insiemi...
PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S
PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S. VIA SILVESTRI ANNO SCOLASTICO 2015-2016 INSEGNANTE: MASCI ORNELLA ALGEBRA - Equazioni letterali fratte
PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.
PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.
Operazioni e proprietà. Potenze e proprietà. Operazioni e proprietà. Potenze ad esponente negativo. I prodotti notevoli
ITT DON BOSCO CURRICOLO VERTICALE DI MATEMATICA A.S. 2016/17 PRIMO BIENNIO COMPETENZE: OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE PRIMA 1) Saper utilizzare tecniche e procedure di calcolo aritmetico;
Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE
Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro
UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza)
UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) PROGRAMMA DI MATEMATICA A, A.A. 2007-08 CANALI 1 E 2 - Prof. F. Albertini e M. Motta Testi Consigliati: Elementi di Analisi Matematica
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico
Classe 1 A AFM anno scolastico 2014-2015 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le potenze, le espressioni
ISTITUTO D ISTRUZIONE SUPERIORE BERNALDA-FERRANDINA Presidenza: BERNALDA (MT)- Via Schwartz, Tel./Fax:
I.T.E.T. Bernalda Programma di Matematica Classe II B Anno scolastico 2015/2016 Prof.ssa Benedetto Lucia Anna POLINOMI Addizione e moltiplicazione Prodotti notevoli Triangolo di Tartaglia DIVISIONE TRA
UNIVERSITA DEGLI STUDI DI SALERNO. Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica
UNIVERSITA DEGLI STUDI DI SALERNO Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica Anno Accademico 2016/17 Disciplina: Matematica I Docente: Roberto Capone Modulo di Analisi
Liceo Statale Margherita di Savoia Napoli
Liceo Statale Margherita di Savoia Napoli Classe: 1AS a.s. : 2015-2016 Professoressa: Sabrina Cavalli Libro di testo :Massimo Bergamini- Graziella Barozzi "Matematica multimediale.blu"vol.1 ed. Zanichelli
LICEO SCIENTIFICO B. TOUSCHEK - GROTTAFERRATA (RM) GRUPPO DISCIPLINARE DI MATEMATICA E FISICA ANNO SCOLASTICO 2016/2017
LICEO SCIENTIFICO B. TOUSCHEK - GROTTAFERRATA (RM) GRUPPO DISCIPLINARE DI MATEMATICA E FISICA ANNO SCOLASTICO 2016/2017 PROGRAMMAZIONE MATEMATICA ALLEGATO 1 SCHEMA PROGRAMMAZIONE ANNUALE CLASSE PRIMA A
Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi
Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema
Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna
Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti
Matematica corso di ordinamento triennio Classe terza
Matematica corso di ordinamento triennio Classe terza Nel corso del triennio l insegnamento della matematica prosegue ed amplia il processo di preparazione scientifica e culturale dei giovani già avviato
Matematica. dott. francesco giannino. a. a chiusura del corso. 1
Matematica a. a. 2014-2015 dott. francesco giannino 99. chiusura del corso. 1 99. chiusura del corso 99. chiusura del corso. 2 Obiettivo del corso fornire strumenti matematici di base necessari nel prosieguo
PROGRAMMA SVOLTO DI MATEMATICA
CLASSE: 2 Sezione: G A.S.: 2015/2016 Libro di testo: Matematica.bianco, volume 1, di Bergamini, Trifone Barozzi, edizioni Zanichelli. Libro di testo: Matematica.rosso, volume 2, di Bergamini, Trifone Barozzi,
LICEO SCIENTIFICO STATALE " A. EINSTEIN " PALERMO
Programma di MATEMATICA Classe: IV E Anno scolastico: 2013-2014 LICEO SCIENTIFICO STATALE " A. EINSTEIN " PALERMO RICHIAMI E COMPLETAMENTO PROGRAMMA ANNO PRECEDENTE Geom. Analitica: Funzione lineare. Fasci
produrre schemi e mappe concettuali per sintetizzare informazioni prendere appunti e redigere sintesi
COMPETENZE MINIME DI ASSE Secondo biennio e quinto anno Materia: MATEMATICA LICEO SCIENTIFICO/ SCIENZE APPLICATE ASSE DEI LINGUAGGI Leggere, comprendere ed interpretare testi scritti di vario tipo Ricavare
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
risoluzione di problemi da risolvere tramite la risoluzione di sistemi ed equazioni di 1^ grado. 5 R ed i Radicali
ORD. MODULO MODULO ARGOMENTO 1 Disequazioni disequazioni di 1^ grado disequazioni fratte disequazioni di grado superiore da risolvere con la scomposizione in fattori sistemi di disequazioni 2 Geometria
Funzioni, equazioni e disequazioni esponenziali. Funzioni, equazioni e disequazioni logaritmiche
Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 4^ I a.s. 2015/16 - Docente: Marcella Cotroneo Libri di testo : L. Sasso "Nuova Matematica a colori 3" e "Nuova Matematica a colori
PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA
PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE TERZA IPC COMPETENZE 42) Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico
PROGRAMMA SVOLTO. Classe 1 a C a.s Materia MATEMATICA prof.ssa ANNA GATTO
Classe 1 a C a.s. 2015-2016 Materia MATEMATICA prof.ssa ANNA GATTO Testo di riferimento: Bergamini Trifone Barozzi, MatematicaMultimediale.Bianco, vol. 1, ed. Zanichelli Insiemi, numeri naturali e numeri
A.S. 2015/2016 Programma svolto classe III Q
A.S. 2015/2016 Programma svolto classe III Q Circonferenza e cerchio Lunghezza della circonferenza e area del cerchio. Lunghezza di un arco. Area di un settore circolare e di un segmento circolare. Raggio
ISTITUTO LICEALE S. PIZZI PROGRAMMAZIONE DI MATEMATICA LICEO SCIENTIFICO
ISTITUTO LICEALE S. PIZZI PROGRAMMAZIONE DI MATEMATICA V LICEO SCIENTIFICO LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerà i concetti e i metodi elementari
PROGRAMMA DI FISICA I LICEO SEZ. F
IIS Via Silvestri, 301 sede associata : liceo scientifico Anno scolastico 2015/2016 PROGRAMMA DI FISICA I LICEO SEZ. F Testo adottato: B. Consonni Nuovo I perché della fisica volume unico - Tramontana
LICEO SCIENTIFICO G. GALILEI - SIENA MATEMATICA - PIANO DI LAVORO
LICEO SCIENTIFICO G. GALILEI - SIENA classe IV sez. B - E Anno scolastico 2015/2016 Prof.ssa Pacini Paola MATEMATICA - PIANO DI LAVORO Settembre La modellizzazione matematica. Esempi di problemi contestualizzati.
Istituto Kandinsky Anno Scolastico Programma di MATEMATICA - Classi Prime
Istituto Kandinsky Anno Scolastico 2011-2012 Programma di MATEMATICA - Classi Prime Insieme dei numeri naturali. Le operazioni in N: addizione, sottrazione, moltiplicazione e divisione. Legge di composizione
PROGRAMMA a.s CLASSE 1 O
N. ORE SVOLTE : 123 CLASSE 1 O 1) MATEMATICA.VERDE A- I NUMERI di M. Bergamini, A. Trifone, G. Bororzzi. 2) MATEMATICA.VERDE C-IL CALCOLO LETTERALE di M. Bergamini, A. Trifone, G. Bororzzi. GLI INSIEMI
CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico
CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico Baluardo Partigiani n 6 28100 - Novara Tel. 0321/620047 - Fax. 0321/620622 Email: [email protected]
Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016
Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016 Le funzioni goniometriche La misura degli angoli Gli angoli e la loro ampiezza La misura in gradi La misura i radianti Dai
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO PROFESSIONALE DI ENOGASTRONOMIA E OSPITALITA ALBERGHIERA CON I PERCORSI: ACCOGLIENZA TURISTICA, CUCINA, SALA-BAR ISTITUTO TECNICO PER IL TURISMO Sede Amministrativa:
Liceo scientifico E. Fermi Nuoro Anno scolastico 2008/2009. Classe 3 a ARGOMENTI STUDIATI IN MATEMATICA
Liceo scientifico E. Fermi Nuoro Anno scolastico 2008/2009 Classe 3 a C ARGOMENTI STUDIATI IN MATEMATICA Docente : prof. GUISO Agostino Logica matematica La Logica degli enunciati.nozioni fondamentali.
Anno scolastico 2015/2016 PROGRAMMA SVOLTO. Docente: Catini Romina. Materie: Matematica. Classe : 4 L Indirizzo Scientifico Scienze Applicate
Anno scolastico 2015/2016 PROGRAMMA SVOLTO Docente: Catini Romina Materie: Matematica Classe : 4 L Indirizzo Scientifico Scienze Applicate UNITA DIDATTICA FORMATIVA 1: Statistica Rilevazione dei dati Rappresentazioni
PROGRAMMA DI MATEMATICA
Classe: IE Indirizzo: artistico-grafico PROGRAMMA DI MATEMATICA I numeri naturali e i numeri interi 1. Che cosa sono i numeri naturali 2. Le quattro operazioni 3. I multipli e i divisori di un numero 4.
PROGRAMMA DI FISICA CLASSE II SEZ. N Prof. Antonio Montalto
PROGRAMMA DI FISICA CLASSE II SEZ. N Prof. Antonio Montalto La Velocità: - Il punto materiale in movimento - Sistemi di riferimento - Moto rettilineo e velocità media - Calcolo dello spazio e del tempo
Gli insiemi e le relazioni. Elementi di logica
capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO 2014-2015 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione dei numeri naturali e delle quattro operazioni
