17 maggio I testi
|
|
|
- Gianluigi Leoni
- 9 anni fa
- Visualizzazioni
Transcript
1 FINALE GIOCHI MATEMATICI 17 maggio 2003 I testi 1. L'APPUNTAMENTO SEGRETO DEGLI AGENTI SEGRETI Solo uno degli orologi indica l'ora esatta dell'appuntamento tra due agenti del "Comitato Italiano Giochi Matematici" (CIGM) Trova l'ora dell'appuntamento (di mattina) sapendo che: un orologio è avanti di 20 minuti; un orologio è indietro di 5 minuti; un orologio è avanti di 25 minuti.
2 2. IL CODICE SEGRETO DEGLI AGENTI SEGRETI Gli agenti del CIGM utilizzano dei codici segreti per comunicare tra loro. A ciascun simbolo corrisponde una cifra. Una spia, infiltratasi nel gruppo, ha scoperto alcuni indizi (vedi disegno). Puoi aiutarlo a decodificare il numero di telefono del Presidente del CIGM? 3. IL PASSATEMPO DI CARLA Quando non ha niente da fare, Carla gioca con i fiammiferi. Oggi ne ha disposti nove sulla sua scrivania, come nel disegno. Spostandone poi 3, riesce a formare 5 triangoli. Disegna la figura ottenuta da Carla. 4. ANGELO GIOCA A MEMORY Il "Memory" è un gioco di carte in cui ogni carta è contraddistinta da un simbolo, presente due volte nel mazzo. Le carte vengono disposte sul tavolo rovesciate (il simbolo è quindi nascosto). Ad ogni mossa il giocatore gira due carte, una dopo l'altra; se i simboli sono diversi, rigira le carte e le rimette in gioco, al loro posto; se i simboli sono uguali, il giocatore toglie le carte dal gioco.
3 Angelo, che ha un'eccellente memoria, ha l'abitudine di giocare da solo a "Memory", con 20 carte. Quante mosse deve fare, al massimo, per essere sicuro di trovare le dieci coppie di carte uguali? 5. I SETTE 7 Mirko, il dispettoso, si è divertito a cancellare i simboli ( ), + e x dal calcolo del suo amico Jacob. Rimettili al posto giusto, in modo che l'uguaglianza scritta qui sotto venga rispettata: = LA GUERRA DEI GETTONI Rosi ha lanciato una sfida alle sue figlie Chiara e Anna: "siete capaci, muovendo solo 3 gettoni, di ottenere 3 gettoni in ogni riga, 3 gettoni in ogni colonna e 3 gettoni in ogni diagonale del quadrato?" "Banale!", rispondono subito le ragazze! Allora Rosi aggiunge una nuova regola: "potete spostare ognuno dei 3 gettoni solo in una casella vicina". Chiara e Anna riescono comunque a trovare la soluzione. caselle vicine a un gettone
4 Disegna la sistemazione che hanno ottenuto. 7. QUATTRO CIRCONFERENZE Consideriamo 4 circonferenze aventi tutte lo stesso raggio e mai tangenti (a due a due). Disponiamole nel piano in modo che la figura così formata sia connessa ("formi cioè un "pezzo unico"). Complessivamente quanti punti di intersezione avranno al minimo le quattro circonferenze? 8. FUMETTI, CHE PASSIONE! Il libraio del quartiere, appassionato di fumetti, ha lanciato un'offerta speciale per la vendita dei libri dei suoi eroi più famosi. Gli intenditori ne approfittano. Un primo "patito" di fumetti compera 51 album di Topolino e 15 album di Paperino per un totale di 2001 Euro. Un secondo compera 15 album di Topolino e 55 album di Paperino per 2005 Euro. Un terzo appassionato, che aveva seguito le operazioni di acquisto dei due "colleghi", pensa: "non siamo nel 2001 e neanche nel Siamo nel 2003 e voglio proprio spendere 2003 Euro." Quanti album di Topolino e quanti di Paperino acquista con 2003 Euro? 9. QUADRATA E TESTARDA Fausta e Desiderio giocano con delle tessere di domino rettangolari di 2 cm per 3 cm. Hanno deciso di formare un quadrato, mettendo le tessere una accanto all'altra, senza lasciare vuoti.
5 Desiderio trova rapidamente una soluzione utilizzando 6 tessere. Fausta, invece, si è messa in testa di formare il suo quadrato partendo dalla disposizione disegnata a lato. Quante tessere del domino dovrà aggiungere, al minimo, per ottenere il risultato voluto? 10. IL PERIMETRO MISTERIOSO Un rettangolo ha un perimetro di 34 cm. Dividiamolo nei 9 rettangoli della figura, tracciando delle linee parallele ai bordi. Sempre in figura sono indicati alcuni perimetri di questi rettangoli. Qual è il perimetro (in cm) del rettangolo centrale, più scuro nella figura? Nota: il disegno non rispetta le proporzioni esatte dei rettangoli. 11. LA GRANDE PIRAMIDE La grande piramide del faraone Matemankhamon ha una base quadrata di 100 m. di lato; le sue quattro facce sono dei triangoli equilateri. Oscar -lo scarabeo del Nilo- è ai piedi della piramide, a metà della base della faccia Sud. Nel suo giro di sistematica perlustrazione della valle, Oscar vuole andare nel punto diametralmente opposto a quello in cui si trova (cioè a metà della base della faccia Nord)
6 seguendo il percorso più breve possibile e scalando la piramide, se necessario. Quale distanza percorrerà Oscar? 12. MOLTIPLICAZIONE O ADDIZIONE? Renato ha disposto tutti i numeri interi da 1 a 9 nelle nove caselle triangolari della figura. Ha addizionato poi i numeri nelle file di tre caselle e ha trovato (come indicato in figura) i risultati di 11, 13 e 15. Infine, nelle file di 5 caselle, ha effettuato i prodotti ottenendo 1152, 1440 e Collocate i numeri da 1 a 9 in figura. 13. L'ETÀ DEL CAPITANO* Una corda è disposta lungo il bordo superiore di una recinzione ed è lunga quanto ogni lato della recinzione stessa. La corda pesa 300 grammi al metro. Ad una estremità della corda, si trova una scimmietta che ha in mano una banana, mentre all'altra estremità si trova un contrappeso dal peso uguale a quello della scimmietta. La banana pesa 10 grammi al cm. La lunghezza totale della corda, in metri, è uguale a 1/3 dell'età della scimmietta in anni e il peso della scimmietta, in grammi, è uguale a 200 volte l'età della madre della scimmietta. La somma dell'età della scimmietta e di quella di sua madre è 30 anni. Addizionando il doppio del peso della scimmietta e 40 volte il peso della banana, si ottiene lo stesso totale che si otterrebbe aggiungendo 10 volte il peso della corda e quello del contrappeso. L'età della scimmietta è uguale alla metà del'età che avrà sua madre, quando la scimmietta avrà l'età che sua madre ha oggi. Quanto è lunga la banana? *"L'âge du capitaine" è un'espressione molto nota e usata in Francia per indicare dei quesiti in cui non è sempre chiaro -e a volte non esiste- il rapporto tra le informazioni di cui si dispone e la domanda posta.
7 14. IL CONSIGLIO COMUNALE DI MATH-CITY Il consiglio comunale di Math-City ha deliberato di installare una meridiana sulla facciata del Municipio. Nella figura a lato, i segmenti tracciati collegano un vertice di un dodecagono regolare con ognuno degli altri vertici. La circonferenza nella quale il dodecagono è inscritto ha 1 metro di raggio. Qual è il prodotto delle lunghezze, espresse in metri, di tutti i segmenti? Si prenderà, se necessario 0,966 per cos 15 e poi si arrotonderà al centesimo più vicino
Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti
Kangourou della Matematica 0 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio 0 Quesiti. umeri di quest anno Quanti numeri interi positivi n sono tali che entrambi i numeri n 0 e n + 0 siano
Kangourou Italia Gara del 17 marzo 2016 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria
Kangourou Italia Gara del 17 marzo 2016 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Un cangurino compie oggi 6 settimane
Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado
Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. La somma degli
FINALE del 23 campionato: 29 agosto giornata
FINALE del 23 campionato: 29 agosto 2009-2 giornata INIZIO DI TUTTE LE CATEGORIE 1 Il numero del giorno (coefficiente 1) Ogni giorno dopo il 1 gennaio, Matilde addiziona le cifre della data. Per esempio,
Finale nazionale di giochi matematici 2004
Finale nazionale di giochi matematici 2004 Milano 15 maggio 1.LA PARTITA DI BOCCE Anna e Chiara si sfidano in un accanita partita di bocce. Ad ogni turno di gioco, chi vince ottiene uno o due punti (a
Ministero della Difesa Direzione Generale per il Personale Militare I Reparto
Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Concorso Interno, per titoli ed esami, a 300 posti per l ammissione al 20 corso di aggiornamento e formazione professionale
1. Qual è l unità di misura più appropriata per esprimere il peso di un uovo di gallina? 2. Quanto vale la potenza ( 4) 2?
Verifica IVPROVA_MAT_INV_09 nome: classe: data: 1. Qual è l unità di misura più appropriata per esprimere il peso di un uovo di gallina? O milligrammi O grammi O ettogrammi O decigrammi 2. Quanto vale
Geometria figure piane Raccolta di esercizi
Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha
1. Quale dei seguenti sviluppi rappresenta il tetraedro in figura? A. A B. B C. C D. D E. nessuno dei precedenti
Prova di abilità logico-matematiche pagina 1 di 5 Rispondi a ciascuna delle domande seguenti selezionando tra le opzioni proposte quella che ritieni corretta. Le domande hanno tutte lo stesso valore; le
Kangourou Italia Gara del 20 marzo 2014 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria
Kangourou Italia Gara del 20 marzo 2014 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Osserva la figura a fianco. Uno solo
Kangourou Italia Gara del 17 marzo 2005 Categoria Junior Per studenti di seconda o terza superiore
junior_05_d.qxp 21/02/2005 16.13 Pagina 22 Kangourou Italia Gara del 17 marzo 2005 Categoria Per studenti di seconda o terza superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. A Kangourou
Test di autovalutazione
Test di autovalutazione 0 10 0 30 40 50 60 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle 5 alternative. n Confronta le tue risposte con le soluzioni.
Ministero della Difesa Direzione Generale per il Personale Militare I Reparto - 3^ Divisione. BANCA DATI MATEMATICA II^ IMMISSIONE Concorso VFP4 2012
Ministero della ifesa irezione Generale per il Personale Militare I Reparto - 3^ ivisione N TI MTEMTI II^ IMMISSIONE oncorso VFP4 2012 Servizio inerente la fornitura di due archivi di quesiti e materiali
FINALE 30 agosto 2008
FINALE 30 agosto 2008 INIZIO CATEGORIA CE 1- LE SETTE CARTE (coefficiente 1) Matilde ha messo 7 carte sulla tavola una dopo l'altra. In che ordine lo ha fatto? 2 - LE GOBBE (coefficiente 2) Una carovana
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe I H
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe I H ALUNNO CLASSE Ulteriore ripasso e recupero anche nei siti www.vallauricarpi.it (dip. matematica recupero).
LA CIRCONFERENZA e IL CERCHIO
LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più
Come risolvere i quesiti dell INVALSI - secondo
Come risolvere i quesiti dell INVALSI - secondo Soluzione: Si tratta del prodotto di due potenze con la stessa base. La base rimane la stessa e si sommano gli esponenti: La risposta corretta è la A. Soluzione:
Kangourou della Matematica 2010 Coppa a squadre Kangourou Semifinale turno A Mirabilandia, 8 maggio Quesiti
Kangourou della Matematica 2010 Coppa a squadre Kangourou Semifinale turno A Mirabilandia, 8 maggio 2010 Quesiti 1. Sei cifre per due numeri Avete a disposizione le cifre 1, 3, 4, 7, 8, 9 per formare due
I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno C) 20
Kangourou Italia Gara del 17 marzo 2016 Categoria Cadet Per studenti di terza della scuola secondaria di primo grado e prima della scuola secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono
Come risolvere i quesiti dell INVALSI - primo
Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo
6. I PROBLEMI DEL RALLY
14 o RMT FINALE maggio-giugno 2006 ARMT 2006 pag. 1 6. I PROBLEMI DEL RALLY (CAT. 4, 5, 6) ARMT.2006-14 - finale Un gruppo di insegnanti prepara i problemi per il prossimo Rally, per gli allievi delle
Gara a squadre 2010. Martedì 13 aprile. Qual è il perimetro di questa parte del campo (gialla o comunque più scura in figura)?
Gara a squadre 2010 Martedì 13 aprile 1 Problemi di eredità Il professor Pitagoris vuole lasciare ai quattro figli un campo che ha la forma di un triangolo isoscele e i cui lati misurano 240 m, 150 m,
Allenamenti di Matematica
rescia, 3-4 febbraio 2006 llenamenti di Matematica Geometria 1. Il trapezio rettangolo contiene una circonferenza di raggio 1 metro, tangente a tutti i suoi lati. Sapendo che il lato obliquo è lungo 7
3) Quale numero corrisponde a 1 centinaio - 6 decine - 9 unità?
ATTIVITA A NUMERO 1)1)Numera + 4 da 63 a 107 63 2) numera - 2 da 74 a 52 74 3) Quale numero corrisponde a 1 centinaio - 6 decine - 9 unità? 196 169 619 3) Scrivi il numero che corrisponde a : 5 decine.
Kangourou Italia Gara del 15 marzo 2001 Categoria Benjamin Per studenti di prima e seconda media
Kangourou Italia Gara del 15 marzo 2001 Categoria Benjamin Per studenti di prima e seconda media Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta
Kangourou Italia Gara del 15 marzo 2001 Categoria Ecolier Per studenti di quarta e quinta elementare
Kangourou Italia Gara del 15 marzo 2001 Categoria Ecolier Per studenti di quarta e quinta elementare Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta
Kangourou Italia Gara del 28 marzo 2008 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado
Testi_08.qxp 9-0-008 :6 Pagina 8 Kangourou Italia Gara del 8 marzo 008 ategoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono punti ciascuno. Nelle
Come può Zoe ricoprire completamente la sua tavoletta? Indicate tutte le diverse possibilità. Spiegate il vostro ragionamento.
14 RMT PROVA I gennaio-febbraio 2006 ARMT.2006 1 4. TAVOLETTA DA RICOPRIRE (Cat. 3, 4, 5) ARMT.2006-14 - I prova Zoe deve ricoprire completamente questa tavoletta di 9 caselle quadrate. Per farlo, ha a
Immagina di seguire il filo partendo dall estremità dove c è la freccia. In quale ordine incontri le tre figure nere (cerchio, quadrato, triangolo )?
1 La coccinella si poserà su un fiore che ha cinque petali e tre foglie. Su quale fiore si poserà? B D C E 2 Immagina di seguire il filo partendo dall estremità dove c è la freccia. In quale ordine incontri
Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio Quesiti
Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio 2012 Quesiti 1. Paola ed Enrico Considerate tutti i numeri interi positivi fino a 2012 incluso: Paola calcola la
Kangourou Italia Gara del 17 marzo 2016 Categoria Junior Per studenti di seconda e terza della scuola secondaria di secondo grado
Kangourou Italia Gara del 17 marzo 2016 Categoria Junior Per studenti di seconda e terza della scuola secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale dei seguenti
PuzzleFountain. Amico Logico
PuzzleFountain Amico Logico Autore: Data: Durata: Sito web: ALBERTO FABRIS sabato 29 novembre 20, 6.00 8.00 (orario server Italia) 20 minuti www.puzzlefountain.com Battaglia navale 2 Labirinto magico Circuito
GIOCHI A SQUADRE 2000
1 di 5 4/16/2009 10:48 PM International Site Ricerca > Centri di Ricerca > PRISTEM > Giochi matematici > Archivio edizioni precedenti - testi di allenamento > 2000 Giochi a squadre 2000 Giochi a squadre
1) 0,3*0,3*0,3 è uguale a: (A) 0,9 (B) 0,27 (C) 0,027 (D) 0,009 (E) 0,0027 (G.biennio 98) (A) (B) 0.03 (C) 0.3 (D) 1 (E) 3 (G.
La pubblicazione dei quesiti delle precedenti gare avviene per concessione dell UMI. Il sito ufficiale delle Olimpiadi di Matematica è : http://olimpiadi.dm.unipi.it/ Quesiti tratti dalle Olimpiadi di
I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno
Testi_07.qxp 16-04-2007 12:05 Pagina 16 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di terza della scuola secondaria di primo grado o prima della secondaria di secondo grado I quesiti
LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza.
LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una... che si
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
SOLUZIONI DEI QUESITI PROPOSTI
SOLUZIONI DEI QUESITI PROPOSTI Manca di mentalità matematica tanto chi non sa riconoscere rapidamente ciò che è evidente, quanto chi si attarda nei calcoli con una precisione superiore alla necessità QUESITO
Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Prima. Codici. Scuola:...
Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Prima Codici Scuola:..... Classe:.. Studente:. Spazio
Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.
SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,
Problemi di geometria
1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;
Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c )
Sezione 9 Esercizi 9 9 Esercizi 9 Esercizi dei singoli paragrafi - Sistemi di secondo grado Risolvere i seguenti sistemi di secondo grado { x + y = x + y = { x y x = 0 x y = { x + y = 0 x = y { x xy =
Buone Vacanze! Compiti per le vacanze. Classe II A
Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei
Kangourou della Matematica 2007 finale nazionale italiana Mirabilandia, 7 maggio 2007
LIVELLO ÉOLIER E1. (5 punti ) Il mio orologio digitale segna le 20:07. Quanto tempo deve trascorrere come minimo perché le stesse 4 cifre ricompaiano sull orologio, non necessariamente nello stesso ordine?
L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA
L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA Le formule per il calcolo dell area delle principali figure della geometria piana sono indispensabili per poter proseguire con lo studio della geometria.
Kangourou Italia Gara del 15 marzo 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado
Testi_07.qxp 16-0-2007 12:0 Pagina 10 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di prima o seconda della scuola secondaria di primo grado I quesiti dal N. 1 al N. 10 valgono punti
Fra quanti anni i quattro bambini avranno insieme la stessa età della loro mamma? Indicate la vostra soluzione e spiegate il vostro ragionamento.
12 o RALLY MATEMATICO TRANSALPINO - PROVA I - gen. - feb. 2004-8 a cat. /ARMT/2004 1 6. IL COMPLEANNO DELLA MAMMA (Cat. 4, 5, 6) /ARMT/2004 Andrea, Anna, Annalisa e Alberto hanno rispettivamente 11, 9,
Giochi a squadre. N.B.: non necessariamente a lettere diverse sono associati numeri diversi.
Giochi a squadre 1. LETTERE E NUMERI (punti 9) Associa un numero (scelto nell'insieme {0,1,2,3,4,8,9}) ad ogni lettera nella seguente addizione : e d b d d + e d b d d + e d b d d = c f a b-1 d-1 e-1 N.B.:
1. Pompieri (Cat. 3) Quanto misura ciascuna scala? Spiegate il vostro ragionamento. 2. La casa di Viola (Cat. 3, 4)
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2 volte quella corta, - una
1. Pompieri (Cat. 3) /ARMT/ II prova
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) /ARMT/2002-10 - II prova I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2
Kangourou della Matematica 2016 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio Quesiti
Kangourou della Matematica 2016 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio 2016 Quesiti 1. I biglietti di Giacomo Ci sono 200 biglietti numerati da 1 a 200. Giacomo vuole accoppiare
Corso di preparazione ai Giochi di Archimede Geometria e Logica
Corso di preparazione ai Giochi di Archimede Geometria e Logica 1) Claudia ha disegnato sul quaderno l iniziale del suo nome, una C. Il disegno è stato fatto tagliando esattamente a metà una corona circolare
Kangourou Italia Gara del 18 marzo 2004 Categoria Junior Per studenti di seconda o terza superiore
.qxd 22/02/2004 22.41 Pagina 22 Kangourou Italia Gara del 18 marzo 2004 Categoria Per studenti di seconda o terza superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Il valore dell'espressione
Problemi di geometria
1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm
PROBLEMI DI GEOMETRIA SUL CERCHIO
PROBLEMI DI GEOMETRIA SUL CERCHIO 1. In un cerchio che ha l'area di 625? cm², due corde AB e CD sono situate da parti opposte rispetto al centro O e le loro distanze dal centro misurano rispettivamente
Laboratorio di Giochi Matematici
UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI MATEMATICA ʺF. ENRIQUESʺ Progetto Lauree Scientifiche Laboratorio di Giochi Matematici (responsabile Prof. Stefania De Stefano) Incontro presso il Liceo
I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.
1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro
Il Cerchio - la circonferenza.( Teoria ; Esercizi ) Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni?
1 Il Cerchio - la circonferenza.( Teoria 63-65 ; Esercizi 129 138 ) 0) Definizione. Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni? Determina l insieme di tutti i punti distanti
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria Superiore.
Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico
Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado
Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale è il più grande
A IC T A M E T A M I D A V O R P
PROVA DI MATEMATICA Classe seconda MAT7 1 3 D1. La metà di è 4 3 A., perché ho diviso il denominatore per 2 2 6 2 B., perché ho moltiplicato la frazione per 8 2 3 1 C., perché ho moltiplicato la frazione
Kangourou Italia Gara del 15 marzo 2001 Categoria Benjamin Per studenti di prima e seconda media
Kangourou Italia Gara del 15 marzo 2001 Categoria Benjamin Per studenti di prima e seconda media Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta
2) Stabilisci se ognuna delle seguenti affermazioni è vera ( V ) o falsa ( F )
COGNOME NOME ESERCITAZIONE DI MATEMATICA ) Il valore relativo di nel CLASSE DATA è. è ) Stabilisci se ognuna delle seguenti affermazioni è vera ( V ) o falsa ( F ) A { x x è un naturale x } è formato da
6 dicembre 2012 Gara a squadre di matematica per le scuole medie
1 Logo scuola Kangourou Italia UNIVERSITA DEGLI STUDI DI MODENA E REGGIO EMILIA Dipartimento di Fisica, Informatica e Matematica PIANO LAUREE SCIENTIFICHE Orientamento e Formazione degli Insegnanti 6 dicembre
Prova di matematica. C2. Il trapezio ABCD è isoscele e l angolo A^ misura 50.
Prova di matematica. Il serbatoio di un auto può contenere 90 l di gasolio. Quanti litri sono presenti nel serbatoio se ne mancano della capacità? 0. Il trapezio AD è isoscele e l angolo A^ misura 0. D
Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag )
Il calcolo letterale algebrico. (NLM teoria pag. 7 86; esercizi pag. 11 5) Il calcolo letterale, o algebrico, è quella parte della matematica che generalizza il calcolo numerico utilizzando delle lettere
Test di autovalutazione
Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.
Soluzioni Cat. E3 (Alunni di terza elementare)
Settima Edizione Giochi di Achille e la tartaruga 15-DIC-2011 - Chieti Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 0871 65843 (cell.: 340 47 47 952) e-mail:[email protected]
Kangourou della Matematica 2009 finale nazionale italiana Mirabilandia, 11 maggio 2009
Kangourou della Matematica 2009 finale nazionale italiana Mirabilandia, 11 maggio 2009 LIVELLO JUNIOR J1. (5 punti ) Un asta lunga 10 metri va spezzata in modo che sia possibile riporre (eventualmente
1 IL MURATORE Un muratore costruisce 5/7 di un muro usando 350 mattoni. Quanti mattoni serviranno per completare il lavoro?
GIOCHI MATEMATICI 1 IL MURATORE Un muratore costruisce 5/7 di un muro usando 50 mattoni. Quanti mattoni serviranno per completare il lavoro? GIOCHI MATEMATICI 2 STUDENTI E LAVORATORI In un gruppo di 12
LA GEOMETRIA DELLO SPAZIO
LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei
Liceo Scientifico Statale ALBERT EINSTEIN Milano
Liceo Scientifico Statale ALBERT EINSTEIN Milano A.S. 200/20 TEST DII IINGRESSO MATEMATIICA CLLASSII PRIIME ALUNNO/A: (COGNOME) (NOME) CLASSE: SCUOLA DI PROVENIENZA: AVVERTENZE: Hai 60 minuti di tempo;
Kangourou Italia Gara del 19 marzo 2015 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado
N G A RA Kangourou Italia Gara del 19 marzo 2015 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. In quale
Giochi matematici. Olimpiadi della matematica * Giochi di Archimede 23/11/2016
Giochi matematici Istituto Poliziano a.s. 2016/2017 Olimpiadi della matematica * Giochi di Archimede 23/11/2016 2h mattina Biennio - Triennio * Classi prime 02/02/2017 * Fase distrettuale 21/02/17 * Gara
VERIFICA DI MATEMATICA - 10 ottobre 2016 classe 3 a D. Nome...Cognome... ARITMETICA/ALGEBRA
VERIFICA DI MATEMATICA - 10 ottobre 2016 classe 3 a D Nome...Cognome... 1. Insiemi numerici. ARITMETICA/ALGEBRA a) Al posto dei puntini inserisci il simbolo (appartiene) o (non appartiene): + 36...! 3,9...!
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli
Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria
Testi_07.qxp 16-04-2007 12:02 Pagina 5 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Osserva
CAMPIONATI INTERNAZIONALI GIOCHI MATEMATICI PARIGI 26 AGOSTO 2005 (1 GIORNATA)
CAMPIONATI INTERNAZIONALI GIOCHI MATEMATICI PARIGI 26 AGOSTO 2005 (1 GIORNATA) 1. I FOGLI DI BRUTTA Durante una competizione matematica, il sorvegliante deposita su ogni banco un foglio per la brutta.
GIOCO 1 GIOCO 2. Per giocare procurati dei fiammiferi, oppure dei bastoncini e disponili come in figura. Segui poi le indicazioni vicine ai disegni.
Per giocare procurati dei fiammiferi, oppure dei bastoncini e disponili come in figura. Segui poi le indicazioni vicine ai GIOCO 1 LA SEDIA DELLA FIGURA È RIVOLTA VERSO DESTRA. SAI GIRARLA VERSO SINISTRA
si usa in geometria per definire due figure uguali per forma ma non per dimensioni.
FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno
Istituto "F. Gonzaga", Castiglione delle Siviere (MN) Quaderno per le vacanze di Matematica
Istituto "F. Gonzaga", Castiglione delle Siviere (MN) Quaderno per le vacanze di Matematica I NUMERI NATURALI Stabilisci quali delle seguenti uguaglianze sono vere e quali sono false e giustifica lo tua
Kangourou Italia Gara del 18 marzo 2004 Categoria Ecolier Per studenti di quarta o quinta elementare
5-8-.qxd 22/02/2004 14.55 Pagina 5 Kangourou Italia Gara del 18 marzo 2004 Categoria Per studenti di quarta o quinta elementare I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Qual è il risultato
Scrivete tutte le possibili soluzioni numeriche per la parola MILANO.
1. NUMERO CICLICO Considerate la seguente moltiplicazione, sapendo che a lettere uguali corrispondono cifre uguali e a lettere diverse corrispondono cifre diverse: ILANOM x 4 = MILANO Scrivete tutte le
2. Se il rapporto tra le aree di due figure simili è 4, qual è il rapporto tra i corrispondenti perimetri?
. 000 99,02 = 0,98,98 900,98 D. 90,98 2. Se il rapporto tra le aree di due figure simili è 4, qual è il rapporto tra i corrispondenti perimetri? 4 2 2 D. 4 3. Un cuoco prepara un piatto di tagliatelle
Kangourou Italia Gara del 28 marzo 2008 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria
Testi_08.qxp 9-03-2008 14:56 Pagina 5 Kangourou Italia Gara del 28 marzo 2008 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Considera
Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di I grado. Classe Prima. Codici. Scuola:...
Ministero dell Istruzione dell Università e della Ricerca Istituto nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 2005
Liceo Scientifico Grigoletti Pordenone gara a squadre 13 dicembre 2003
Si ricorda che in tutti i problemi occorre indicare come risposta un numero intero compreso tra 0000 e 9999. Qualora la quantità richiesta non dovesse risultare un numero intero, indica la sua parte intera
Test A Teoria dei numeri e Combinatoria
Test A Teoria dei numeri e Combinatoria Problemi a risposta secca 1. Determinare con quanti zeri termina la scrittura in base 12 del fattoriale di 2002. 2. Determinare quante sono le coppie (x, y) di interi
Conoscenze. c. è un numero irrazionale d. La misura di una circonferenza si calcola moltiplicando la lunghezza del diametro per..
Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il segmento lungo quanto la circonferenza b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una costante che si indica
Problemi di geometria
1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola
PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA
PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA 1. Calcolare la misura x di un cateto di un triangolo rettangolo, sapendo che essa supera di 4 cm. quella della sua proiezione sull'ipotenusa,
ESERCIZI PER LE VACANZE
ESERCIZI PER LE VACANZE Tutti gli esercizi devono essere svolti sul quaderno. 1. Trova il quoziente di ciascuna frazione senza usare la calcolatrice (ricorda che puoi ridurre le frazioni ai minimi termini
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa
PuzzleFountain. Amico Logico
PuzzleFountain Amico Logico Autori: ALBERTO FABRIS, ADOLFO ZANELLATI Date: 0 novembre 0, 6.00 8.00 (orario server Italia) Durata: 0 minuti Sito web: www.puzzlefountain.com Akari Trilogia Circuito chiuso
POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag )
POLIGONI REGOLARI. ( Libro : teoria pag. 52 61; esercizi pag. 120 128) Un poligono è detto regolare quando Possiamo costruire un poligono regolare partendo o dalla circonferenza circoscritta al poligono
QUESTIONARIO DI MATEMATICA
QUESTIONARIO DI MATEMATICA Leggi con attenzione le seguenti domande e poi rispondi. 1 Fabio ha 0 figurine. Gioca con i compagni e ne vince 1, poi ne perde 15. Quante figurine ha Fabio alla fine del gioco?
Attività - I Dadi. Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende
Attività - I Dadi Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende Ci proponiamo l obiettivo di studiare le regole di costruzione dei dadi per progettare
3D Geometria solida. PIRAMIDE. Eserciziario ragionato con soluzioni. - 1
3D Geometria solida. PIRAMIDE. Eserciziario ragionato con soluzioni. - 1 Problemi di geometra solida sulla piramide. Completi di soluzione guidata. Collection of problems on the cone. With solution. 1.
