ANALISI E VALUTAZIONE DELLA DOSE RILASCIATA DALLE PARTICELLE CARICHE IN ADROTERAPIA MEDIANTE SIMULAZIONE MONTECARLO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ANALISI E VALUTAZIONE DELLA DOSE RILASCIATA DALLE PARTICELLE CARICHE IN ADROTERAPIA MEDIANTE SIMULAZIONE MONTECARLO"

Transcript

1 ANALISI E VALUTAZIONE DELLA DOSE RILASCIATA DALLE PARTICELLE CARICHE IN ADROTERAPIA MEDIANTE SIMULAZIONE MONTECARLO Autori: *Dott. TSRM Speciale Michelangelo,**Dott. TSRM Fricano Pietro. *Presso Centro di Radiologia, Bagheria (PA) **Presso U.O. Radioterapia oncologica Villa Santa Teresa, Bagheria (PA) INTRODUZIONE L'approfondimento delle conoscenze della proprietà radiobiologiche degli adroni carichi al variare delle loro caratteristiche fisiche nei tessuti irradiati, è essenziale per valutare l entità degli effetti biologici e quindi per predire e/o valutare i potenziali vantaggi di una nuova frontiera della radioterapia: l Adroterapia. L adroterapia utilizza protoni e nuclei atomici (chiamati ioni) soggetti alla forza detta nucleare forte e per questo motivo chiamati adroni (dal greco adrós, forte), da cui appunto deriva il termine adroterapia. Gli adroni sono delle particelle direttamente ionizzanti, sono classificate come cariche pesanti poichè, interagendo con gli atomi e le molecole del mezzo tramite forze di natura elettrica, cedono la propria energia causando la ionizzazione o l eccitazione degli atomi che incontrano lungo il loro percorso e da una serie di deflessioni dalla direzione iniziale. Parte dell energia ceduta in seguito ad un processo di ionizzazione viene trasferita come energia cinetica dell elettrone liberato: se questa energia è tale da poter produrre a sua volta ionizzazione, si parla di elettroni secondari. Gli effetti sulla materia sono fondamentalmente il risultato di vari processi: collisione inelastica, scattering (diffusione) elastico con i nuclei, radiazione di frenamento (bremsstrahlung), effetto Cerenkov. In base alla massa e all energia della particella incidente alcuni di questi effetti predominano su altri. Le collisioni che subiscono le particelle nell attraversare la materia sono di natura statistica ma, poiché il loro numero per unità di percorso è molto elevato, le fluttuazioni dell energia ceduta sono molto piccole ed ha dunque senso parlare di energia media persa per unità di percorso: questa quantità s indica col nome di potere frenante o stopping power. Dall analisi dell andamento dello stopping power ad alte energie, si evince che esso cresce all aumentare dell energia cinetica. Ciò implica che le particelle perdono gran parte dell energia alla fine del loro percorso: si spiega così la caratteristica curva di Bragg; che si ottiene inserendo in grafico lo stopping power de/dx in funzione dello spessore attraversato. Il numero di coppie create per centimetro dalla ionizzazione (definito densità di ionizzazione) raggiunge un valore massimo quando la particella incidente ha perso quasi tutta la propria energia e si trova pertanto alla fine del proprio percorso nel mezzo. Quest apice è appunto denominato picco di Bragg: nella prima parte del percorso della particella, l energia rilasciata è più bassa e pressoché costante (infatti, il tutto è denominato plateau), mentre nell ultimo tratto del percorso notiamo il picco che indica la crescita repentina di rilascio di energia con il successivo crollo che indica che la particella si è fermata nel mezzo. Le particelle cariche pesanti sono frenate completamente a una fissata distanza, dipendente dalla loro energia iniziale, che prende il nome di range. Questa peculiarità ha suggerito l uso di tali radiazioni in campo medico, portando allo sviluppo di un importante tecnica per la cura di tumori, chiamata appunto adroterapia. Il primo scienziato che suggerì che i protoni potevano essere utilizzati nel trattamento di tumori nella radioterapia fu R. R. Wilson in un documento nel 1946 mentre era impegnato nella progettazione dell Harvard Cyclotron Laboratory (HCL). Gli acceleratori utilizzati per produrre i fasci collimati di protoni sono sincrotroni; i fasci prodotti da queste macchine hanno proprietà diverse. Per i protoni si possono usare sia ciclotroni di 4-5 metri di diametro sia sincrotroni di 7-8 metri di diametro. Come si è detto, l energia degli ioni carbonio che arrivano ad almeno 25 centimetri di profondità è circa 24 volte maggiore di quella dei protoni e sono necessari campi magnetici tre volte più grandi per curvarli. Aumentare il diametro dei ciclotroni oltre i 5 metri è difficile e la soluzione preferita sinora, ma complessa, è quella di usare per gli ioni carbonio sincrotroni con diametri di metri. Poiché un sincrotrone che accelera ioni può anche acceleratore protoni, si parla spesso di acceleratori duali. Il sincrotrone presenta una lunghezza complessiva di 80 metri con un diametro di 25; in due zone interne alla circonferenza nascono i fasci di particelle in dispositivi detti sorgenti. Nelle sorgenti si trova plasma formato dagli atomi dei gas, che hanno perso gli elettroni. Con campi magnetici e radiofrequenze, tali atomi vengono estratti e si selezionano i protoni e gli ioni di carbonio. Nascono allora i pacchetti di fasci composti, ognuno, da miliardi di particelle. Questi pacchetti sono preaccelerati e inviati nel sincrotrone dove, inizialmente, viaggiano a circa chilometri al secondo. Successivamente sono accelerati fino a energie cinetiche di 250MeV per i protoni e 4800 MeV per gli ioni carbonio. Il fascio di particelle nel sincrotrone viene accelerato e percorre circa chilometri in mezzo secondo per arrivare all energia voluta. Un magnete di 150 tonnellate serve a curvare di 90 gradi il fascio di particelle e dirigere i fasci alle sale di trattamento. Il fascio che colpisce le cellule del tumore è un pennello che si muove in modo simile a R A D I O TE R AP I A 15

2 quello degli elettroni in un televisore e agisce con una precisione di 200 micrometri (due decimi di millimetro). Questa precisione è resa effettiva grazie ad una sorveglianza continua del paziente per seguire eventuali movimenti del corpo e tramite due magneti di scansione che, sulla base delle indicazioni del sistema di monitoraggio dei fasci, muovono il pennello lungo la sagoma del tumore. Gli effetti biologici da considerare non si limitano alla sterilizzazione del tumore (collegata alla morte delle cellule tumorali), ma comprendono anche gli effetti sui tessuti sani irradiati. La ricerca in questo settore mira sostanzialmente a migliorare i piani di trattamento così da passare dalle superfici "isodose" alle superfici "isoeffetto" e a contribuire allo sviluppo di test predittivi della risposta al trattamento radioterapeutico. Il comportamento di protoni e ioni carbonio sul tessuto biologico è comunque diverso in quanto sono due tipologie di particelle adroniche che presentano una differente efficacia biologica relativa. Gli ioni carbonio, dal punto di vista radiobiologico, si comportano diversamente dai protoni. Infatti, in ogni nucleo cellulare traversato uno ione carbonio rilascia un energia 24 volte superiore di quella rilasciata da un protone di uguale percorso poiché le distribuzioni energetiche lungo i percorsi sono simili e le energie iniziali stanno nel rapporto 4800/200. Questa grande differenza è la causa di processi biologici cellulari diversi. Le ionizzazioni delle molecole della cellula prodotte da protoni causano per lo più rotture singole della doppia elica del DNA, mentre nel caso di ioni carbonio sono prodotte rotture doppie vicine a entrambe le eliche (Double Strand Breaks) e danni localizzati ( clustered damages ). Gli ioni carbonio hanno quindi una maggiore efficacia radiobiologica per questo essi sono in grado di controllare anche le cellule di quel 10% dei tumori che sono radio resistenti sia ai protoni sia ai raggi X. In questo lavoro, ci proponiamo attraverso delle simulazioni Monte Carlo di analizzare in maniera computazionale la descrizione delle modalità di cessione di energia da parte di protoni e di ioni carichi al variare dell energia, del LET e del materiale bersaglio. energia compresa tra 10 ev - 2 GeV / amu) nella materia. L analisi descrive il processo di meccanica quantistica delle collisioni ione-atomo (facendo sempre riferimento all atomo che si muove uno "ione", e tutti gli atomi di destinazione come "atomo bersaglio"). * Il programma è stato sviluppato da JF Ziegler, JP Biersack e MD Ziegler ed è disponibile sul sito Lo ione ha anche interazioni a lungo range con gli atomi bersaglio creando all'interno del target eccitazioni di elettroni. Il calcolo è stato configurato inoltre per una descrizione della struttura collettiva elettronica del bersaglio e della struttura del legame interatomico. Fra le applicazioni di cui è dotato SRIM, è incluso l algoritmo TRIM (Transport and Range of Ions in Matter). Si tratta di una simulazione Monte Carlo che segue lo ione nel bersaglio, facendo calcoli dettagliati di energia trasferita in ogni collisione atomo-bersaglio. Quest applicazione permette di fare un confronto tra le distribuzioni dell'energia rilasciata dai fasci adronici e valutare il diverso comportamento degli ioni durante l interazione con target di diverso spessore e densità; ma soprattutto programmare la pianificazione di un piano di trattamento che consenta di rilasciare il massimo della dose su un punto preciso del volume bersaglio, risparmiando gli strati superficiali e quindi sfruttando a pieno tutte le potenzialità possedute dall adroterapia. MATERIALI E METODI La finalità dell esecuzione della simulazione Monte Carlo nasce dall esigenza di valutare il comportamento del fascio protonico (in vari livelli di energia) durante l interazione con vari tipi di tessuto, al fine di osservare le caratteristiche energetiche e la dose rilasciata dai protoni e dagli ioni carbonio nei trattamenti adroterapici. La simulazione è stata condotta utilizzando il software di analisi dati SRIM * (Stopping and Range of Ions in Matter) specifico per lo studio delle interazioni ionemateria. SRIM comprende un gruppo di programmi che calcolano l'arresto e il range degli ioni (con ANALISI E RISULTATI Valutazione della dose rilasciata dai protoni con energia iniziale pari a 62 MeV e da ioni carbonio con energia iniziale pari a 4800 MeV su diversi tessuti monostrato La prima simulazione Monte Carlo effettuata ha consentito di analizzare l energia rilasciata da protoni e ioni carbonio, in cinque tipologie di tessuto: ü tessuto muscolare. ü tessuto osseo. ü tessuto adiposo. 16

3 ü pancreas. ü milza. Per tutte queste simulazioni è stato scelto uno spessore del tessuto pari 3,5 cm per i protoni e 400 mm per ioni carbonio; ogni tessuto ha una densità diversa rispetto agli altri. Il campionamento è stato eseguito su un numero di ioni per ciascuna simulazione. Tabella B (Ioni carbonio da 400 Mev) Tessuto Densità (g/cm3) Range Longitudinale raggiunto sul Target(mm) Tessuto Osseo 1, Tessuto Muscolare 1, Tessuto Adiposo 0, Pancreas 1, Milza 1, Nel grafico superiore relativo alla milza, è facilmente distinguibile la principale caratteristica di questi ioni, cioè la cosiddetta curva di Bragg. La curva descrive la cessione di energia dei protoni durante le interazioni con la materia. Tabella A Il prospe)o mostra come varia il range, rela3vo ai protoni con energia pari a 62 MeV, rispe)o alle differen3 3pologie di tessuto con densità diverse. Tessuto Densità (g/cm3) Range Longitudinale raggiunto sul Target (mm.) Tessuto Osseo 1,85 18,8 Tessuto L andamento generale della curva di Bragg è analogo per tutti i tessuti ed è caratterizzato da un plateau iniziale e da una perdita consistente di energia al raggiungimento del picco. E' evidente dal confronto tra questi grafici la diversa profondità di ionizzazione raggiunta dalle particelle nei vari tessuti. Considerando che l energia iniziale del fascio è la stessa per tutte le simulazioni eseguite, gioca un ruolo decisivo, la diversa densità dei vari campioni nonché la diversa composizione dei tessuti. Come si può anche notare nel dettaglio nella tabella B, piccole differenze di densità producono una disuguaglianza del valore longitudinale del range dei protoni non trascurabile. Le simulazioni effettuate con protoni dotati di 62 MeV di energia consentono di verificare che per tali valori di energia è possibile eseguire trattamenti adroterapici esclusivamente su tessuti superficiali non superiori ai 4 cm di spessore. Gli ioni carbonio invece, presentano un energia nettamente superiore ai protoni e producono una ionizzazione massima a una profondità superiore ai 25 cm (tranne che nel tessuto osseo). Muscolare 1,04 31,4 Tessuto Adiposo 0,92 34,1 Pancreas 1,05 30,8 Milza 1,09 29,9 17

4 r MeV Il vantaggio che può scaturire dall utilizzo di questi ioni è correlato dal valore dell efficacia biologica relativa (RBE) che è pari a 3. In pratica, l energia rilasciata è almeno un ordine di grandezza superiore a quella dei protoni e produce una rottura irreparabile della doppia catena del DNA che consente di trattare quel 10% di tumori radio resistenti ai protoni e ai raggi X. I limiti sono rappresentati appunto dall energia con cui interagiscono con la materia: mentre per i protoni occorrono sincrotroni di 6-7 metri di diametro, per gli ioni carbonio occorrono sincrotroni da 20 metri di diametro, poiché per curvarli, richiedono un campo magnetico 3 volte superiore. Le risorse e i costi di gestione essenziali sono di conseguenza nettamente superiori. Valutazione della dose rilasciata da protoni e ioni carbonio con energia iniziale variabile su un target con spessore fisso di acqua. La procedura successiva di simulazione è basata sulla valutazione della variazione del range rispetto alle differenti energie con cui i protoni e gli ioni carbonio raggiungono un target standard rappresentato da uno strato di H20 che presenta densità uguale a 1 g/cm 3 e spessore 3,5 cm nel caso dei protoni e 40 cm nel caso degli ioni carbonio. 40 MeV Come si può notare dai grafici in alto, il range dei protoni all interno del target varia al variare dell energia. Aumentando il valore dell energia, il picco di Bragg si sposta in maniera concorde verso destra, corrispondente a una maggiore profondità raggiunta all interno del materiale acquoso. Nella tabella C sono indicati tutti i valori del range longitudinale percorso dai protoni prima di arrestarsi sul target cedendo tutta l energia. Possiamo notare che, con il valore minimo di energia corrispondente a 15 Mev, il tragitto sul bersaglio è molto piccolo (2,49 mm) e quindi non è consigliabile un utilizzo diagnostico dei protoni con energie così basse; mentre con un energia dei protoni pari a 62 MeV, il picco di Bragg avviene a una profondità di 32,3 mm. Questo è il motivo per cui fasci da 62 MeV sono utilizzati per trattamenti oculari. Mentre è possibile utilizzare protoni ad alta energia per la cura di patologie tumorali non superficiali, come avviene nel caso dei trattamenti delle neoplasie della base cranica. 18

5 Tabella C Energia del fascio protonico Densità H 2O (g/ cm 3 ) Range Longitudinale raggiunto sul Target (mm) 15 MeV 1 2,49 31 MeV 1 9,23 40 Mev MeV 1 32,3 Tabella D Energia ioni Carbonio Range Longitudinale (MeV) raggiunto sul Target (mm) 1200 Mev 25, Mev 87, Mev Mev 346 La varietà di opzioni offerte dal programma di Analisi TRIM, ha permesso di confrontare, il comportamento dei protoni rispetto a un altra tipologia di particelle cariche: gli ioni carbonio. Per poter ottenere un risultato comparabile è stato necessario l utilizzo di un identico target di acqua dallo spessore di 40 cm. Poiché, entrambe le particelle adroniche, presentano la stessa tipologia di curva relativa alla ionizzazione del bersaglio, è stato possibile osservare che anche ad energie nettamente superiori, il range degli ioni carbonio all interno del target varia al variare del valore dell energia. Valutazione della dose rilasciata dai protoni con energia iniziale pari a 62 MeV, sul tessuto oculare, mediante l interposizione di diversi spessori di Al2 O3. L obiettivo di questa simulazione Monte Carlo, relativa all ottimizzazione del trattamento oculare, nasce dall osservazione sperimentale sui protoni che variando l energia durante l irradiazione in modo ben controllato è possibile sovrapporre molti picchi di Bragg stretti e ottenere un picco di Bragg allargato (Spread-Out Bragg Peak, SOBP). Questo risultato può essere ottenuto interponendo nel percorso del fascio, un materiale assorbitore di spessore variabile (come mostrato in figura 1) che permetta quindi di ottenere un plateau di dose uniforme sul picco che copra precisamente il target risparmiando i tessuti sani. Figura 1 Ruota con spessore variabile che permette la modulazione dell energia del fascio di protoni per la creazione del SOBP. L analisi effettuata presso il Dipartimento di Fisica, sfruttando il concetto di SOBP è stata quindi condotta attraverso l irraggiamento con protoni di energia 62 MeV che colpiscono i vari strati che costituiscono la struttura oculare come mostrato nella tabella E. Strato Ossido di Densità (g/ cm3) Tabella E Spessore (mm) composizione chimica 3,97 variabile Al 2O 3 alluminio Cornea 1,19 2 composizione mista di C;H;N;O Sclera 1 2 H 20 Humor Acqueo 0,9 1 H 2O + C 6H 12O 6 Pupilla 1 1 C 2H 6O + H 2O Cristallino 1 4 C 2H 6O + H 2O Humor Vitreous 1 25 H 2O Come è verificabile nei grafici e nella tabella F in basso, introducendo uno strato di ossido di alluminio sempre più spesso, è possibile selezionare quale livello della struttura oculare poter irradiare. È stato quindi riscontrato che aumentando il valore della larghezza del materiale assorbitore, si riduce il percorso effettuato dai protoni all interno del target. Questo sistema di filtraggio provoca fenomeni di scattering e di perdita di energia incidendo sul valore del range. 19

6 Spessore Ossido Tabella F Range Longitudinale d'alluminio (mm) raggiunto sul Target (mm) 0 mm 32,1 1 mm 29,9 2 mm 27,7 3,5 mm 24,4 5 mm 21,1 6,5 mm 17,7 7,5 mm 15,6 profondità relativa alla larghezza di ossido di alluminio interposto inizialmente. In conclusione, l utilizzo di piccole differenze di spessore ha permesso di andare a valutare, in ultima analisi, il comportamento complessivo dei fasci protonici, relativo a un rilascio di dose uniforme sul target. Effettuando una sovrapposizione dei grafici di ionizzazione prodotti, è stato possibile ricostruire lo Spread-Out Bragg Peak come mostrato nell istogramma sottostante. L interposizione di uno spessore di 1 mm di Al2O3, produce una riduzione del range di 2,2 mm all interno della struttura dell occhio. 1 mm Al2 O3 5 mm Al2 O3 La dose rilasciata al tessuto oculare a ogni trattamento è di 15 Gy, per un totale di 60 Gy complessivi erogati nell arco delle quattro sedute previste. L inserimento di un materiale ad alta densità rispetto al distretto anatomico da trattare, produce inevitabilmente una variazione della curva di Bragg. Come conseguenza avremo un elevato rilascio di energia iniziale in corrispondenza del composto assorbitore e successivamente la liberazione totale della rimanente energia direttamente sul target, a una La modulazione è ottenuta tramite oggetti assorbitori, di solito in PMMA, di spessore diverso e rotanti, che vengono disposti sul fascio in modo tale che l effetto complessivo sia sommare i vari picchi di Bragg puri ad essi corrispondenti. Tale somma si traduce appunto in un unico picco allargato, il cosiddetto SOBP. Poiché tra i vari spessori vi è una netta differenza millimetrica, il SOBP millimetrico ottenuto (rappresentato nel grafico con una linea rosa) non presenta una continuità sul target. Interponendo, invece, tanti picchi di Bragg che si riferiscono a diversi fasci con differenze sub millimetriche di spessore dell elica modulatrice, otteniamo il SOBP definitivo (indicato nel grafico con la linea verde) che permette di ottenere un plateau di dose contornato e uniforme sul picco. Attraverso l implementazione di uno specifico algoritmo e fissando la profondità del punto da normalizzare sulla curva SOBP, vengono calcolati automaticamente i valori delle quantità che caratterizzano le curve di distribuzione. La memorizzazione di tali dati permette di ripetere la procedura e di confrontarne i risultati offrendo così la possibilità di optare per il profilo che meglio si adatta alle esigenze del trattamento. Per quei tumori che si estendono anche in regioni relativamente ampie, la probabilità che il trattamento, eseguito senza i modulatori, abbia esito positivo risulta sicuramente molto bassa. L uso del modulatore lungo la linea di trattamento invece comporta la 20

7 possibilità di irradiare in modo uniforme ed omogeneo anche tali tumori, aumentando notevolmente le possibilità di controllo degli stessi. il dato rilevante osservato con l uso degli adroni è la drastica riduzione della dose integrale, ovvero la quantità totale di energia depositata nell organismo durante l irradiazione, responsabile dell aumento del rischio di secondo tumore (effetto carcinogenetico). Il risparmio di radiazioni somministrate che si riesce ad ottenere con i protoni è importantissimo nei bambini i cui tessuti, ancora immaturi, sono decisamente più sensibili agli effetti dannosi delle radiazioni. I tumori della regione testa-collo sono oggetto di rilevante interesse. Il potenziale beneficio dell adroterapia nel trattamento di questi tumori deriva dalla loro sede d insorgenza. Se insorgono, come spesso accade, nella base del cranio o in prossimità di essa, le strutture sane sono rappresentate da organi vitali come il midollo spinale e il tronco cerebrale e, non meno importanti, i lobi temporali dell encefalo, le vie uditive, le vie ottiche, l ipofisi. La localizzazione vicina ad organi così importanti rende impossibile la somministrazione di dosi elevate tali da eradicare la malattia. Studi pre-clinici e clinici suggeriscono un potenziale vantaggio per quei tumori caratterizzati da bassa radiosensibilità e da localizzazione critica se trattati con adroterapia. Carcinomi dei seni paranasali, carcinoma adenoideo cistico, alcuni selezionati tumori del rinofaringe, sarcomi dell osso e dei tessuti molli sono oggetto di studio. CONCLUSIONI Lo sviluppo di tecniche sempre più innovative e precise ha permesso di misurare le dosi rilasciate da protoni e ioni carbonio, che sono le particelle utilizzate in adroterapia. Nelle prime due simulazioni, dove l energia iniziale del fascio di protoni e di ioni carbonio è stata fissata e non modificata, è stato dimostrato che un fattore determinante nella definizione del percorso all interno del target è rappresentato dalla diversa densità dei vari campioni. Più è alto il valore densimetrico del tessuto, minore sarà la profondità raggiunta. Quest affermazione è stata confermata dalla seconda tipologia di simulazioni Monte Carlo eseguite. L impiego di un identico target di acqua ha permesso di confrontare il comportamento dei protoni rispetto agli ioni carbonio. È stato possibile osservare che il range di entrambe le particelle adroniche all interno del target varia al variare dell energia. Poiché entrambe le particelle adroniche presentano la stessa tipologia di curva relativa alla ionizzazione del bersaglio, aumentando il valore dell energia, il picco di Bragg si sposta in maniera concorde verso destra, corrispondente a una maggiore profondità raggiunta all interno del materiale acquoso. In ultima analisi, attraverso la rielaborazione dei dati ottenuti tramite SRIM relativi alle simulazioni effettuate interponendo nel percorso degli adroni un materiale assorbitore di spessore variabile, è stato possibile eseguire la sovrapposizione dei diversi picchi di Bragg acquisiti e quindi ottenere lo Spread-Out Bragg Peak. Il SOBP è un plateau di dose uniforme sul picco, che consente una conformazione più estesa ma contornata del fascio sulla zona neoplastica risparmiando i tessuti sani. L utilizzo del programma d analisi SRIM con le relative simulazioni Monte Carlo, ha consentito di rilevare che per gli adroni la RBE (Efficacia Biologica Relativa) aumenta improvvisamente nelle zone di picco, danneggiando esclusivamente le cellule tumorali e risparmiando i tessuti sani. Nuovi studi scientifici indicano oggi risultati sempre più consistenti per alcuni tumori già da tempo trattati con protoni e ioni carbonio. Il cordoma e il condrosarcoma sono stati tradizionalmente considerati un indicazione per la terapia con protoni. La caratteristica sede d insorgenza in distretti anatomici come la base del cranio e la colonna vertebrale, difficilmente trattabili con chirurgia o con radioterapia convenzionale, la tendenza alla crescita locale piuttosto che alla metastatizzazione a distanza forniscono il razionale scientifico per ritenere che un aumento del controllo locale possa tradursi in un aumento della sopravvivenza e quindi giustificano l impiego di tecniche raffinate di radioterapia. Il razionale dell impiego dell adroterapia nel trattamento dei meningiomi atipici, dei meningiomi maligni e recidivanti va principalmente ricercato nella sua elevata selettività spaziale. La frequente sede d insorgenza del meningioma a livello della base del cranio, in stretta adiacenza a strutture come le vie ottiche e il tronco encefalico (organo di vitale importanza) rende impraticabile, nella maggior parte dei casi, una chirurgia risolutiva. La presenza dell eventuale residuo tumorale dopo chirurgia giustifica ampiamente l uso di tale tecnica. La radioterapia con protoni per la cura del melanoma uveale rappresenta ormai un alternativa consolidata ai trattamenti chirurgici demolitivi, che prevedono l enucleazione dell occhio. Introdotta a partire dal 1975, la protonterapia ha guadagnato un largo consenso nella comunità scientifica poiché è stato dimostrato che i risultati della sopravvivenza libera da malattia e della sopravvivenza globale ottenuta con l utilizzo dei protoni, sono sovrapponibili a quelli ottenuti con l enucleazione. Il controllo locale con preservazione d organo è il più importante obiettivo del trattamento con protoni. I sarcomi del tessuto osseo a insorgenza in sedi difficili quali la colonna vertebrale, la pelvi e le ossa del cranio, dove la presenza rispettivamente del midollo spinale, dei visceri interni e dell encefalo, giustifica ampiamente l utilizzo della nuova tecnica. Non meno importante la nota radio resistenza di questo tipo di tumori che li rende adatti a un trattamento con ioni carbonio. Gli ioni carbonio appaiono allo stesso modo lo strumento ideale per il trattamento dei sarcomi dei tessuti molli retro peritoneali non operabili o operati non 21

8 radicalmente o recidivati. I tumori delle ghiandole salivari sono noti come radio resistenti e il loro trattamento d elezione è rappresentato dalla chirurgia, associata generalmente alla radioterapia in caso di resezione incompleta, o nei tumori in stadio avanzato o di alto grado. Sebbene tale approccio terapeutico abbia migliorato i risultati in termini di controllo locale rispetto alla sola chirurgia, i risultati ottenuti con le radiazioni ionizzanti sono ancora insufficienti. Gli ioni carbonio, grazie alla loro proprietà radiobiologica intrinseca che permette di abbattere la radio resistenza del tumore senza dare rilevanti effetti collaterali, hanno dato risultati incoraggianti. Nel caso dei sarcomi della testa e del collo l impiego dell adroterapia appare giustificato per quelle situazioni anatomiche in cui tecniche basate sull uso dei fotoni non siano in grado di ottenere distribuzioni di dose adeguate. Anche in tale sede l uso degli ioni carbonio va riservato ai casi con presenza di malattia evidente. La radioterapia con protoni ha suscitato grande interesse per il suo possibile utilizzo nella terapia pediatrica. Negli ultimi decenni, grazie al miglioramento dell efficacia dei nuovi protocolli terapeutici, si è osservato un notevole aumento dei tassi di sopravvivenza che, allo stesso tempo, hanno permesso di valutare l entità degli effetti collaterali tardivi relativi al trattamento radioterapico. Sono ormai noti i deficit neurosensoriali ed endocrini, ritardo della crescita, malformazioni estetiche e altri effetti collaterali che si manifestano in maniera in parte tardiva dal termine delle terapie. Numerosi studi dosimetrici pre-clinici hanno rilevato un risparmio apprezzabile dei tessuti sani dai piani di trattamento di radioterapia effettuati con protoni in confronto a quelli effettuati con raggi X. Il grande lavoro di ricerca fatto nei centri attivi e crescenti in tutto il mondo ha confermato che l adroterapia può rappresentare, grazie alle sue enormi potenzialità, un ottima arma nella lotta contro il cancro negli anni futuri. Bibliografia Scannicchio D. Fisica Biomedica. Edises, 2008; 21: Ciani GF. La radioterapia con protoni e antiprotoni. Università degli studi di Bari 2009;1:21-37 Amaldi U. Applicazioni mediche delle radiazioni: dal sodalizio Fermi-Amaldi-Segrè degli anni trenta alle prospettive attuali.università Milano Bicocca e Fondazione TERA Cuttone G, Cirrone G A P, Di Franco G, La Monaca V, Lo Nigro S, Raffaele L, Romeo N, Privitera G, Salamone V, Romano F, Ott J, Pittera S. Catana Prothontherapy facility: gli stati of art of clinical and dosimetric experience.european Fisical Journal 2010 Marrale M. Appunti del corso di Fisica sanitaria. Università degli studi di Palermo Pelliccioni M. Fondamenti fisici della radioprotezione. Editrice Pitagora Bologna Indice delle Figure [FIG 1] Ciani GF. La radioterapia con protoni e antiprotoni. Università degli studi di Bari 2009; 2:34-44 Per quanto riguarda tutti i grafici effettuati con il software d analisi SRIM (sviluppato da JF Ziegler, JP Biersack e MD Ziegler ed è disponibile sul sito si ringrazia il dipartimento di Fisica Sanitaria dell università di Palermo e in particolar modo un grosso ringraziamento va al Prof. Maurizio Marrale per la gentile collaborazione. 22

Neoplasie Laringee: diagnosi e trattamento Malattia recidivata/metastatica: trattamento standard

Neoplasie Laringee: diagnosi e trattamento Malattia recidivata/metastatica: trattamento standard Neoplasie Laringee: diagnosi e trattamento Malattia recidivata/metastatica: trattamento standard 22 Maggio 2015 Laura Berretta S.C. Radioterapia Recidiva dopo CT-RT: Se possibile la prima scelta è la Chirurgia

Dettagli

Dipartimento di Fisica a.a. 2003/2004 Fisica Medica 2 Radioterapia 18/4/2005

Dipartimento di Fisica a.a. 2003/2004 Fisica Medica 2 Radioterapia 18/4/2005 Dipartimento di Fisica a.a. 2003/2004 Fisica Medica 2 Radioterapia 18/4/2005 Trattamento del cancro Causa principale di morte (in Europa ed USA) Da rapporti recenti della UE: Nessun risultato dopo terapia

Dettagli

Cenni di fisica moderna

Cenni di fisica moderna Cenni di fisica moderna 1 fisica e salute la fisica delle radiazioni è molto utilizzata in campo medico esistono applicazioni delle radiazioni non ionizzanti nella terapia e nella diagnosi (laser per applicazioni

Dettagli

Dosimetria ESR per applicazioni in campo medico e industriale

Dosimetria ESR per applicazioni in campo medico e industriale Dosimetria ESR per applicazioni in campo medico e industriale Dott. Maurizio Marrale Università degli Studi di Palermo Dipartimento di Fisica e Tecnologie Relative 3 Aprile 2008 Dottorato di Ricerca in

Dettagli

prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA

prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA Cosa sono gli adroni? Come penetrano nel corpo? Perché si può curare un tumore con gli adroni? Cosa si sta costruendo a Pavia? Come funzionerà?

Dettagli

Scuola di Specializzazione in Fisica Sanitaria a.a. 2005/2006. Corso di Informatica e Statistica Medica. Radioterapia

Scuola di Specializzazione in Fisica Sanitaria a.a. 2005/2006. Corso di Informatica e Statistica Medica. Radioterapia Scuola di Specializzazione in Fisica Sanitaria a.a. 2005/2006 Corso di Informatica e Statistica Medica Radioterapia 22/2/2006 Trattamento del cancro Causa principale di morte (in Europa ed USA) Da rapporti

Dettagli

PROTONTERAPIA: Conclusioni. Filippo Alongi MD Direttore, UOC Radioterapia Oncologica Professore Associato Università di Brescia

PROTONTERAPIA: Conclusioni. Filippo Alongi MD Direttore, UOC Radioterapia Oncologica Professore Associato Università di Brescia PROTONTERAPIA: Conclusioni Filippo Alongi MD Direttore, UOC Radioterapia Oncologica Professore Associato Università di Brescia INDICAZIONI POTENZIALI ADROTERAPIA Per quali tipi di tumori è indicata l adroterapia?

Dettagli

TERAPIA. Fasci esterni Fasci multipli convergenti (IMRT) Adroterapia (e metodo di distribuzione attiva) BNCT Radioterapia metabolica Brachiterapia

TERAPIA. Fasci esterni Fasci multipli convergenti (IMRT) Adroterapia (e metodo di distribuzione attiva) BNCT Radioterapia metabolica Brachiterapia TERAPIA La radioterapia prevede di distruggere le cellule tumorali mediante ionizzazione indotta dall interazione tra il tessuto biologico e la radiazione nucleare Mentre le cellule sane dispongono di

Dettagli

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm].

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio9: un fotone gamma sparisce formando una coppia

Dettagli

INTERAZIONI DELLE RADIAZIONI CON LA MATERIA

INTERAZIONI DELLE RADIAZIONI CON LA MATERIA M. Marengo INTERAZIONI DELLE RADIAZIONI CON LA MATERIA Servizio di Fisica Sanitaria Ospedale Policlinico S.Orsola - Malpighi, Bologna mario.marengo@unibo.it Si definiscono radiazioni ionizzanti tutte le

Dettagli

SPETTROFOTOMETRIA. kcs. Una radiazione monocromatica, attraversando una soluzione diluita, è assorbita secondo la legge di Lambert-Beer:

SPETTROFOTOMETRIA. kcs. Una radiazione monocromatica, attraversando una soluzione diluita, è assorbita secondo la legge di Lambert-Beer: SPETTROFOTOMETRIA Una radiazione monocromatica, attraversando una soluzione diluita, è assorbita secondo la legge di Lambert-Beer: I= I e kcs = I e αs 0 0 I 0 : intensità incidente k : coeff. di estinzione

Dettagli

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm].

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio9: un fotone gamma sparisce formando una coppia

Dettagli

Gli studi degli effetti delle radiazioni sui tessuti tumorali animali ed umani hanno

Gli studi degli effetti delle radiazioni sui tessuti tumorali animali ed umani hanno Prefazione Prefazione Gli studi degli effetti delle radiazioni sui tessuti tumorali animali ed umani hanno permesso di determinare i valori di dose capaci di debellare determinati tumori attraverso la

Dettagli

2.3 Percorso residuo (range)

2.3 Percorso residuo (range) Figure 13: Determinazione del range a partire da una curva di trasmissione (I èil numero di particelle tramesse per unità di tempo in funzione delle spessore t essendo I 0 il numero di particelle entranti)

Dettagli

Pagina 1/7 Il KC Catania Est in visita ai Laboratori del Sud dell'istituto Nazionale di Fisica Nucleare

Pagina 1/7 Il KC Catania Est in visita ai Laboratori del Sud dell'istituto Nazionale di Fisica Nucleare Pagina 1/7 Il KC Catania Est in visita ai Laboratori del Sud dell'istituto Nazionale di Fisica Nucleare Rosalba, 09 aprile 2018, 19:26 07/04/2018: Con gli amici del KC-CATANIA EST, grazie all'interessamento

Dettagli

INTERAZIONE DELLA RADIAZIONE CON CON LA LA MATERIA. Dal punto di vista dell interazione con la materia le radiazioni IONIZZANTI si classificano in:

INTERAZIONE DELLA RADIAZIONE CON CON LA LA MATERIA. Dal punto di vista dell interazione con la materia le radiazioni IONIZZANTI si classificano in: INTERAZIONE DELLA RADIAZIONE CON CON LA LA MATERIA Dal punto di vista dell interazione con la materia le radiazioni IONIZZANTI si classificano in: DIRETTAMENTE IONIZZANTI INDIRETTAMENTE IONIZZANTI Le radiazioni

Dettagli

Facoltà di Scienze Matematiche Fisiche e Naturali. Corso di Laurea Magistrale in Fisica

Facoltà di Scienze Matematiche Fisiche e Naturali. Corso di Laurea Magistrale in Fisica Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea Magistrale in Fisica Calibrazione di un detector a scintillazione per la rivelazione di particelle secondarie di 20-250 MeV di energia

Dettagli

Sviluppo di un software di raytracing fast-montecarlo su GPU per piani di trattamento adroterapici

Sviluppo di un software di raytracing fast-montecarlo su GPU per piani di trattamento adroterapici Facoltà di Ingegneria Civile e Industriale Ingegneria Biomedica Sviluppo di un software di raytracing fast-montecarlo su GPU per piani di trattamento adroterapici Relatore: Prof. Vincenzo Patera Correlatore:

Dettagli

DECADIMENTO RADIOATTIVO

DECADIMENTO RADIOATTIVO DECADIMENTO RADIOATTIVO Emissione di una o più particelle da parte di un nucleo. Tutti i decadimenti (tranne il decad. γ) cambiano Z e/o N del nucleo. Radionuclidi = Nuclidi radioattivi presenti in natura:

Dettagli

Progettazione di un sistema di schermatura per un acceleratore lineare a protoni per adroterapia

Progettazione di un sistema di schermatura per un acceleratore lineare a protoni per adroterapia Facoltà di Ingegneria Civile e Industriale Corso di laurea in Ingegneria Biomedica Tesi di Laurea Magistrale Progettazione di un sistema di schermatura per un acceleratore lineare a protoni per adroterapia

Dettagli

Fisica delle Apparecchiature per Radioterapia, lez. III RADIOTERAPIA M. Ruspa 1

Fisica delle Apparecchiature per Radioterapia, lez. III RADIOTERAPIA M. Ruspa 1 RADIOTERAPIA 14.01.11 M. Ruspa 1 Con il termine RADIOTERAPIA si intende l uso di radiazioni ionizzanti altamente energetiche (fotoni X o gamma, elettroni, protoni) nel trattamento dei tumori. La radiazione

Dettagli

Calibrazione dei cristalli del prototipo del calorimetro di Gamma400 con fasci di ioni

Calibrazione dei cristalli del prototipo del calorimetro di Gamma400 con fasci di ioni Calibrazione dei cristalli del prototipo del calorimetro di Gamma400 con fasci di ioni Miriam Olmi 30 Aprile 2013 Raggi cosmici Il flusso si attenua di oltre 30 ordini di grandezza al variare dell'energia

Dettagli

ottimizzazione di rivelatori a scintillazione per dosimetria

ottimizzazione di rivelatori a scintillazione per dosimetria Relatore: Prof. Vincenzo Patera Correlatore: Prof. Adalberto Sciubba Candidato: Maria Chiara Marcianò Dipartimento di Scienze di Base Applicate all Ingegneria Facoltà di Ingegneria Sapienza di Roma ottimizzazione

Dettagli

LE RADIAZIONI IONIZZANTI

LE RADIAZIONI IONIZZANTI LE RADIAZIONI IONIZZANTI Generalità Le radiazioni ionizzanti sono, per definizione, onde elettromagnetiche e particelle capaci di causare, direttamente o indirettamente, la ionizzazione degli atomi e delle

Dettagli

Radioattivita (radiazioni ionizzanti) e salute. 2a parte

Radioattivita (radiazioni ionizzanti) e salute. 2a parte Radioattivita (radiazioni ionizzanti) e salute Cristiana Peroni Dipartimento di Fisica Sperimentale dell Universita di Torine e Istituto Nazionale di Fisica Nucleare 2a parte 4/11/2005 C.Peroni 1 Uso delle

Dettagli

CAPACITA DI PENETRAZIONE DELLA RADIAZIONE PERCORSO MASSIMO (RANGE) PER PARTICELLE CARICHE E SPESSORE EMIVALENTE PER FOTONI E NEUTRONI

CAPACITA DI PENETRAZIONE DELLA RADIAZIONE PERCORSO MASSIMO (RANGE) PER PARTICELLE CARICHE E SPESSORE EMIVALENTE PER FOTONI E NEUTRONI CAPACITA DI PENETRAZIONE DELLA RADIAZIONE NELLA MATERIA: PERCORSO MASSIMO (RANGE) PER PARTICELLE CARICHE E SPESSORE EMIVALENTE PER FOTONI E NEUTRONI Polvani pp 50-57 Particelle cariche Tessuti molli considerati

Dettagli

prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA ACCELERATORI PER LA SALUTE: ADROTERAPIA

prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA ACCELERATORI PER LA SALUTE: ADROTERAPIA prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA ACCELERATORI PER LA SALUTE: ADROTERAPIA Cosa sono gli adroni? Come penetrano nel corpo? Perché si può curare un tumore con gli adroni?

Dettagli

INTERAZIONE RADIAZIONE-MATERIA

INTERAZIONE RADIAZIONE-MATERIA INTERAZIONE RADIAZIONE-MATERIA Radiazioni ionizzanti Interazione di particelle cariche: range perdita di energia per ionizzazione perdita di energia per radiazione Interazione di particelle neutre: neutroni

Dettagli

Dalla fisica nuovi strumenti per la diagnosi e la cura dei tumori

Dalla fisica nuovi strumenti per la diagnosi e la cura dei tumori Dalla fisica nuovi strumenti per la diagnosi e la cura dei tumori Vincenzo Monaco Dipartimento di Fisica - Universita di Torino e Istituto Nazionale di Fisica Nucleare - Sezione di Torino La fisica in

Dettagli

background: è quello di sviluppo di rivelatori per fisica delle alte energie. Come applicare queste competenze a settori diversi?

background: è quello di sviluppo di rivelatori per fisica delle alte energie. Come applicare queste competenze a settori diversi? background: è quello di sviluppo di rivelatori per fisica delle alte energie. Come applicare queste competenze a settori diversi? progetti: come risposta ad esigenze avanzate dagli utenti (medici e fisici

Dettagli

di ioni carbonio: ottimizzazione della dose efficace

di ioni carbonio: ottimizzazione della dose efficace Un piano di trattamento per fasci di ioni carbonio: ottimizzazione della dose efficace 1,2, A.Ansarinejad 1,2, A.Attili 1, F.Bourhaleb 2, R.Cirio 1,2, M.Donetti 3, A.Garella 1, N.Givehchi 1,2, S.Giordanengo

Dettagli

LE GRANDEZZE FISICHE GRANDEZZE RADIOMETRICHE

LE GRANDEZZE FISICHE GRANDEZZE RADIOMETRICHE LE GRANDEZZE FISICHE GRANDEZZE RADIOMERICHE Le grandezze radiometriche sono quelle che descrivono le caratteristiche del fascio di radiazioni in un punto e in un istante. La fluenza di particelle (Numero

Dettagli

Lezione 24 Radiazioni Ionizzanti

Lezione 24 Radiazioni Ionizzanti Generalità Lezione 24 Radiazioni Ionizzanti Con il termine radiazione si descrivono fenomeni molto diversi fra loro: Emissione di luce da una lampada Emissione di calore da una fiamma Particelle elementari

Dettagli

LEZIONE 4 INTERAZIONE DEI RAGGI X E GAMMA CON LA MATERIA

LEZIONE 4 INTERAZIONE DEI RAGGI X E GAMMA CON LA MATERIA LZION 4 INTRAZION DI RAGGI X GAMMA CON LA MATRIA I raggi X hanno generalmente energie comprese fra i 5 KeV e i 500 kev. Interagendo con la materia i raggi X (interazione primaria) producono elettroni secondari

Dettagli

INTERAZIONE RADIAZIONE-MATERIA e DOSIMETRIA

INTERAZIONE RADIAZIONE-MATERIA e DOSIMETRIA INTERAZIONE RADIAZIONE-MATERIA e DOSIMETRIA Le radiazioni nucleari Interazione tra radiazioni e materia Effetti biologici della radiazione ionizzante Dosimetria Radioattività naturale Radioprotezione Liceo

Dettagli

Centro Nazionale di Adroterapia Oncologica Attività clinica

Centro Nazionale di Adroterapia Oncologica Attività clinica CNAO Centro Nazionale di Adroterapia Oncologica Attività clinica 1 ottobre 2016 Quanti sono i tumori in Italia? circa 3 milioni italiani vivono con una diagnosi di tumore (circa il 4,9% della popolazione)

Dettagli

Aspetti Fisici dell Adroterapia al CNAO

Aspetti Fisici dell Adroterapia al CNAO Incontro di Orietamento per la Laurea Magistrale in Scienze Fisiche Martedì 19 Maggio 2015, Aula 102 Aspetti Fisici dell Adroterapia al CNAO Aurora Tamborini Assegnista di ricerca INFN Sezione di Pavia

Dettagli

Il rationale radiobiologico per l uso di fasci di ioni carbonio in adroterapia

Il rationale radiobiologico per l uso di fasci di ioni carbonio in adroterapia Il rationale radiobiologico per l uso di fasci di ioni carbonio in adroterapia Lorenzo Manti Laboratorio di Biofisica delle Radiazioni Dipartimento di Scienze Fisiche Radioterapia L obiettivo è bloccare

Dettagli

Interazione radiazione materia Dott.ssa Alessandra Bernardini

Interazione radiazione materia Dott.ssa Alessandra Bernardini Interazione radiazione materia Dott.ssa Alessandra Bernardini 1 Un po di storia Lo studio delle radiazioni ionizzanti come materia di interesse nasce nel novembre del 1895 ad opera del fisico tedesco Wilhelm

Dettagli

DICHIARAZIONE Relatore: BARBARA VISCHIONI

DICHIARAZIONE Relatore: BARBARA VISCHIONI DICHIARAZIONE Relatore: BARBARA VISCHIONI Come da nuova regolamentazione della Commissione Nazionale per la Formazione Continua del Ministero della Salute, è richiesta la trasparenza delle fonti di finanziamento

Dettagli

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg.

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg. Reazioni nucleari Un nucleo instabile può raggiungere una nuova condizione di stabilità attraverso una serie di decadimenti con emissione di particelle α, β, γ o di frammenti nucleari (fissione). Emissione

Dettagli

Profilo CNAO - Centro Nazionale di Adroterapia Oncologica

Profilo CNAO - Centro Nazionale di Adroterapia Oncologica Profilo CNAO - Centro Nazionale di Adroterapia Oncologica CNAO è il Centro Nazionale di Adroterapia Oncologica per il trattamento dei tumori con protoni e ioni carbonio, una fondazione privata senza scopo

Dettagli

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 10 Radioattività... 2 L atomo... 3 Emissione di raggi x... 4 Decadimenti nucleari. 6 Il decadimento alfa.... 7 Il decadimento beta... 8 Il decadimento gamma...... 9 Interazione dei fotoni

Dettagli

Dalla fisica nuovi strumenti per la diagnosi e la cura dei tumori

Dalla fisica nuovi strumenti per la diagnosi e la cura dei tumori Dalla fisica nuovi strumenti per la diagnosi e la cura dei tumori Roberto Cirio Dipartimento di Fisica Sperimentale - Universita di Torino e Istituto Nazionale di Fisica Nucleare - Sezione di Torino La

Dettagli

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti materiali in funzione dell'energia del fascio dei fotoni Esperto Qualificato LNF - INFN Interazioni delle particelle indirettamente ionizzanti con la materia Le particelle indirettamente ionizzanti, principalmente

Dettagli

Il Centro Nazionale di Adroterapia Oncologica (CNAO) di Pavia è

Il Centro Nazionale di Adroterapia Oncologica (CNAO) di Pavia è Mario Ciocca Responsabile fisica medica della Fondazione CNAO, Centro Nazionale di Adroterapia Oncologica Francesca Valvo Direttore medico della Fondazione CNAO, Centro Nazionale di Adroterapia Oncologica

Dettagli

Decadimento a. E tipico dei radioisotopi con Z > 82 (Pb), nei quali il rapporto tra il numero dei neutroni e quello dei protoni è troppo basso.

Decadimento a. E tipico dei radioisotopi con Z > 82 (Pb), nei quali il rapporto tra il numero dei neutroni e quello dei protoni è troppo basso. Decadimento a Nel decadimento vengono emesse particelle formate da 2 protoni e 2 neutroni ( = nuclei di 4He) aventi velocità molto elevate (5-7% della velocità della luce) E tipico dei radioisotopi con

Dettagli

(Veneto, BUR 27 gennaio 2015, n. 11) Note per la trasparenza:

(Veneto, BUR 27 gennaio 2015, n. 11) Note per la trasparenza: Deliberazione Giunta Regionale 29 dicembre 2014 n. 2680 Accordo tra la Regione Veneto e la Provincia Autonoma di Trento per l'erogazione, nei confronti dei cittadini residenti in Veneto, delle prestazioni

Dettagli

Linear No-Threshold Hypothesis (LNT)

Linear No-Threshold Hypothesis (LNT) Il concetto di dose La Dosimetria Una delle discipline scientifiche che supporta la legge è la dosimetria, cioè la misura delle grandezze che consentono di calcolare il danno biologico dovuto all esposizione

Dettagli

RADIAZIONI IONIZZANTI

RADIAZIONI IONIZZANTI RADIAZIONI IONIZZANTI PREMESSA Le radiazioni ionizzanti sono quelle radiazioni dotate di sufficiente energia da poter ionizzare gli atomi (o le molecole) con i quali vengono a contatto. La caratteristica

Dettagli

MONITORAGGIO DELLE RADIAZIONI IONIZZANTI NELLE APPLICAZIONI CLINICHE DI FASCI DI PARTICELLE DEL PROGETTO CATANA

MONITORAGGIO DELLE RADIAZIONI IONIZZANTI NELLE APPLICAZIONI CLINICHE DI FASCI DI PARTICELLE DEL PROGETTO CATANA UNIVERSITÀ DEGLI STUDI DI CATANIA REGIONE SICILIANA Assessorato Regionale dell'istruzione e della Formazione Professionale Dipartimento Regionale dell'istruzione e della Formazione Professionale Unione

Dettagli

SIAMO TUTTI RADIOATTIVI

SIAMO TUTTI RADIOATTIVI SIAMO TUTTI RADIOATTIVI IRRAGGIAMENTI QUOTIDIANI Simona Giordanengo INFN Torino NON LE VEDIAMO MA CI SONO SEMPRE Le misuriamo, le creiamo e le usiamo COSA? PERCHE? QUANTO? QUALI? COME? CHI? DOVE? QUANDO?

Dettagli

INTERAZIONE RADIAZIONE-MATERIA

INTERAZIONE RADIAZIONE-MATERIA INTERAZIONE RADIAZIONE-MATERIA Radiazioni ionizzanti Interazione di particelle cariche: range perdita di energia per ionizzazione perdita di energia per radiazione Interazione di particelle neutre: neutroni

Dettagli

Attività ISS dall ultima riunione

Attività ISS dall ultima riunione 1 Tesi Monica Mancone / 2014 Attività ISS dall ultima riunione Camera di monitor: Misure estese su fascio di elettroni Prime misure su fascio di protoni Studio aggiornamento elettronica Sistema Misura

Dettagli

CIED e Radioterapia. Mara Severgnini, Fisica Medica A.O.U. Ospedali Riuniti di Trieste

CIED e Radioterapia. Mara Severgnini, Fisica Medica A.O.U. Ospedali Riuniti di Trieste CIED e Radioterapia Mara Severgnini, Fisica Medica A.O.U. Ospedali Riuniti di Trieste Dispositivi Cardiaci Impiantabili e radioterapia Pacemaker Defibrillatori Le radiazioni provocano danni: distruzione

Dettagli

Radiazioni ionizzanti

Radiazioni ionizzanti Radiazioni ionizzanti Qualunque radiazione in grado di provocare fenomeni di ionizzazione. Radiazione: trasferimento di energia attraverso lo spazio. Ionizzazione: fenomeno per il quale, da un atomo stabile

Dettagli

LA PRODUZIONE DEI RAGGI X

LA PRODUZIONE DEI RAGGI X UNIVERSITA POLITECNICA DELLE MARCHE Facoltà di Medicina e Chirurgia Corso di Laurea in Tecniche di Radiologia Medica, per Immagini e Radioterapia LA PRODUZIONE DEI RAGGI X A.A. 2015-2016 Tecniche di Radiodiagnostica

Dettagli

Produzione di un fascio di raggi x

Produzione di un fascio di raggi x Produzione di un fascio di raggi x WWW.SLIDETUBE.IT Un fascio di elettroni penetra nella materia, dando origine a: produzione di elettroni secondari (raggi delta) emissione X caratteristica bremsstrahlung

Dettagli

Argomenti trattati. Argomenti trattati

Argomenti trattati. Argomenti trattati LA RADIOPROTEZIONE NELL AMBIENTE SANITARIO RADIAZIONI P.Catuzzo MASTER DI PRIMO LIVELLO PERLE FUNZIONI DI COORDINAMENTO DELLE PROFESSIONI SANITARIE Argomenti trattati Cosa sono le radiazioni Origine delle

Dettagli

RADIOBIOLOGIA CELLULE, RADIAZIONI E STUDI DEGLI EFFETTI BIOLOGICI INDOTTI DALLE RADIAZIONI IONIZZANTI

RADIOBIOLOGIA CELLULE, RADIAZIONI E STUDI DEGLI EFFETTI BIOLOGICI INDOTTI DALLE RADIAZIONI IONIZZANTI RADIOBIOLOGIA CELLULE, RADIAZIONI E STUDI DEGLI EFFETTI BIOLOGICI INDOTTI DALLE RADIAZIONI IONIZZANTI Maria Pachera Andrea Reffo Eugenio Saletta Kawarpreet Singh Tutor: R. Cherubini, V. De Nadal LNL 26

Dettagli

Il nucleare non è il diavolo. Il problema:

Il nucleare non è il diavolo. Il problema: 2005 Anno Mondiale della Fisica Il nucleare non è il diavolo Progetto di monitoraggio della radioattività ambientale nelle scuole Sezione di Torino dell INFN e Dipartimenti di Fisica dell Università di

Dettagli

Lezione 19 Fisica nucleare

Lezione 19 Fisica nucleare Lezione 19 Fisica nucleare Nucleo Il nucleo atomico è costituito da nucleoni (N), ovvero: protoni (p) e neutroni (n). Il numero di p è caratteristico di ogni elemento; è detto numero atomico ed è indicato

Dettagli

Le radiazioni ionizzanti e la radioprotezione

Le radiazioni ionizzanti e la radioprotezione Le radiazioni ionizzanti e la radioprotezione Radiazioni Radiazioniionizzanti ionizzanti Il termine radiazione viene abitualmente usato per descrivere fenomeni apparentemente assai diversi tra loro,

Dettagli

DOSE DI RADIAZIONE IONIZZANTE PERICOLO DA RADIAZIONI IONIZZANTI DOSE ASSORBITA D =!E AREA CONTROLLATA. energia assorbita nell'unità di massa

DOSE DI RADIAZIONE IONIZZANTE PERICOLO DA RADIAZIONI IONIZZANTI DOSE ASSORBITA D =!E AREA CONTROLLATA. energia assorbita nell'unità di massa DOSE DI RADIAZIONE IONIZZANTE PERICOLO DA RADIAZIONI IONIZZANTI DOSE ASSORBITA AREA CONTROLLATA D =!E!m energia assorbita nell'unità di massa 2 UNITA' DI MISURA dose assorbita D =!E!m dimensioni [D] =

Dettagli

LE RADIAZIONI ELETTROMAGNETICHE (in medicina)

LE RADIAZIONI ELETTROMAGNETICHE (in medicina) CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE LE RADIAZIONI ELETTROMAGNETICHE (in medicina) SPETTRO ELETTROMAGNETICO RADIAZIONI TERMICHE RADIAZIONI IONIZZANTI A. A. 2014-2015

Dettagli

MODULO A: ACCELERATORI DI PARTICELLE

MODULO A: ACCELERATORI DI PARTICELLE STAGE DI FISICA EDIZIONE 2011 MODULO A: ACCELERATORI DI PARTICELLE ISTITUTO NAZIONALE DI FISICA NUCLEARE LABORATORI NAZIONALI DI LEGNARO Paolo Matteo Simonetti ISIS Galileo Galilei - Belluno Benedetta

Dettagli

Campobasso. Dalla Fondazione Giovanni Paolo II trattamenti radioterapici avanzati per i tumori del testa-collo

Campobasso. Dalla Fondazione Giovanni Paolo II trattamenti radioterapici avanzati per i tumori del testa-collo Campobasso. Dalla Fondazione Giovanni Paolo II trattamenti radioterapici avanzati per i tumori del testa-collo Il lavoro scientifico che riporta la fattibilità di questa complessa strategia è stato pubblicato

Dettagli

DIAGNOSTICA PER IMMAGINI CASA DI CURA PRIVATA SANATRIX

DIAGNOSTICA PER IMMAGINI CASA DI CURA PRIVATA SANATRIX DIAGNOSTICA PER IMMAGINI CASA DI CURA PRIVATA SANATRIX DIAGNOSTICA PER IMMAGINI Il servizio di Diagnostica per Immagini di Clinica Sanatrix si avvale di apparecchiature che, utilizzando varie forme di

Dettagli

NEUTRONICI CON TECNICA DEL TEMPO DI VOLO. Francesco Barilari, Alberto Edoni, Antonio Lombardi, Davide Restelli

NEUTRONICI CON TECNICA DEL TEMPO DI VOLO. Francesco Barilari, Alberto Edoni, Antonio Lombardi, Davide Restelli MISURA DI SPETTRI NEUTRONICI CON TECNICA DEL TEMPO DI VOLO GRUPPO K RELATORI: TUTORS: Francesco Barilari, Alberto Edoni, Antonio Lombardi, Davide Restelli Pierfrancesco Mastinu, Elizabeth Musacchio Carica

Dettagli

Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Dosimetria 14/3/2005

Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Dosimetria 14/3/2005 Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Dosimetria 14/3/2005 Radionuclidi Utilizzati come traccianti tipo di emissione, vita media, danno radiazione Elaborazione Immissione di liquido di

Dettagli

Dalla fisica nuovi strumenti per la diagnosi e la cura dei tumori

Dalla fisica nuovi strumenti per la diagnosi e la cura dei tumori Dalla fisica nuovi strumenti per la diagnosi e la cura dei tumori Roberto Sacchi Dipartimento di Fisica - Universita di Torino e Istituto Nazionale di Fisica Nucleare - Sezione di Torino La Fisica in gioco

Dettagli

Applicazioni della fisica nucleare e subnucleare. R. Faccini Seminari Orientamento INFN 14/6/2016

Applicazioni della fisica nucleare e subnucleare. R. Faccini Seminari Orientamento INFN 14/6/2016 Applicazioni della fisica nucleare e subnucleare R. Faccini Seminari Orientamento INFN 14/6/2016 Caratteristiche chiave decadimenti nucleari 2 Raggi γ e neutroni: Sono molto penetranti e quando interagiscono

Dettagli

ANNO MONDIALE DELLA FISICA FISICA DEI CONTROLLI NON DISTRUTTIVI E LORO APPLICAZIONI INDUSTRIALI

ANNO MONDIALE DELLA FISICA FISICA DEI CONTROLLI NON DISTRUTTIVI E LORO APPLICAZIONI INDUSTRIALI ANNO MONDIALE DELLA FISICA FISICA DEI CONTROLLI NON DISTRUTTIVI E LORO APPLICAZIONI INDUSTRIALI FRANCO TONOLINI FONDAZIONE LIVIA TONOLINI CARAVAGGIO 7-8 OTTOBRE 2005 CHE COSA SONO I CONTROLLI DISTRUTTIVI

Dettagli

I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta

I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta I rivelatori Osservare il microcosmo Cose prima mai viste L occhio umano non riesce a distinguere oggetti con dimensioni inferiori a 0,1 mm (10-4 m). I primi microscopi vennero prodotti in Olanda alla

Dettagli

Fissione. E=m c 2 Δ E=Δ m c 2. m in. = 235,89 u. = 236,05 u. ΔE = 148 MeV = 2, J

Fissione. E=m c 2 Δ E=Δ m c 2. m in. = 235,89 u. = 236,05 u. ΔE = 148 MeV = 2, J Fissione E=m c 2 Δ E=Δ m c 2 m in = 236,05 u m out = 235,89 u ΔE = 148 MeV = 2,4 10-11 J Reazione e catena autosostenuta: il numero di nuovi neutroni, esclusi quelli assorbiti e quelli che escono senza

Dettagli

Il Progetto Treatment Planning System (TPS) (2011: anno 2.5)

Il Progetto Treatment Planning System (TPS) (2011: anno 2.5) Il Progetto Treatment Planning System (TPS) (2011: anno 2.5) In parte finanziato e controllato anche dal Progetto Strategico INFN-MED Progetto di collaborazione industriale con IBA in seguito ad accordo

Dettagli

Radioprotezione del paziente e dell'operatore : dose e dosimetria

Radioprotezione del paziente e dell'operatore : dose e dosimetria Radioprotezione del paziente e dell'operatore : dose e dosimetria Dott. Mirco Amici Esperto Qualificato U.O.C. Medicna Legale e Gestione del Rischio 12 Novembrere 2009 1 La radioprotezione ha come compito

Dettagli

La garanzia della qualità in Radioterapia. Dott.. Antonio Orientale A.O. S. Giovanni di Dio e Ruggi D Aragona - Salerno

La garanzia della qualità in Radioterapia. Dott.. Antonio Orientale A.O. S. Giovanni di Dio e Ruggi D Aragona - Salerno La garanzia della qualità in Radioterapia Dott.. Antonio Orientale A.O. S. Giovanni di Dio e Ruggi D Aragona - Salerno Fig.1- Rappresentazione schematica del funzionamento di un acceleratore lineare Fig.2

Dettagli

UNIVERSITA POLITECNICA DELLE MARCHE Facoltà di Medicina e Chirurgia Corso di Laurea in Tecniche di Radiologia Medica, per Immagini e Radioterapia

UNIVERSITA POLITECNICA DELLE MARCHE Facoltà di Medicina e Chirurgia Corso di Laurea in Tecniche di Radiologia Medica, per Immagini e Radioterapia UNIVERSITA POLITECNICA DELLE MARCHE Facoltà di Medicina e Chirurgia Corso di Laurea in Tecniche di Radiologia Medica, per Immagini e Radioterapia LA QUALITA DELL IMMAGINE IN RADIOGIAGNOSTICA. Fattori del

Dettagli

UNIVERSITÁ DEGLI STUDI DI PADOVA

UNIVERSITÁ DEGLI STUDI DI PADOVA Fisica Sanitaria Interazione di raggi X con la materia (diffusione, effetto compton, fotoelettrico, produzione di coppie, fotodisintegrazione). Spessore emivalente, decivalente. Interazione delle particelle

Dettagli

La Radioprotezione Radiazioni Ionizzanti rischi e sistemi di protezione

La Radioprotezione Radiazioni Ionizzanti rischi e sistemi di protezione La Radioprotezione Radiazioni Ionizzanti rischi e sistemi di protezione Corso di formazione generale CR-Trisaia, sede di Brindisi Dott. Roberto Falcone GSP4 ION IRP Casaccia Argomenti trattati Cosa sono

Dettagli

RICERCA E TERAPIE: QUALI PROSPETTIVE?

RICERCA E TERAPIE: QUALI PROSPETTIVE? Montesilvano 11 Aprile 2015 RICERCA E TERAPIE: QUALI PROSPETTIVE? Ruolo dell'adroterapia nel trattamento dei sarcomi dell'osso e dei tessuti molli: Il Centro Nazionale di Adroterapia Oncologica Dott. Alberto

Dettagli

REQUISITI STRUTTURALI

REQUISITI STRUTTURALI L attività di Radioterapia è diretta al trattamento della malattia neoplastica e, in casi selezionati, al trattamento di patologie non neoplastiche, a carattere malformativo e/o cronico degenerativo, mediante

Dettagli

Il Centro Nazionale di Adroterapia Oncologia di Pavia Ugo Amaldi Università Milano Bicocca e Fondazione TERA

Il Centro Nazionale di Adroterapia Oncologia di Pavia Ugo Amaldi Università Milano Bicocca e Fondazione TERA Il Centro Nazionale di Adroterapia Oncologia di Pavia Ugo Amaldi Università Milano Bicocca e Fondazione TERA 1. Radioterapia con fasci di raggi X Le radiazioni piu` utilizzate oggi in teleterapia sono

Dettagli

contenitore in vetro anodo di tungsteno catodo costituito da un filamento vuoto

contenitore in vetro anodo di tungsteno catodo costituito da un filamento vuoto Questo è un tipico tubo a raggi X utilizzato nei sistemi diagnostici. All interno di un contenitore in vetro, viene inserito un anodo di tungsteno e, dal lato opposto, un catodo costituito da un filamento

Dettagli

Acceleratori di particelle

Acceleratori di particelle Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Acceleratori di particelle 21/3/2005 Spettrometro di massa Misura la massa di particelle, atomi e molecole ottenuta mediante annerimento di una lastra

Dettagli

Gli acceleratori e i rivelatori di particelle

Gli acceleratori e i rivelatori di particelle Gli acceleratori e i rivelatori di particelle Come studiare le proprietà dei NUCLEI? Facendoli collidere tra loro!!!! Informazioni: Dimensioni e struttura del nucleo Forze nucleari Meccanismi di reazione

Dettagli

ASSESSORATO DELL IGIENE E SANITA E DELL ASSISTENZA SOCIALE RADIOTERAPIA

ASSESSORATO DELL IGIENE E SANITA E DELL ASSISTENZA SOCIALE RADIOTERAPIA L attività di Radioterapia è diretta al trattamento della malattia neoplastica e, in casi selezionati, al trattamento di patologie non neoplastiche, a carattere malformativo e/o cronico degenerativo, mediante

Dettagli

FONDAZIONE CNAO PAVIA

FONDAZIONE CNAO PAVIA PAVIA Cos'è la Fondazione CNAO: Si tratta dell'unico Centro Nazionale di Adroterapia Oncologica. Tale innovativa terapia di carattere oncologico ha concluso la fase di sperimentazione avviata nel settembre

Dettagli

GLI ACCELERATORI NUCLEARI NELLA TERAPIA DEI TUMORI

GLI ACCELERATORI NUCLEARI NELLA TERAPIA DEI TUMORI Scienze fisiche Adroterapia Istituto Lombardo (Rend. Scienze) 146, 161-172 (2012) GLI ACCELERATORI NUCLEARI NELLA TERAPIA DEI TUMORI DOMENICO SCANNICCHIO (*) Nota presentata dal m.e. Ferdinando Borsa (Adunanza

Dettagli

SCHEMA DI CONVENZIONE TRA LA REGIONE EMILIA-ROMAGNA E LA PROVINCIA AUTONOMA DI TRENTO PER L ATTIVITA DEL CENTRO DI PROTONTERAPIA DI TRENTO

SCHEMA DI CONVENZIONE TRA LA REGIONE EMILIA-ROMAGNA E LA PROVINCIA AUTONOMA DI TRENTO PER L ATTIVITA DEL CENTRO DI PROTONTERAPIA DI TRENTO ALLEGATO SCHEMA DI CONVENZIONE TRA LA REGIONE EMILIA-ROMAGNA E LA PROVINCIA AUTONOMA DI TRENTO PER L ATTIVITA DEL CENTRO DI PROTONTERAPIA DI TRENTO La Regione Emilia-Romagna, con sede in Bologna, viale

Dettagli

Foto stroboscopica di una palla lasciata cadere da ferma (palla rossa) nello stesso istante in cui un altra (palla gialla) è sparata orizzontalmente

Foto stroboscopica di una palla lasciata cadere da ferma (palla rossa) nello stesso istante in cui un altra (palla gialla) è sparata orizzontalmente Il sistema cardiocircolatorio Foto stroboscopica di una palla lasciata cadere da ferma (palla rossa) nello stesso istante in cui un altra (palla gialla) è sparata orizzontalmente verso destra. Come si

Dettagli

1. + p! n p! + + K. 3. p + p! K e + + e! ! µ + e + 2. K +! 0 + e + + e. 3. p! n + e + e + 4.!

1. + p! n p! + + K. 3. p + p! K e + + e! ! µ + e + 2. K +! 0 + e + + e. 3. p! n + e + e + 4.! Nome e Cognome: Docente: II Bonus per lo scritto del corso di Fisica Nucleare e Subnucleare I ( A.A. 2011-2012 ) 6 giugno 2012 Problema 1 Un fascio, contenente elettroni e protoni di impulso 1.8 GeV, attraversa

Dettagli

La Produzione dei Raggi X

La Produzione dei Raggi X La Produzione dei Raggi X Master: Verifiche di Qualità in Radiodiagnostica, Medicina Nucleare e Radioterapia Lezione 2 Dr. Rocco Romano (Dottore di Ricerca) Facoltà di Farmacia, Università degli Studi

Dettagli

Il microscopio elettronico: oltre la lunghezza d onda della luce visibile

Il microscopio elettronico: oltre la lunghezza d onda della luce visibile Il microscopio elettronico: oltre la lunghezza d onda della luce visibile Perché utilizzare gli elettroni come radiazione: - si possono produrre facilmente (fotoemissione, emissione termoionica, elettroni

Dettagli

Parte I - LE RADIAZIONI IONIZZANTI E LE GRANDEZZE FISICHE DI INTERESSE IN DOSIMETRIA

Parte I - LE RADIAZIONI IONIZZANTI E LE GRANDEZZE FISICHE DI INTERESSE IN DOSIMETRIA INDICE Parte I - LE RADIAZIONI IONIZZANTI E LE GRANDEZZE FISICHE DI INTERESSE IN DOSIMETRIA Capitolo 1 Le radiazioni ionizzanti 19 1.1 Introduzione 19 1.2 Il fondo naturale di radiazione 21 1.2.1 La radiazione

Dettagli

TECNICHE RADIOCHIMICHE

TECNICHE RADIOCHIMICHE TECNICHE RADIOCHIMICHE L ATOMO - Un atomo e costituito da un nucleo carico positivamente, circondato da una nuvola di elettroni carichi negativamente. - I nuclei atomici sono costituiti da due particelle:

Dettagli

Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 PET e SPECT 18/3/2005

Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 PET e SPECT 18/3/2005 Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 PET e SPECT 18/3/2005 Tomografie PET-SPECT Positron Emission Tomography Single Photon Emission Computer Tomography Tecniche non invasive utilizzate

Dettagli

Fisica Sanitaria Radioterapia

Fisica Sanitaria Radioterapia LAUREA MAGISTRALE IN FISICA Fisica Nucleare Applicata Fisica Sanitaria Radioterapia si ringrazia la dott.ssa F. Cavagnetto per il materiale didattico fornito Fabrizio LEVRERO U.O. Fisica Sanitaria IRCCS

Dettagli