Gli acceleratori e i rivelatori di particelle
|
|
|
- Beata Di Giacomo
- 8 anni fa
- Visualizzazioni
Transcript
1 Gli acceleratori e i rivelatori di particelle
2 Come studiare le proprietà dei NUCLEI? Facendoli collidere tra loro!!!! Informazioni: Dimensioni e struttura del nucleo Forze nucleari Meccanismi di reazione nucleare
3 Alcune reazioni nucleari che conosciamo: Au + Au Diffusione elastica N p + O Al n + P
4 Fondato nel Laboratori Nazionali 23 Sezioni 8 Gruppi collegati INFN
5 LNF Fisica delle particelle DAFNE Double Anular Factory for Nice experiments
6 LNGS Fisica dei neutrini
7 LNL Fisica nucleare TANDEM LINAC ALPI (Acceletaore Lineare Per Ioni)
8 LNS Fisica nucleare CICLOTRONE TANDEM (1983)
9 TANDEM Stripper Sorgente di ioni + Ioni -1 0 MV + 15 MV 0 MV Gli ioni positivi prodotti dalla sorgente attraversano un gas neutro che ha un elettrone poco legato. Circa l 1% degli ioni catturerà gli elettroni del gas diventando negativi. Gli ioni negativi vengono accelerati dal terminale ad alto voltaggio posto al centro della camera a pressione. Attraversano quindi un foglio (tipicamente carbonio dello spessore di circa 50 μg/cm2) che strappa (n+1) elettroni. Gli ioni positivi risultanti vengono quindi nuovamente accelerati dallo stesso alto voltaggio. L energia cinetica risultante è E = [(q+1) * V ] ev. Valori tipici di V sono dell ordine di 10MV-15MV.
10 LINAC In un acceleratore lineare le particelle ricevono molte accelerazioni da un potenziale oscillante; Le particelle viaggiano attraverso una serie di elettrodi tubolari che cambiano polarità durante il passaggio delle particelle al loro interno, in modo da accelerarle nel passaggio dei gaps.
11 CICLOTRONE Nel ciclotrone gli ioni sono immersi in un campo magnetico e seguono traiettorie circolari in due camere di metallo semicircolari chiamate D connesse a un potenziale oscillante. Quando gli ioni sono all interno dei D sentono solo il campo magnetico e la loro traiettoria è circolare. Nel gap tra le due D vengono accelerati da un campo elettrico. Ad ogni semigiro il campo elettrico tra le D viene invertito.
12 LABORATORI NAZIONALI del SUD CHIMERA MAGNEX MEDEA CATANA TANDEM CICLOTRONE SORGENTE
13 I Rivelatori di particelle Come vediamo le particelle? Con i Rivelatori Permettono di trasformare le particelle in impulsi elettrici che possiamo acquisire e studiare Si sfrutta la capacità che hanno le radiazioni di ionizzare/eccitare la materia (direttamente o indirettamente). Rivelatori a gas Rivelatori al silicio Rivelatore a scintillazione Rivelatore a gas
14 Interazione radiazione carica - materia M, q=z 1 Z 2 electrons, q=-e 0 Le particelle cariche interagiscono con gli elettrini degli atomi costituenti il rivelatore, perdendo la loro energia. Gli atomi verrano ionizzati o eccitati. Atomi ionizzati Rivelatori a gas Creazione coppie di ioni negativi-positivi Rivelatori a semiconduttore Creazione elettrone -lacune + - +
15 Interazione radiazione carica - materia M, q=z 1 Z 2 electrons, q=-e 0 Le particelle cariche interagiscono con gli elettrini degli atomi costituenti il rivelatore, perdendo la loro energia. Gli atomi verrano ionizzati o eccitati. Atomi eccitati => emissione di radiazioni X L impulso di luce prodotto dalla diseccitazione viene poi rivelato ed amplificato da opportuni sensori, ad esempio da un fotomoltiplicatore. radiation
16 Interazione radiazione neutra (raggi X, raggi g) - materia Ionizzazione indiretta: Un raggio X/g-ray colpisce un cristallo esso può essere assorbito da un atomo e liberare un fotoelettrone; Il fotoelettrone interagirà con il reticolo cristallino producendo coppie elettrone lacune, perdendo la sua energia. Rivelatori a semiconduttore: 1. Silicilio-Litio 2. Germanio
17 Interazione neutroni - materia I neutroni a differenza delle particelle cariche e dei fotoni non interagiscono con gli atomi. Le reazioni di cattura radiativa (n,γ) n + 59 Co 60 Co + γ Reazioni nucleari con produzione di particelle cariche n + n + 3 2He 5 B H + p 7 3 Li +
18 Apparati di rivelazione ai LNS CHIMERA
19 Apparati di rivelazione ai LNS MEDEA
20 Apparati di rivelazione ai LNS MAGNEX
21 Apparati di rivelazione ai LNS CT-2000
22 Dall esperimento al risultato scientifico bersaglio proiettile Rivelatore Conversione Analogico-Digitale Interpretazione dei risultati Memorizzazione Analisi Pubblicazione
23 Intensità del % danneggiamento dose response Applicazioni acceleratori. Protonterapia Radioterapia convenzionale 120 Protonterapia MV X-rays MeV protons 20 MeV electrons cobalt depth cm of water Profondità (mm) E max = 62 MeV Profondità massima = 2.5 cm in acqua
24
25 VAN de GRAAF
26 Accelerare i neutroni
Acceleratori di particelle
Acceleratori di particelle Lo studio delle proprietà nucleari e delle particelle subatomiche utilizza le reazioni nucleari. Una particella o un nucleo viene accelerato contro un nucleo bersaglio e si studiano
Acceleratori per la Fisica Nucleare: Catania Nuove prospettive. Luigi Campajola
Università di Napoli Federico II Dipartimento di Scienze Fisiche Laboratorio Acceleratore Acceleratori per la Fisica Nucleare: Catania Nuove prospettive Luigi Campajola Perché servono gli acceleratori?
prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA ACCELERATORI PER LA SALUTE: ADROTERAPIA
prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA ACCELERATORI PER LA SALUTE: ADROTERAPIA Cosa sono gli adroni? Come penetrano nel corpo? Perché si può curare un tumore con gli adroni?
Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg.
Reazioni nucleari Un nucleo instabile può raggiungere una nuova condizione di stabilità attraverso una serie di decadimenti con emissione di particelle α, β, γ o di frammenti nucleari (fissione). Emissione
Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia
Unità didattica 10 Radioattività... 2 L atomo... 3 Emissione di raggi x... 4 Decadimenti nucleari. 6 Il decadimento alfa.... 7 Il decadimento beta... 8 Il decadimento gamma...... 9 Interazione dei fotoni
prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA
prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA Cosa sono gli adroni? Come penetrano nel corpo? Perché si può curare un tumore con gli adroni? Cosa si sta costruendo a Pavia? Come funzionerà?
Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm].
Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio9: un fotone gamma sparisce formando una coppia
I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta
I rivelatori Osservare il microcosmo Cose prima mai viste L occhio umano non riesce a distinguere oggetti con dimensioni inferiori a 0,1 mm (10-4 m). I primi microscopi vennero prodotti in Olanda alla
Cenni di fisica moderna
Cenni di fisica moderna 1 fisica e salute la fisica delle radiazioni è molto utilizzata in campo medico esistono applicazioni delle radiazioni non ionizzanti nella terapia e nella diagnosi (laser per applicazioni
Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti
materiali in funzione dell'energia del fascio dei fotoni Esperto Qualificato LNF - INFN Interazioni delle particelle indirettamente ionizzanti con la materia Le particelle indirettamente ionizzanti, principalmente
MISURA DELLA MASSA DELL ELETTRONE
MISURA DELLA MASSA DELL ELETTRONE di Arianna Carbone, Giorgia Fortuna, Nicolò Spagnolo Liceo Scientifico Farnesina Roma Interazioni tra elettroni e fotoni Per misurare la massa dell elettrone abbiamo sfruttato
Radiazioni ionizzanti
Radiazioni ionizzanti Qualunque radiazione in grado di provocare fenomeni di ionizzazione. Radiazione: trasferimento di energia attraverso lo spazio. Ionizzazione: fenomeno per il quale, da un atomo stabile
Interazione radiazione materia Dott.ssa Alessandra Bernardini
Interazione radiazione materia Dott.ssa Alessandra Bernardini 1 Un po di storia Lo studio delle radiazioni ionizzanti come materia di interesse nasce nel novembre del 1895 ad opera del fisico tedesco Wilhelm
TECNICHE RADIOCHIMICHE
TECNICHE RADIOCHIMICHE L ATOMO - Un atomo e costituito da un nucleo carico positivamente, circondato da una nuvola di elettroni carichi negativamente. - I nuclei atomici sono costituiti da due particelle:
Le Caratteristiche della Luce
7. L Atomo Le Caratteristiche della Luce Quanti e Fotoni Spettri Atomici e Livelli Energetici L Atomo di Bohr I Modelli dell Atomo - Orbitali atomici - I numeri quantici e gli orbitali atomici - Lo spin
Parte I - LE RADIAZIONI IONIZZANTI E LE GRANDEZZE FISICHE DI INTERESSE IN DOSIMETRIA
INDICE Parte I - LE RADIAZIONI IONIZZANTI E LE GRANDEZZE FISICHE DI INTERESSE IN DOSIMETRIA Capitolo 1 Le radiazioni ionizzanti 19 1.1 Introduzione 19 1.2 Il fondo naturale di radiazione 21 1.2.1 La radiazione
Produzione di un fascio di raggi x
Produzione di un fascio di raggi x WWW.SLIDETUBE.IT Un fascio di elettroni penetra nella materia, dando origine a: produzione di elettroni secondari (raggi delta) emissione X caratteristica bremsstrahlung
INTERAZIONI DELLE RADIAZIONI CON LA MATERIA
M. Marengo INTERAZIONI DELLE RADIAZIONI CON LA MATERIA Servizio di Fisica Sanitaria Ospedale Policlinico S.Orsola - Malpighi, Bologna [email protected] Si definiscono radiazioni ionizzanti tutte le
DECADIMENTO RADIOATTIVO
DECADIMENTO RADIOATTIVO Emissione di una o più particelle da parte di un nucleo. Tutti i decadimenti (tranne il decad. γ) cambiano Z e/o N del nucleo. Radionuclidi = Nuclidi radioattivi presenti in natura:
La radioattività. La radioattività è il fenomeno per cui alcuni nuclei si trasformano in altri emettendo particelle e/ radiazioneni elettromagnetiche.
La radioattività La radioattività è il fenomeno per cui alcuni nuclei si trasformano in altri emettendo particelle e/ radiazioneni elettromagnetiche. La radioattività: isotopi. Il numero totale di protoni
Radiazione elettromagnetica
Radiazione elettromagnetica Si tratta di un fenomeno ondulatorio dato dalla propagazione in fase del campo elettrico e del campo magnetico, oscillanti in piani tra loro ortogonali e ortogonali alla direzione
Diametro del nucleo: m. Diametro dell atomo: m
Diametro del nucleo: 10 15 m Diametro dell atomo: 10 9-10 10 m The nuclear atom Thomson (Premio Nobel per la Fisica nel 1907) scopre l elettrone nel 1897 Rutherford (Premio Nobel per la Chimica nel 1908)
Materia e forze alla scala subatomica: il nucleo atomico, le particelle elementari
Materia e forze alla scala subatomica: il nucleo atomico, le particelle elementari Andrea Bizzeti Università di Modena e Reggio Emilia Dipartimento di Scienze Fisiche, Informatiche e Matematiche Modena,
Lezione 24 Radiazioni Ionizzanti
Generalità Lezione 24 Radiazioni Ionizzanti Con il termine radiazione si descrivono fenomeni molto diversi fra loro: Emissione di luce da una lampada Emissione di calore da una fiamma Particelle elementari
Le radiazioni ionizzanti e la radioprotezione
Le radiazioni ionizzanti e la radioprotezione Radiazioni Radiazioniionizzanti ionizzanti Il termine radiazione viene abitualmente usato per descrivere fenomeni apparentemente assai diversi tra loro,
LE RADIAZIONI IONIZZANTI
LE RADIAZIONI IONIZZANTI Generalità Le radiazioni ionizzanti sono, per definizione, onde elettromagnetiche e particelle capaci di causare, direttamente o indirettamente, la ionizzazione degli atomi e delle
Uomo, ambiente e radiazioni
Uomo, ambiente e radiazioni Natura delle radiazioni 76 Le radiazioni di cui si tratta parlando di tecnologia nucleare sono le radiazioni ionizzanti Natura delle radiazioni Cosa sono le radiazioni ionizzanti?
Fisica delle Apparecchiature per Radioterapia, lez. III RADIOTERAPIA M. Ruspa 1
RADIOTERAPIA 14.01.11 M. Ruspa 1 Con il termine RADIOTERAPIA si intende l uso di radiazioni ionizzanti altamente energetiche (fotoni X o gamma, elettroni, protoni) nel trattamento dei tumori. La radiazione
Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm].
Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio9: un fotone gamma sparisce formando una coppia
ORBITALI E CARATTERISTICHE CHIMICHE DEGLI ELEMENTI
ORBITALI E CARATTERISTICHE CHIMICHE DEGLI ELEMENTI Nelle reazioni chimiche gli atomi reagenti non cambiano mai la loro natura ( nucleo ) ma la loro configurazione elettronica. Nello specifico ad interagire
SPETTROMETRIA GAMMA SPETTROMETRIA GAMMA
La spettrometria gamma è un metodo di analisi che consente la determinazione qualitativa e quantitativa dei radionuclidi gamma-emettitori presenti in un campione di interesse. Il successo di questo metodo
Raccolta di esercizi di fisica moderna
Raccolta di esercizi di fisica moderna M. Quaglia IIS Avogadro Torino M. Quaglia (IIS Avogadro Torino) Raccolta di esercizi di fisica moderna Torino, 20/11/2014 1 / 30 Prova AIF e Sillabo http://www.aif.it/archivioa/aif_seconda_prova_di_fisica.pdf
LA PRODUZIONE DEI RAGGI X
UNIVERSITA POLITECNICA DELLE MARCHE Facoltà di Medicina e Chirurgia Corso di Laurea in Tecniche di Radiologia Medica, per Immagini e Radioterapia LA PRODUZIONE DEI RAGGI X A.A. 2015-2016 Tecniche di Radiodiagnostica
INTERAZIONE DELLA RADIAZIONE CON CON LA LA MATERIA. Dal punto di vista dell interazione con la materia le radiazioni IONIZZANTI si classificano in:
INTERAZIONE DELLA RADIAZIONE CON CON LA LA MATERIA Dal punto di vista dell interazione con la materia le radiazioni IONIZZANTI si classificano in: DIRETTAMENTE IONIZZANTI INDIRETTAMENTE IONIZZANTI Le radiazioni
La Fisica Applicata ai Beni Culturali: l'effetto fotoelettrico per l'analisi non distruttiva di campioni di interesse storico-artistico
La Fisica Applicata ai Beni Culturali: l'effetto fotoelettrico per l'analisi non distruttiva di campioni di interesse storico-artistico Giovanni BUCCOLIERI e-mail: [email protected] Università
Pinzani, Panero, Bagni Sperimentare la chimica Soluzioni degli esercizi Capitolo 9
Pinzani, Panero, Bagni Sperimentare la chimica Soluzioni degli esercizi Capitolo 9 Esercizio PAG 198 ES 1 PAG 198 ES 2 PAG 198 ES 3 PAG 198 ES 4 PAG 198 ES 5 PAG 198 ES 6 PAG 198 ES 7 PAG 198 ES 8 PAG
Il Nucleo. Dimensioni del nucleo dell'ordine di 10. m Il raggio nucleare R = R 0 -15
Il Nucleo Nucleo e' costituito da nucleoni (protoni e neutroni). Mentre i neutroni liberi sono abbastanza instabili tendono a decadere in un protone ed un elettrone (t 1/2 circa 900 s), i protoni sono
IL LEGAME METALLICO 1
IL LEGAME METALLICO 1 Non metalli Metalli Metalloidi Proprietà dei metalli Elevata conducibilità elettrica; Elevata conducibilità termica; Effetto fotoelettrico; Elevata duttilità e malleabilità; Lucentezza;
La fusione. Lezioni d'autore. di Claudio Cigognetti
La fusione Lezioni d'autore di Claudio Cigognetti La bomba H (da Ulisse Rai) VIDEO VIDEO Il plasma costituito da un gas di ioni, elettroni, atomi o molecole complessivamente neutro in esso dominano gli
Misura della velocita di deriva degli elettroni nella miscela gassosa di un rivelatore di particelle a filo. P. Campana M. Anelli R.
Misura della velocita di deriva degli elettroni nella miscela gassosa di un rivelatore di particelle a filo P. Campana M. Anelli R. Rosellini Urti random tra la particella e gli atomi di gas (cammino
Limite di risoluzione di un microscopio D N. sin
Limite di risoluzione di un microscopio D (0.61 N sin ) N sin AperturaNumerica Risoluzione del microscopio elettronico c c E h, E h, h E Microscopio ottico: 450nm (blu) Microscopio elettronico: 0.6 nm
Le tecnologie per l acquisizione delle immagini digitali
Le tecnologie per l acquisizione delle immagini digitali Mauro Gambaccini Dipartimento di Fisica dell Università di Ferrara Sezione INFN di Ferrara CORSO ITINERANTE DI MAMMOGRAFIA DIGITALE Udine, 27 Gennaio
Atomi a più elettroni
Atomi a più elettroni L atomo di elio è il più semplice sistema di atomo a più elettroni. Due sistemi di livelli tra i quali non si osservano transizioni Sistema di singoletto->paraelio Righe singole,
bande di energia in un conduttore La banda di energia più alta è parzialmente vuota! livello di Fermi Overlap di bande di energia in un conduttore
g(e) va a zero sia al bordo inferiore che a quello superiore della banda bande di energia in un conduttore La banda di energia più alta è parzialmente vuota! livello di Fermi Overlap di bande di energia
L effetto Fotovoltaico
L effetto Fotovoltaico Carla sanna [email protected] [email protected] Carla sanna Cagliari 19 settembre 2008 Sala Anfiteatro, via Roma 253 1 Un po di storia. Becquerel nel 1839
LEGAME METALLICO PROPRIETA METALLICHE NON METALLI SEMIMETALLI METALLI
LEGAME METALLICO LEGAME METALLICO NON METALLI PROPRIETA METALLICHE Elevata conducibilità elettrica ( 1/ T) Bassa energia di ionizzazione Elevata duttilità e malleabilità Non trasparenza Lucentezza Strutture
ACCELERATORI DI PARTICELLE
ACCELERATORI DI PARTICELLE Bardonecchia, Gennaio 2017 E.Menichetti Dip. di Fisica e INFN, Torino Gennaio 2017 E.Menichetti - Univ. di Torino 2 Fisica delle particelle Fronte piu avanzato nello studio della
MEDICINA NUCLEARE impiego a scopo diagnostico e terapeutico dei radionuclidi (isotopi radioattivi) prodotti artificialmente
MEDICINA NUCLEARE impiego a scopo diagnostico e terapeutico dei radionuclidi (isotopi radioattivi) prodotti artificialmente Composizione dell atomo (piccola sfera 10 9 cm): a) costituita dal nucleo protoni
LEZIONE 4 INTERAZIONE DEI RAGGI X E GAMMA CON LA MATERIA
LZION 4 INTRAZION DI RAGGI X GAMMA CON LA MATRIA I raggi X hanno generalmente energie comprese fra i 5 KeV e i 500 kev. Interagendo con la materia i raggi X (interazione primaria) producono elettroni secondari
Le particelle elementari e l acceleratore LHC al CERN di Ginevra
Le particelle elementari e l acceleratore LHC al CERN di Ginevra Andrea Bizzeti Università di Modena e Reggio Emilia e Istituto Nazionale di Fisica Nucleare, Sezione di Firenze [email protected]
Radioattivita (radiazioni ionizzanti) e salute. 2a parte
Radioattivita (radiazioni ionizzanti) e salute Cristiana Peroni Dipartimento di Fisica Sperimentale dell Universita di Torine e Istituto Nazionale di Fisica Nucleare 2a parte 4/11/2005 C.Peroni 1 Uso delle
Il numero di protoni presenti in un atomo si chiama numero atomico = Z elemento differisce per il numero Z. H deuterio (6000 volte abbondante)
Il numero di protoni presenti in un atomo si chiama numero atomico = Z elemento differisce per il numero Z ogni ISOTOPI atomi di uno stesso elemento ma con un N di neutroni x es. 14 C e 12 C l H ha 3 isotopi:
Light Amplification by Stimulated Emission of Radiation
Laser? Light Amplification by Stimulated Emission of Radiation Produce un fascio coerente di radiazione ottica da una stimolazione elettronica, ionica, o transizione molecolare a più alti livelli energetici
Problema n. 1: L effetto Mössbauer
Problema n. 1: L effetto Mössbauer Hai sentito parlare dell effetto Mössbauer e incuriosito hai trovato su un sito la seguente descrizione del fenomeno: Un nucleo con Z protoni e N neutroni che si trova
Spettro elettromagnetico
Spettro elettromagnetico Sorgenti Finestre Tipo Oggetti rilevabili Raggi γ ev Raggi X Lunghezza d onda E hc = hν = = λ 12. 39 λ( A o ) Visibile Infrarosso icro onde Onde-radio Dimensione degli oggetti
conduttori isolanti semiconduttori In un metallo la banda più esterna che contiene elettroni è detta banda di valenza
Un solido sarà conduttore solo se la banda è parzialmente occupata. Se invece la banda è completamente occupata si possono avere due casi: se la banda successiva è molto alta in energia il solido è un
FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE
Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE (lezione, 15.05.13) Marta Ruspa 1 Requisiti
DECADIMENTI. Fissione spontanea di atomi instabili con emissione di neutroni
DECADIMENTI Fissione spontanea di atomi instabili con emissione di neutroni DECADIMENTO ALPHA Tipico di elementi pesanti che diventano più stabili dopo il decadimento. DECADIMENTO BETA Prodotto da interazione
Effetto Cherenkov - 1
Effetto Cherenkov - 1 Particelle cariche, che attraversano un mezzo denso con velocità superiore a quella con cui si propaga la luce nello stesso mezzo, emettono radiazione elettromagnetica che si propaga
ATOMI E MOLECOLE. Tutte le varie forme di materia esistenti sono costituite da sostanze semplici (elementi) e da sostanze composte (composti).
1 ATOMI E MOLECOLE Tutte le varie forme di materia esistenti sono costituite da sostanze semplici (elementi) e da sostanze composte (composti). Un elemento (es. il mercurio) è una sostanza che non può
FISICA delle APPARECCHIATURE per RADIOTERAPIA
Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per RADIOTERAPIA Marta Ruspa 20.01.13 M. Ruspa 1 ONDE ELETTROMAGNETICHE
L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m
QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle
Schema di un tubo a raggi X
Raggi X 1 Schema di un tubo a raggi X I raggi X sono prodotti quando una sostanza è bombardata da elettroni ad alta velocità. I componenti fondamentali di un tubo a raggi X sono: a) ampolla di vetro a
Produzione dei raggi X
I RAGGI X Produzione dei raggi X Tubo a raggi X Emissione per frenamento Emissione per transizione Spettro di emissione pag.1 Lunghezza d onda, frequenza, energia (fm) λ (m) 10 14 RAGGI GAMMA ν 10 12 (Å)
Fisica atomica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico
Fisica atomica Nel 1905 Einstein sostiene che la luce viaggia in pacchetti di energia, chiamati fotoni Ogni fotone ha energia proporzionale alla propria frequenza E = hν: h = 6.626 10 34 J s è chiamata
Fasci ionici all acceleratore LABEC di Firenze: sviluppi e applicazioni all analisi microscopica dei materiali
Fasci ionici all acceleratore LABEC di Firenze: sviluppi e applicazioni all analisi microscopica dei materiali Filippo Del Greco Relatore: prof. Ettore Vittone (UniTO)... Co-relatore: dott. Alessandro
Al misuratore di f.e.m
PROBLEMA 1. In laboratorio è stato preparato il dispositivo rappresentato in Figura1. La bobina è costituita da 100 spire rettangolari di rame i cui lati misurano 25 cm e 30 cm. La bobina può ruotare con
Foto stroboscopica di una palla lasciata cadere da ferma (palla rossa) nello stesso istante in cui un altra (palla gialla) è sparata orizzontalmente
Il sistema cardiocircolatorio Foto stroboscopica di una palla lasciata cadere da ferma (palla rossa) nello stesso istante in cui un altra (palla gialla) è sparata orizzontalmente verso destra. Come si
