MISURA DELLA MASSA DELL ELETTRONE
|
|
|
- Gianpiero Lupo
- 9 anni fa
- Visualizzazioni
Transcript
1 MISURA DELLA MASSA DELL ELETTRONE di Arianna Carbone, Giorgia Fortuna, Nicolò Spagnolo Liceo Scientifico Farnesina Roma Interazioni tra elettroni e fotoni Per misurare la massa dell elettrone abbiamo sfruttato alcune peculiarità delle interazioni che avvengono tra particelle cariche, in questo caso elettroni, e particelle neutre, i fotoni. I tre tipi di interazioni presi da noi in considerazione sono: 1. Effetto Fotoelettrico Consiste nell assorbimento di un fotone da parte di un elettrone atomico in una dei livelli interni (i.e. fortemente legato). Il risultato dell interazione, secondo l energia del fotone, è o il passaggio dell elettrone ad un livello energetico più alto o la sua espulsione dall atomo se l energia del fotone di partenza è sufficiente. L atomo ionizzato subisce un riarrangiamento degli elettroni per tornare al stato di minima energia possibile, trasferendo un elettrone più esterno nell orbitale lasciato libero, emettendo quindi raggi X. γ + e - e - + ione Questo tipo di interazione è dominante quando l energia del fotone E < 1 KeV, dove l energia del fotone è E = hν 2. Effetto Compton Consiste nella diffusione del fotone che interagisce da parte di un elettrone quasi libero degli ultimi gusci. Il fotone trasferisce una parte della sua energia all elettrone, deviando dalla loro traiettoria. γ + e - γ + e - Questo tipo di interazione è dominante quando l energia del fotone è di circa 1 MeV. Indicando con θ l angolo di diffusione del fotone rispetto alla sua direzione iniziale, possiamo esprimere l energia del fotone dopo l interazione come : hν = hν/(1+ ε(1 - cosθ)), essendo ε = hν/m e c 2. Invece l energia T (= hν - hν ) acquisita dall elettrone avrà la seguente forma : T = m e c 2 ε 2 (1 - cosθ)/(1+ ε(1 - cosθ)). Ci interessa considerare due casi particolari : 1) θ = ν = ν, quindi T= 2) θ = π hν = hν/(1+2ε) e T = hν2ε/(1+2ε) Il secondo caso è denominato Compton Edge e corrisponde al valore della massima deflessione del fotone, e quindi rappresenta il massimo dell energia assorbita dall elettrone. 3. Produzione di coppie elettrone positrone Questo tipo di interazione consiste nell attraversamento da parte del fotone del campo coulombiano di un nucleo atomico. Il fotone tende quindi a trasformarsi in una coppia elettrone-positrone. γ + nucleo e - + e + + nucleo Questo tipo di interazione è dominante per circa E > 1MeV, ed avviene solamente quando l energia del fotone è maggiore di 2m e.
2 La procedura dell esperimento La misura della massa dell elettrone è stata eseguita a partire dalla determinazione dell energia del Compton Edge associato al fotone da MeV emesso dalla sorgente di Sodio 22. Infatti determinando sperimentalmente il valore di tale energia è possibile calcolare la costante ε e quindi di conseguenza la massa dell elettrone. La misura è stata realizzata utilizzando un rivelatore a scintillazione di ioduro di sodio (NaI), su cui sono state poste tre differenti sorgenti radioattive (Cobalto 6, Cesio 137 e Sodio 22). Negli spettri di tali sorgenti abbiamo individuato la posizione, in canali dell analizzatore multicanale, dei picchi (corrispondenti alla situazione in cui il fotone perde completamente la sua energia nell urto con l elettrone) per costruire una retta di calibrazione che ci permettesse di determinare qual è la relazione tra i canali del multicanale e l energia teorica dei fotoni emessi dalle sorgenti, e quindi il valore dell energia del Compton Edge. Infatti si può notare come la costante ε = hν/m e c 2 dipenda dalla massa dell elettrone, che dovrà essere di 511 kev. Da questa formula e dal valore dell energia T dell elettrone dopo l urto si ricava la formula: E CE = E 2ε/(1+2ε). Essendo E = hν otteniamo ε = E /m e c 2. Strumenti utilizzati: i rivelatori a scintillazione Lo strumento utilizzato per determinare gli spettri delle sorgenti è, come già detto, un rivelatore a scintillazione. Esso consiste di un materiale scintillante i cui atomi, una volta eccitati a seguito dell interazione con i fotoni, decadono emettendo luce visibile (tipicamente nella regione del blu). Tale luce viene inviata ad un fotomoltiplicatore che provvede a convertirla in un segnale elettrico che, processato da un opportuno circuito elettronico (essenzialmente, un amplificatore di segnale), viene acquisito dall analizzatore multicanale. Il fotomoltiplicatore è costituito da 4 parti : 1. Catodo Consiste in un materiale fotosensibile che, per effetto fotoelettrico, converte i fotoni riemessi dal materiale scintillante in una corrente elettrica. 2. Sistema di raccolta di elettroni 3. Moltiplicatore di elettroni composto da dinodi. 4. Anodo di raccolta per il segnale finale. L analizzatore multicanale è un dispositivo elettronico in cui gli impulsi elettrici vengono distribuiti in base alla loro ampiezza ed è così possibile determinare uno spettro del materiale che viene utilizzato come sorgente. Risultati e conclusioni dell esperimento Abbiamo quindi studiato i dati degli spettri dei tre radioisotopi e li riportiamo qui in seguito con i relativi grafici: Spettro del cobalto Spettro del sodio Spettro del cesio Amplificazione = 6 Amplificazione = 6 Amplificazione = 1 Chs Cts Chs Cts Chs Cts
3
4
5 Spettro Cobalto-6 Conteggi Spettro sodio Conteggi Spettro del Cesio Conteggi
6 Nella tabella seguente sono riportate le posizioni in canali del multicanale dei picchi delle varie sorgenti e le corrispondenti energie teoriche. Picco Canale E teorica (MeV) Cs1 82,32 Na1 953,511 Cs2 116,667 Co ,173 Na ,275 Co ,333 Somma Na ,786 Somma Co 393 2,56 N.B. Nella tabella le posizioni in canali dei picchi della sorgente di Cesio sono scalati per tener conto della diversa amplificazione utilizzata nell acquisizione dello spettro. I picchi indicati come Somma corrispondono al caso in cui entrambi i fotoni emessi dalle sorgenti cedono completamente la loro energia al rivelatore. Dalla tabella è possibile costruire la seguente retta di calibrazione Retta di calibrazione 3 y =,6x -,824 2,5 2 Energia in MeV 1,5 1, ,5
7 Ovvero: con: E = m (Canale) + q m = MeV q = MeV Dalle formule precedentemente elencate si ricava la seguente legge risolutiva per esprimere e calcolare la massa dell elettrone. Sarà quindi: m e c 2 = 2E (E -E CE )/E CE. Dallo spettro del Sodio 22 abbiamo stimato individuato nel canale 1923 la posizione del Compton Edge associato al fotone di energia E = MeV. In base alla retta di calibrazione tale canale corrisponde ad una energia E CE = MeV, per cui, sostituendo nella formula precedente, si ottiene: m e =.483 MeV. Il valore ottenuto risulta soddisfacente anche come approssimazione vista la sensibilità degli strumenti a disposizione. Il valore teorico è infatti.511 MeV.
La radioattività. La radioattività è il fenomeno per cui alcuni nuclei si trasformano in altri emettendo particelle e/ radiazioneni elettromagnetiche.
La radioattività La radioattività è il fenomeno per cui alcuni nuclei si trasformano in altri emettendo particelle e/ radiazioneni elettromagnetiche. La radioattività: isotopi. Il numero totale di protoni
SPETTROMETRIA GAMMA SPETTROMETRIA GAMMA
La spettrometria gamma è un metodo di analisi che consente la determinazione qualitativa e quantitativa dei radionuclidi gamma-emettitori presenti in un campione di interesse. Il successo di questo metodo
Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti
materiali in funzione dell'energia del fascio dei fotoni Esperto Qualificato LNF - INFN Interazioni delle particelle indirettamente ionizzanti con la materia Le particelle indirettamente ionizzanti, principalmente
TECNICHE RADIOCHIMICHE
TECNICHE RADIOCHIMICHE L ATOMO - Un atomo e costituito da un nucleo carico positivamente, circondato da una nuvola di elettroni carichi negativamente. - I nuclei atomici sono costituiti da due particelle:
Radiazione elettromagnetica
Radiazione elettromagnetica Si tratta di un fenomeno ondulatorio dato dalla propagazione in fase del campo elettrico e del campo magnetico, oscillanti in piani tra loro ortogonali e ortogonali alla direzione
Atomi a più elettroni
Atomi a più elettroni L atomo di elio è il più semplice sistema di atomo a più elettroni. Due sistemi di livelli tra i quali non si osservano transizioni Sistema di singoletto->paraelio Righe singole,
Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg.
Reazioni nucleari Un nucleo instabile può raggiungere una nuova condizione di stabilità attraverso una serie di decadimenti con emissione di particelle α, β, γ o di frammenti nucleari (fissione). Emissione
Spettro elettromagnetico
Spettro elettromagnetico Sorgenti Finestre Tipo Oggetti rilevabili Raggi γ ev Raggi X Lunghezza d onda E hc = hν = = λ 12. 39 λ( A o ) Visibile Infrarosso icro onde Onde-radio Dimensione degli oggetti
I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta
I rivelatori Osservare il microcosmo Cose prima mai viste L occhio umano non riesce a distinguere oggetti con dimensioni inferiori a 0,1 mm (10-4 m). I primi microscopi vennero prodotti in Olanda alla
Spettroscopia gamma. M-Nicolae Dascalu. 1 Introduzione. 2 Considerazioni generali. 2.1 Rilevatore a scintillazione
Spettroscopia gamma M-Nicolae Dascalu 1 Introduzione Lo scopo di questa esperienza 1 è l acquisizione di una certa familiarità con la spettroscopia gamma attraverso la tecnica dei rilevatori a scintillazione
Interazione radiazione materia Dott.ssa Alessandra Bernardini
Interazione radiazione materia Dott.ssa Alessandra Bernardini 1 Un po di storia Lo studio delle radiazioni ionizzanti come materia di interesse nasce nel novembre del 1895 ad opera del fisico tedesco Wilhelm
Produzione dei raggi X
I RAGGI X Produzione dei raggi X Tubo a raggi X Emissione per frenamento Emissione per transizione Spettro di emissione pag.1 Lunghezza d onda, frequenza, energia (fm) λ (m) 10 14 RAGGI GAMMA ν 10 12 (Å)
Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia
Unità didattica 10 Radioattività... 2 L atomo... 3 Emissione di raggi x... 4 Decadimenti nucleari. 6 Il decadimento alfa.... 7 Il decadimento beta... 8 Il decadimento gamma...... 9 Interazione dei fotoni
L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m
QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle
INTERAZIONI DELLE RADIAZIONI CON LA MATERIA
M. Marengo INTERAZIONI DELLE RADIAZIONI CON LA MATERIA Servizio di Fisica Sanitaria Ospedale Policlinico S.Orsola - Malpighi, Bologna [email protected] Si definiscono radiazioni ionizzanti tutte le
Laboratorio di Fisica delle Interazioni Fondamentali Università di Pisa DIFFUSIONE COMPTON
Laboratorio di Fisica delle Interazioni Fondamentali Università di Pisa DIFFUSIONE COMPTON Ultima modifica 13.2.2017 Introduzione L esperienza consiste nella verifica sperimentale della relazione tra l
FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C.
Serie 19: Relatività VIII FAM C. Ferrari Esercizio 1 Collisione completamente anelastica Considera la collisione frontale di due particelle A e B di massa M A = M B = M e v A = v B = 3/5c, tale che alla
Gli acceleratori e i rivelatori di particelle
Gli acceleratori e i rivelatori di particelle Come studiare le proprietà dei NUCLEI? Facendoli collidere tra loro!!!! Informazioni: Dimensioni e struttura del nucleo Forze nucleari Meccanismi di reazione
LE RADIAZIONI IONIZZANTI
LE RADIAZIONI IONIZZANTI Generalità Le radiazioni ionizzanti sono, per definizione, onde elettromagnetiche e particelle capaci di causare, direttamente o indirettamente, la ionizzazione degli atomi e delle
Apparati per uso industriale e ricerca Dott.ssa Alessandra Bernardini
Apparati per uso industriale e ricerca Dott.ssa Alessandra Bernardini 1 Apparecchiature radiologiche per analisi industriali e ricerca Le apparecchiature a raggi X utilizzate nell industria utilizzano
Schema di un tubo a raggi X
Raggi X 1 Schema di un tubo a raggi X I raggi X sono prodotti quando una sostanza è bombardata da elettroni ad alta velocità. I componenti fondamentali di un tubo a raggi X sono: a) ampolla di vetro a
Elettricità e Fisica Moderna
Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Elettricità e Fisica Moderna 1) Una candela emette una potenza di circa 1 W ad una lunghezza d onda media di 5500 Å a)
Modelli atomici. Teoria atomica Dalton (1803) La materia non è continua, ma costituita da particelle.
Modelli atomici Teoria atomica Dalton (1803) La materia non è continua, ma costituita da particelle. Presupposti 1. Legge di Lavoisier della conservazione della massa: in una reazione chimica nulla si
COMPETENZE ABILITÀ CONOSCENZE. descrivere la. Comprendere ed applicare analogie relative ai concetti presi in analisi. struttura.
ca descrivere la struttura dell atomo, la tavola periodica e le sue caratteristiche per spiegare le differenze tra i vari tipi di legami, descrivendoli e interpretandoli alla luce degli elettroni di valenza
Esploriamo la chimica
1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 7 Le particelle dell atomo 1. La natura elettrica della materia 2. Le particelle fondamentali
Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm].
Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio9: un fotone gamma sparisce formando una coppia
La Fisica Applicata ai Beni Culturali: l'effetto fotoelettrico per l'analisi non distruttiva di campioni di interesse storico-artistico
La Fisica Applicata ai Beni Culturali: l'effetto fotoelettrico per l'analisi non distruttiva di campioni di interesse storico-artistico Giovanni BUCCOLIERI e-mail: [email protected] Università
Meccanica quantistica Mathesis 2016 Prof. S. Savarino
Meccanica quantistica Mathesis 2016 Prof. S. Savarino Quanti Corpo nero: è un oggetto che assorbe tutta la radiazione senza rifletterla. Come una corda legata agli estremi può produrre onde stazionarie
Generalità delle onde elettromagnetiche
Generalità delle onde elettromagnetiche Ampiezza massima: E max (B max ) Lunghezza d onda: (m) E max (B max ) Periodo: (s) Frequenza: = 1 (s-1 ) Numero d onda: = 1 (m-1 ) = v Velocità della luce nel vuoto
Atomo. Evoluzione del modello: Modello di Rutherford Modello di Bohr Modello quantomeccanico (attuale)
Atomo Evoluzione del modello: Modello di Rutherford Modello di Bohr Modello quantomeccanico (attuale) 1 Modello di Rutherford: limiti Secondo il modello planetario di Rutherford gli elettroni orbitano
Rivelatori a scintillazione
Rivelatori a scintillazione Principio di funzionamento Passaggio di radiazione attraverso materiale scintillante eccitazione di atomi e molecole del materiale con emissione di luce Raccolta e trasmessa
LA PRODUZIONE DEI RAGGI X
UNIVERSITA POLITECNICA DELLE MARCHE Facoltà di Medicina e Chirurgia Corso di Laurea in Tecniche di Radiologia Medica, per Immagini e Radioterapia LA PRODUZIONE DEI RAGGI X A.A. 2015-2016 Tecniche di Radiodiagnostica
Lo Spettro Elettromagnetico
Spettroscopia 1 Lo Spettro Elettromagnetico Lo spettro elettromagnetico è costituito da un insieme continuo di radiazioni (campi elettrici e magnetici che variano nel tempo, autogenerandosi) che va dai
Spettroscopia. 05/06/14 SPET.doc 0
Spettroscopia 05/06/14 SPET.doc 0 Spettroscopia Analisi del passaggio di un sistema da uno stato all altro con scambio di fotoni Spettroscopia di assorbimento Spettroscopia di emissione: In entrambi i
La struttura elettronica degli atomi
1 In unità atomiche: a 0 me 0,59A unità di lunghezza e H 7, ev a H=Hartree unità di energia L energia dell atomo di idrogeno nello stato fondamentale espresso in unità atomiche è: 4 0 me 1 e 1 E H 13,
La struttura della materia
La struttura della materia IL CORPO NERO In fisica, i corpi solidi o liquidi emettono radiazioni elettromagnetiche, a qualsiasi temperatura. Il corpo nero, invece, è un oggetto ideale che assorbe tutta
INTERAZIONE RADIAZIONE MATERIA
INTERAZIONE RADIAZIONE MATERIA Grandezze pertinenti e relative unità di misura (S.I. o pratiche) E fotone = energia di un fotone X N = numero di fotoni X Ex = N E fotone = energia trasportata da N fotoni
Un po' di fisica nucleare: La radioattività
Un po' di fisica nucleare: La radioattività at e ve de n d o.. = La radioattività La radioattività è il fenomeno per cui alcuni nuclei si trasformano in altri emettendo particelle. La radioattività non
Unità Didattica 3. L atomo di idrogeno
Diapositiva 1 Unità Didattica 3 L atomo di idrogeno Questa unità contiene informazioni sull atomo di idrogeno, i modelli di Tomson, Ruterford e Bor, l esperimento di Frank-Hertz e infine la formula di
CHIMICA: studio della struttura e delle trasformazioni della materia
CHIMICA: studio della struttura e delle trasformazioni della materia 1 Materia (materali) Sostanze (omogenee) Processo fisico Miscele Elementi (atomi) Reazioni chimiche Composti (molecole) Miscele omogenee
Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm].
Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio9: un fotone gamma sparisce formando una coppia
Esploriamo la chimica
1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. L atomo di Bohr 3. Il modello atomico
Le Caratteristiche della Luce
7. L Atomo Le Caratteristiche della Luce Quanti e Fotoni Spettri Atomici e Livelli Energetici L Atomo di Bohr I Modelli dell Atomo - Orbitali atomici - I numeri quantici e gli orbitali atomici - Lo spin
Fisica delle Apparecchiature per Radioterapia, lez. III RADIOTERAPIA M. Ruspa 1
RADIOTERAPIA 14.01.11 M. Ruspa 1 Con il termine RADIOTERAPIA si intende l uso di radiazioni ionizzanti altamente energetiche (fotoni X o gamma, elettroni, protoni) nel trattamento dei tumori. La radiazione
Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1
Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 19 L equazione di Schrodinger L atomo di idrogeno Orbitali atomici 02/03/2008 Antonino Polimeno 1 Dai modelli primitivi alla meccanica quantistica
Se la funzione è analiticamente invertibile, estratto q, si può ricavare x = x(q).
La tecnica Monte Carlo Il metodo Monte Carlo è basato sulla scelta di eventi fisici con una probabilità di accadimento nota a priori. sia p(x) la distribuzione di probabilità con la quale si manifesta
PET: caratteristiche tecniche e funzionamento
CORSO (TC-) PET - RADIOTERAPIA: METODICHE A CONFRONTO NELLA REALTA DELL AZIENDA PET: caratteristiche tecniche e funzionamento Elisa Grassi Servizio di Fisica Sanitaria ASMN Il nostro viaggio Tomografia
Esercizio 1. CF 2 CS 2 CCl 4 ClF 3
Esercizio 1 Determinare in base al metodo del legame di valenza la forma delle seguenti molecole, tenendo conto delle repulsioni coulombiane tra le coppie elettroniche di valenza CF 2 CS 2 CCl 4 ClF 3
Diametro del nucleo: m. Diametro dell atomo: m
Diametro del nucleo: 10 15 m Diametro dell atomo: 10 9-10 10 m The nuclear atom Thomson (Premio Nobel per la Fisica nel 1907) scopre l elettrone nel 1897 Rutherford (Premio Nobel per la Chimica nel 1908)
LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA
LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA I PROBLEMI DEL MODELLO PLANETARIO F Secondo Rutherford l elettrone si muoverebbe sulla sua orbita in equilibrio tra la forza elettrica di attrazione del
CORSO DI LAUREA IN OTTICA E OPTOMETRIA
CORSO DI LAUREA IN OTTICA E OPTOMETRIA Anno Accademico 007-008 CORSO di FISCA ED APPLICAZIONE DEI LASERS Questionario del Primo appello della Sessione Estiva NOME: COGNOME: MATRICOLA: VOTO: /30 COSTANTI
2.1 (p. 37) Bohr descrisse un orbitale atomico come una traiettoria circolare seguita dall elettrone. Un orbitale è una
Capitolo 2 Risposte alle Domande ed esercizi inclusi nel Capitolo 2.1 (p. 37) Bohr descrisse un orbitale atomico come una traiettoria circolare seguita dall elettrone. Un orbitale è una regione di spazio
Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata
Radioattività 1. Massa dei nuclei 2. Decadimenti nucleari 3. Legge del decadimento XVI - 0 Nucleoni Protoni e neutroni sono chiamati, indifferentemente, nucleoni. Il numero di protoni (e quindi di elettroni
Effetto Cherenkov - 1
Effetto Cherenkov - 1 Particelle cariche, che attraversano un mezzo denso con velocità superiore a quella con cui si propaga la luce nello stesso mezzo, emettono radiazione elettromagnetica che si propaga
S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano
S P E T T R O S C O P I A SPETTROSCOPIA I PARTE Cenni generali di spettroscopia: La radiazione elettromagnetica e i parametri che la caratterizzano Le regioni dello spettro elettromagnetico Interazioni
Interazione luce- atomo
Interazione luce- atomo Descrizione semiclassica L interazione predominante è quella tra il campo elettrico e le cariche ASSORBIMENTO: Elettrone e protone formano un dipolo che viene messo in oscillazione
Materia e forze alla scala subatomica: il nucleo atomico, le particelle elementari
Materia e forze alla scala subatomica: il nucleo atomico, le particelle elementari Andrea Bizzeti Università di Modena e Reggio Emilia Dipartimento di Scienze Fisiche, Informatiche e Matematiche Modena,
ψ = Il carbonio (Z=6) - 2 elettroni equivalenti nello stato 2p - la funzione d onda globale deve essere antisimmetrica tripletto di spin, S=1
s 1s s 1s p + p o p - configurazione elettronica del C nello stato fondamentale di tripletto di spin [He] (s) (p) p + p o p - configurazione elettronica del C nello stato eccitato di singoletto di spin
Diffusione dei raggi X da parte di un elettrone
Diffusione dei raggi X da parte di un elettrone Consideriamo un onda elettro-magnetica piana polarizzata lungo x che si propaga lungo z L onda interagisce con un singolo elettrone (libero) inducendo un
Radiazioni ionizzanti
Radiazioni ionizzanti Qualunque radiazione in grado di provocare fenomeni di ionizzazione. Radiazione: trasferimento di energia attraverso lo spazio. Ionizzazione: fenomeno per il quale, da un atomo stabile
Produzione di un fascio di raggi x
Produzione di un fascio di raggi x WWW.SLIDETUBE.IT Un fascio di elettroni penetra nella materia, dando origine a: produzione di elettroni secondari (raggi delta) emissione X caratteristica bremsstrahlung
Le particelle dell atomo
La carica elettrica I fenomeni elettrici sono noti fin dall antichità: gli antichi Greci usavano la parola elektron per spiegare il fenomeno dell elettrizzazione dell ambra. I Greci sapevano che strofinando
Scienziati in Erba Chimica
Scienziati in Erba Chimica Acqua Oro Zucchero L atomo Acqua Oro Zucchero La Teoria Atomica di Dalton (1808) 1. Gli Elementi sono composti da particelle estremamente piccole, denominate atomi. 2. Tutti
LASER PRINCIPI FISICI
Corso di Tecnologie Speciali I LASER PRINCIPI FISICI Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale LASER Light Amplification
Per ognuno di questi effetti si definisce una sezione d urto microscopica σ ph, σ C, σ pp.
Interazione dei fotoni con la materia I fotoni interagiscono con la materia attraverso tre effetti : fotoelettrico (ph); compton (C); produzione di coppie (pp). Per ognuno di questi effetti si definisce
Fisica atomica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico
Fisica atomica Nel 1905 Einstein sostiene che la luce viaggia in pacchetti di energia, chiamati fotoni Ogni fotone ha energia proporzionale alla propria frequenza E = hν: h = 6.626 10 34 J s è chiamata
SPETTROSCOPIA UV-VIS LEZIONE 9
SPETTROSCOPIA UV-VIS LEZIONE 9 RADIAZIONE ELETTROMAGNETICA La radiazione elettromagnetica è la propagazione nello spazio e nel tempo dell energia elettromagnetica tramite onde e corpuscoli. natura ondulatoria:
Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare
Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 10 Fusione nucleare Fusione nucleare (Das-Ferbel, cap. 5.3) Abbiamo già accennato alla fusione nucleare che costituisce la sorgente
SPECT (Gamma Camera)
SPECT-PET Nella tomografia a raggi-x si usa la misura del coefficiente di attenuazione del tessuti per dedurre informazioni diagnostiche sul paziente. La tomografia ad emissione d altra parte utilizza
