Esercizi di Algebra II
|
|
|
- Norberto Palumbo
- 9 anni fa
- Visualizzazioni
Transcript
1 Esercizi di Algebra II 18 Novembre 2016 # 6 Esercizio 1. Siano a := 4+13i, b := 8+i Z[i]. Determinare q, r Z[i] tali che a = bq + r con r = 0 o rδ < bδ (dove δ denota l usuale funzione euclidea per Z[i]). Idea di risoluzione. Osserviamo innanzitutto che è possibile estendere la funzione euclidea δ a tutti i numeri complessi in modo canonico. Pertanto, per ogni x = α + iβ C, indicheremo con xδ il valore α 2 + β 2. Osserviamo inoltre che, per ogni x, y C, si ha (xy)δ = xδyδ (la verifica di ciò è banale). I numeri a e b, essendo interi di Gauss, sono in particolare numeri complessi e, poiché b 0, esiste b 1 e appartiene a C (attenzione: non è detto che b 1 sia un intero di Gauss; al contrario questo non succede quasi mai). Allora banalmente vale a = a 1 = a (b b 1 ) = (a b 1 ) b. Costruiamo così i numeri q ed r a partire da ab 1. Troviamo due numeri m ed n tali che: ab 1 = m + n, m Z[i], n C e n = 0 oppure nδ < 1. A questo punto, poniamo q := m e r := bn. Così si avrà a = (a b 1 ) b = (m + n)b = mb + nb = qb + r e se n = 0 allora r = bn = 0, altrimenti rδ = (nb)δ = nδbδ < nδ<1 1 bδ
2 e quindi l esercizio sarà risolto. Soluzione. Si ha che b 1 = i e che ab 1 = (4 + 13i)( i) = i. Possiamo scrivere il numero i come i 6 i, quindi, posti m := 1 + 2i e n := 4 6 i, si ottiene che ab 1 = m + n e che nδ < 1. Poniamo infine q := m e r := bn = 2 4i per ottenere la tesi. Esercizio 2. Siano a := i, b := 8 + i Z[i]. Determinare un massimo comune divisore di a e b. interi di Gauss β e γ tali che α = aβ + bγ. Soluzione. Per deteminare un massimo comune divisore applichiamo l algoritmo di Euclide. Dall esercizio precedente abbiamo ricavato che a = b(1 + 2i) + ( 2 4i). Ora, applicando l algoritmo di Euclide, il divisore diventa il dividendo e il resto diventa divisore. Dobbiamo determinare quindi q, r tali che b = q r + r con r = 0 o r δ < rδ. Procedendo come nell esercizio precedente si ricava q = ( i + i) e r = (2 i), cioè che b = ( 1 + i)r + (2 i). Continuando ad applicare l algoritmo di Euclide, bisogna ora trovare q, r tali che r = (2 i)q + r. Facendo attenzione ai numeri in questione (oppure applicando ancora il ragionamento del primo esercizio), si ottiene che r = 2ir, cioè che q = 2i e r = 0. Ricapitolando, abbiamo trovato a = b(1 + 2i) + ( 2 4i) b = ( 1 + i)r + (2 i) 2
3 r = 2ir Per il teorema dell algoritmo di Euclide, 2 i = r è un massimo comune divisore fra a e b. Idea per trovare due interi di Gauss β e γ tali che α = aβ + bγ. Mettiamoci in una situazione più generale e supponiamo che abbiamo applicato l algoritmo di Euclide per trovare un massimo comune divisore fra due numeri a n e b n. Allora a n = b n c n + b n 1 b n = b n 1 c n 1 + b n b 3 = b 2 c 2 + b 1 b 2 = b 1 c 1 + b 0 b 1 = b 0 c 0. Per il teorema dell algoritmo di Euclide si ottiene che b 0 è un massimo comune divisore. I passi per ricavare due interi di Gauss β e γ tali che α = aβ + bγ sono i seguenti: 1) Ricavare il massimo comune divisore dalla penultima equazione dell algoritmo di Euclide (in questo caso si avrebbe b 0 = b 2 b 1 c 1 ); 2) Ricavare il resto della terzultima divisione (in questo caso sarebbe b 3 = b 2 c 2 + b 1, da cui si ricava b 1 = b 3 b 2 c 2 ) e sostituirlo nella relazione dove è stato ricavato il massimo comune divisore (nel nostro caso sarebbe b 0 = b 2 b 1 c 1 = b 2 (b 3 b 2 c 2 )c 1 ); 3) Iterare il procedimento visto nel punto 2) alla quartultima divisione, alla quintultima... fino ad arrivare alla prima. Osservazione. Se siete fortunati e nell algoritmo euclideo avete solo due divisioni, i coefficenti β e γ si trovano applicando solamente il primo punto. Applichiamo quanto appena visto in questo esercizio. Nel primo passaggio si ottiene 2 i = b ( 1 + i)r. Ricaviamo quindi il resto della terzultima divisione (cioè a = b(1 + 2i) + ( 2 4i), da cui otteniamo 2 4i = a b(1+2i)) e sostituiamolo nella relazione del massimo comune divisore. A quel punto l esercizio sarà completo, poiché la terzultima 3
4 divisione è anche la prima. Si ha quindi 2 i = b ( 1 + i)r = b ( 1 + i)(a b(1 + 2i)) = b[1 ( 1 + i)(1 + 2i)] a( 1 + i) ponendo quindi β := ( 1 + i) e γ := [1 ( 1 + i)(1 + 2i)] si completa l esercizio. Esercizio 3. Siano a := 5+i, b := 2 4i Z[i]. Determinare un massimo comune divisore di a e b. interi di Gauss β e γ tali che α = aβ + bγ. Esercizio 4. Determinare un massimo comune divisore in Z/7Z fra i polinomi f := 3x 3 x 2 + 6x 2 e g := x 2 x + 1. polinomi β e γ in Z/7Z tali che α = fβ + gγ. Soluzione. Applicando l agoritmo di Euclide si ottiene f = g(3x + 2) + (5x 4); g = (5x 4)(3x + 5). Per il teorema dell algoritmo di Euclide 5x 4 è un massimo comune divisore fra f e g. Per trovare due polinomi β e γ in Z/7Z tali che α = fβ + gγ, anche qui basta applicare le stesse idee dell esercizio 2 applicandole al caso dei polinomi. In questo caso, comunque, avendo solo 2 divisioni basta ricavare il massimo comune divisore dalla prima (in altre parole, basta svolgere solo il punto 1) dell idea spiegata nell esercizio 2). Si ottiene quindi f g(3x + 2) = (5x 4). Pertanto, ponendo β := 1 e γ := (3x + 2), si completa l esercizio. Esercizio 5. Fornire un esempio di ideale primo (possibilmente non banale) non massimale. 4
5 Soluzione. In Z[x], sia H l ideale formato dai polinomi aventi termine noto uguale a 0. Per un esercizio visto la scorsa volta, Z[x]/H = Z. Poiché Z è un dominio d integrità ma non un campo, allora Z[x]/H è un dominio d integrità che non è un campo e per una proposizione vista nel corso di Algebra II H è un ideale primo (chiaramente non banale) ma non è un ideale massimale. Esercizio 6. Mostrare che vale l uguaglianza U(Z[i]) = {1, 1, i, i} (in altre parole, provare che gli unici elementi moltiplicativamente invertibili di Z[i] sono 1, 1, i e i). 5
ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011
ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 Esercizio 1. Usando l algoritmo euclideo delle divisioni successive, calcolare massimo comune divisore e identità di Bézout per le seguenti coppie
Prova scritta di Algebra 7 luglio 2016
Prova scritta di Algebra 7 luglio 2016 1. Si consideri la mappa φ : Z Z/18Z la mappa definita da x [7x + 3] 18. a) Si determinino le immagini tramite φ degli interi 0 e 1 e si dica se φ è un omomorfismo
AL210 - Appunti integrativi - 6
L210 - ppunti integrativi - 6 Prof. Stefania Gabelli - a.a. 2016-2017 Divisibilità in un dominio Per definire in un anello commutativo unitario una buona teoria della divisibilità, è conveniente assumere
Capitolo 5 Campi finiti
Capitolo 5 Campi finiti Definizione 5.1. Un campo finito K (cioè composto da un numero finito di elementi) si dice campo di Galois. Il numero dei suoi elementi si dice ordine e si denota con K. Un campo
ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni
ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni (1) Verificare che l anello quoziente Z 5 [x]/(x 3 2) possiede divisori dello zero, e determinare tutti i suoi ideali non banali. Soluzione: Il polinomio
Esercizi di Algebra 2, C.S. in Matematica, a.a
26 Esercizi di Algebra 2, C.S. in Matematica, a.a.2008-09. Parte V. Anelli Nota. Salvo contrario avviso il termine anello sta per anello commutativo con identità. Es. 154. Provare che per ogni intero n
Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.
Capitolo 3 Il campo Z n 31 Introduzione Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo 32 Le classi resto Definizione
Due numeri naturali non nulli a, b tali che MCD(a,b) = 1 si dicono coprimi o relativamente primi.
MASSIMO COMUNE DIVISORE E ALGORITMO DI EUCLIDE L algoritmo di Euclide permette di calcolare il massimo comun divisore tra due numeri, anche se questi sono molto grandi, senza aver bisogno di fattorizzarli
ALGEBRA C. MALVENUTO
ALGEBRA PRIMO ESONERO CANALE A-L 18 NOVEMBRE 011 C. MALVENUTO Esercizio 1. (8 punti Sia H la famiglia di tutti i sottogruppi del gruppo additivo Z 0 delle classi resto modulo 0. 1. Elencare tutti gli elementi
NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n
NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare
Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9
Prova scritta di Algebra 9 settembre 2016 1. Si risolva il seguente sistema di congruenze lineari x 5 mod 7 11x 1 mod 13 x 3 mod 9 Si determini la sua minima soluzione positiva. 2. In S 9 sia α = (4, 9)(9,
ALGEBRA 1 Primo esame scritto 4 Luglio 2011 soluzioni
ALGEBRA 1 Primo esame scritto 4 Luglio 2011 soluzioni (1) Si trovino tutte le soluzioni intere del sistema di congruenze lineari x 4 mod 5 2x 5 mod 7 3x 12345 2448 mod 9 Soluzione: L inverso di 2 modulo
TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2.
TEN 2008. Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. Lemma 1. Sia n Z. Sia p > 2 un numero primo. (a) n è un quadrato modulo p se e solo se n p 1 2 1 mod p; (b) Sia n 0
Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.
LICEO B. RUSSELL A.S. 2010/2011 DALLA TEORIA DEI NUMERI ALLE CONGRUENZE Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.
I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.
ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio
Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n
Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica
Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017
Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.
IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.
IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è
FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito
FORMULARIO: tavola degli integrali indefiniti Definizione Proprietà dell integrale indefinito Integrali indefiniti fondamentali Integrali notevoli Integrali indefiniti riconducibili a quelli immediati:
1.5 DIVISIONE TRA DUE POLINOMI
Matematica C Algebra. Le basi del calcolo letterale.5 Divisione tra due polinomi..5 DIVISIONE TRA DUE POLINOMI Introduzione Ricordiamo la divisione tra due numeri, per esempio 47:4. Si tratta di trovare
TEST DI VERIFICA DI ALGEBRA Novembre 2007 generalità su gruppi e anelli Testo con soluzioni...
TEST DI VERIFICA DI ALGEBRA 2 13 Novembre 2007 generalità su gruppi e anelli Testo con soluzioni....................................................................... N.B.: il simbolo contrassegna gli
Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi
Dispense del corso di Algebra 1 Soluzioni di alcuni esercizi Esercizio 1.1. 1) Vero; ) Falso; 3) V; 4) F; 5) F; 6) F (infatti: {x x Z,x < 1} {0}); 7) V. Esercizio 1.3. Se A B, allora ogni sottoinsieme
Esercizi di Algebra - Seconda parte
Esercizi di Algebra - Seconda parte Esercizio 1. In Q Q si consideri le operazioni + e definite da (a, b) + (c, d) = (a + c, b + d), (a, b) (c, d) = (ac 8bd, ad + bc + 2bd). Si stabilisca se la struttura
ALGEBRA 1 PB-Z X. 25 V 2012
ALGEBRA 1 PB-Z X. 25 V 2012 Esercizio 1. Sia A un dominio d integrità unitario e a ideali principali. Si mostri che, per un ideale di A, esser massimale è equivalente a esser primo ( 1 ). Soluzione. La
0.1 Spazi Euclidei in generale
0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo
EQUAZIONI E DISEQUAZIONI LOGARITMICHE. Prof.ssa Maddalena Dominijanni
EQUAZIONI E DISEQUAZIONI LOGARITMICHE Definizione e proprietà dei logaritmi Il logaritmo in base a, con a > 0 e a, del numero b è l esponente da attribuire alla base a per ottenere il numero b. x x log
II Esonero di Matematica Discreta - a.a. 06/07. Versione B
II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura
Equazioni simboliche
581 Alcuni quiz riportano lo schema classico di un equazione matematica o di un sistema di equazioni matematiche, utilizzando, tuttavia, in luogo delle comuni lettere, dei simboli come @, #,!, etc. o delle
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella
Massimo limite e minimo limite di una funzione
Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.
Capitolo 2 Spazi vettoriali Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti
Capitolo 2 Spazi vettoriali Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Dato un insieme,
Soluzioni ottava gara Suole di Gauss
Soluzioni ottava gara Suole di Gauss 5 Marzo 09. Risposta: 000 Semplicemente un quadrato può essere scritto come somma di due triangolari consecutivi. Diamone una breve dimostrazione: n(n ) + (n + )n n(n
z =[a 4 a 3 a 2 a 1 a 0 ] 10
Esercizio 1. Sia z =[a 4 a 3 a 2 a 1 a 0 ] 10 un numero intero (la notazione significa che le cifre con cui rappresento z in base 10 sono a 4,..., a 0 {0, 1,..., 9}, ecioè z = a 4 10 4 + a 3 10 3 + a 2
3/10/ Divisibilità e massimo comun divisore
MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali
Nome. Esercizio 2. Risolvere il seguente sistema di congruenze lineari:
Università degli Studi Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2006/2007 AL1 - Algebra 1, fondamenti Seconda prova di valutazione intermedia 11 Gennaio 2006 Cognome Nome Numero di matricola
Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore
MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore
Complemento ortogonale e proiezioni
Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali
Polinomi irriducibili su campi finiti
Polinomi irriducibili su campi finiti 29 Ottobre 2009 Definizione 1. Sia f(x GF(q[x] un polinomio. Si dice campo di spezzamento di f(x il più piccolo campo K con GF(q K contenente tutte le radici di f(x.
INTEGRALI INDEFINITI e DEFINITI Esercizi risolti
INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è
Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini
Divisione di polinomi, teorema del resto e teorema di Ruffini Teorema (della divisione con resto tra due polinomi in una variabile). Dati due polinomi A x e B x, con B x 0, esistono sempre, e sono unici,
Polinomi Definizioni fondamentali
Polinomi. Definizioni fondamentali Definizione.. Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi. Esempio.. Sono polinomi: 6a + b, 5a b + 3b, 6x 5y x, 7ab
Appunti sulla circonferenza
Liceo Falchi Montopoli in Val d Arno - Classe a I - Francesco Daddi - 1 dicembre 009 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano
Calcolo algebrico e polinomi 1 / 48
Calcolo algebrico e polinomi 1 / 48 2 / 48 Introduzione In questa lezione esporremo i principali concetti relativi al calcolo algebrico elementare e ai polinomi. In particolare, illustreremo: Prodotti
nota 1. Aritmetica sui numeri interi.
nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri
Definizione. Siano a, b Z. Si dice che a divide b se esiste un intero c Z tale che. b = ac.
0. Numeri interi. Sia Z = {..., 3, 2, 1, 0, 1, 2, 3,...} l insieme dei numeri interi e sia N = {1, 2, 3,...} il sottoinsieme dei numeri interi positivi. Sappiamo bene come addizionare, sottrarre e moltiplicare
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica
G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,
Giuseppe Accascina. Note del corso di Geometria e Algebra
Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato
Applicazioni eliminazione di Gauss
Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare
