Esercizi di Algebra - Seconda parte

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Algebra - Seconda parte"

Transcript

1 Esercizi di Algebra - Seconda parte Esercizio 1. In Q Q si consideri le operazioni + e definite da (a, b) + (c, d) = (a + c, b + d), (a, b) (c, d) = (ac 8bd, ad + bc + 2bd). Si stabilisca se la struttura (Q Q, +, ) è un campo. Esercizio 2. Sia (A, +, ) un anello e si considerino le operazioni e su A A definite da (a, b) (c, d) = (a + c, b + d), (a, b) (c, d) = (a c, a d + c b + b d). Si mostri che la struttura (A A,, ) è un anello unitario che contiene un sottoanello isomorfo ad (A, +, ). Esercizio 3. Si consideri il sottoinsieme D di M 2 (Z) definito da a 0 D = a, b Z. 0 b Si mostri che D è un sottoanello di M 2 (Z) e che l insieme 3x 0 I = x, y Z 0 5y è un ideale di D che non è primo. Infine per ogni n N si mostri che l insieme h 0 I n = h, k Z 0 nk è un ideale di D e stabilire per quali valori di n I n è massimale. Esercizio 4. Provare che l insieme A M 2 (Z 3 ) definito da a b A = a, b Z b a 3 è un sottocampo dell anello M 2 (Z 3 ). Si mostri inoltre che (A ; ) è un gruppo ciclico di ordine 8 e se ne determini un generatore. Esercizio 5. Si provi che l anello 3Z non è un dominio a fattorizzazione unica; più in generale si provi che per ogni m N con m > 1, se p è un primo che non è fattore di m allora nell anello mz il numero m 2 p 2 ammette due fattorizzazioni distinte in fattori irriducibili di mz. *Esercizio 6. Si mostri che l anello degli interi di Eisenstein Z[(1 + ı 3)/2] è ad ideali principali osservando che la norma naturale è di Hasse-Dedekind. N.B.: se x = a + (1 + ı 3)/2b Z[(1 + ı 3)/2], allora x = x x = a 2 + ab + b 2. Esercizio 7. Si consideri l anello degli interi di Gauss Z[ı] e sia I un suo ideale. Si mostri che se esiste x I tale che x è primo in Z allora I è massimale. 1

2 Esercizio 8. Si consideri l anello degli interi di Gauss Z[ı] e sia H l ideale generato da 1 + ı. Si mostri che H = {a + ıb a b (mod 2)} e che H è massimale e si studi il quoziente Z[ı]/H. Esercizio 9. Si consideri l anello Z[ı 8] e siano I = 5 e J = 2. Si mostri che I è un ideale massimale e che J non lo è. *Esercizio 10. Sia F un campo; si mostri che gli ideali x y e x, y dell anello F [x, y] dei polinomi nelle indeterminate x e y a coefficienti in F sono primi. Esercizio 11. Sia 2Z l anello degli interi pari; si mostri che l ideale 4 è massimale ma non primo. Come si concilia questo fatto con la proposizione che afferma che in un anello unitario commutativo ogni ideale massimale è primo? *Esercizio 12. Sia A un anello e P un ideale primo di A[x]; si mostri P A è un ideale primo di A. Esercizio 13. Si mostri che l ideale I = 3, x di Z[x] è massimale determinando un campo F e un epimorfismo ϕ : Z[x] F tale che Ker ϕ = I. Esercizio 14. Si verifichi che l ideale I = 6 di Z[x] non è primo e si costruisca un epimorfismo ϕ da Z[x] in un anello opportuno tale che Ker ϕ = I. Esercizio 15. Si mostri che in Z[ı 5] si ha M.C.D.(9, 3(2+ı 5)) =. Perché ciò non contrasta con il teorema che afferma che in un anello a ideali principali per ogni coppia di elementi non nulli esiste un massimo comune divisore? Esercizio 16. Sia n N e ϕ n l applicazione ϕ n : Z[ı] Z n [ı] a + ıb [a] n + ı[b] n Si mostri che ϕ n è un epimorfismo il cui nucleo è n Z[ı]. risultato per stabilire se Z 5 [ı] e Z 7 [ı] sono campi. Si utilizzi tale Esercizio 17. Provare che I = 2, 10 e J = 3, sono ideali primi di Z[ 10]. Esercizio 18. Provare che I = {a+ 7b a b (mod 6)} è un ideale principale di Z[ 7] e se ne determini un generatore. Stabilire inoltre se I è massimale o principale e si studi il quoziente Z[ 7]/I. Esercizio 19. Si decompongano gli elementi 2, 3 e 5 in Z[ı 2] in fattori irriducibili. Esercizio 20. Sia F un campo di caratteristica diversa da due; mostrare che un polinomio monico di secondo grado x 2 +bx+c F [x] è riducibile se e solo se b 2 4c è il quadrato di un elemento di F. Si mostri, tramite un controesempio, che l ipotesi car F 2 è essenziale. Esercizio 21. Si consideri il polinomio f(x) = x 3 + x Si provi che l ideale I = f(x) non è primo in Z 3 [x] ed è massimale in Q[x]; 2

3 2. se ϕ 1 : Z 3 [x] Z 3 [x]/i e ϕ 2 : Q[x] Q[x]/I sono le suriezioni canoniche, si provi che ϕ 1 (x 2 + x + 2) è un divisore dello zero mentre ϕ 2 (x 2 + x + 2) è invertibile (e se ne determini l inverso); 3. si determinino i polinomi di primo grado in Z 3 [x] la cui immagine rispetto ϕ 1 è un elemento invertibile. Esercizio 22. Sia f(x) = a 0 + a 1 x + + a 2 x n un polinomio a coefficienti in Z e sia p/q una radice di f(x) in Q con p e q interi coprimi. Si mostri che p a 0 e q a n in Z. Esercizio 23. Sia f(x) = x Z 5 [x] e I = f(x) Z 5 [x]: 1. si mostri che (x 2 +x+1)+i è invertibile in Z 5 [x]/i e se determini l inverso; 2. si mostri che (x 2) + I è un divisore dello zero in Z 5 [x]/i. Esercizio 24. Si determinino gli ideali massimali di Z 3 [x] generati da un polinomio di secondo grado. Esercizio 25. Si determinino tutti i polinomi di quarto grado irriducibili in Z 2 [x]. Esercizio 26. Si stabilisca se i seguenti polinomi sono irriducibili in Q[x]: 1. x 2 4; 2. x 2 + 2x + 3; 3. x 3 + x + 1; 4. x 5 8x + 2; 5. 2x 5 15x 4 + 6x 3 3x + 12; 6. x 4 + 2x 2 + 9; 7. 5x 3 + 6x x + 2; 8. x 4 + x 3 + x + 1; 9. x 4 + x 3 + x 2 + x + 1 Esercizio 27. Si stabilisca se i seguenti polinomi hanno radici multiple in Q[x]: 1. 18x 6 ; 2. 4x 2 + 4x + 1; 3. 2x 3 + 3x 2 + 2x + 2; 4. x 4 4; 5. x 11 11; 6. x 8 + 8; 7. x 4 + 4x 3 + 3x 2 + 6x

4 Esercizio 28. Si determinino tutti i polinomi della forma 3x 2 +cx+4 irriducibili in Z 5 [x]. Esercizio 29. Si dica se il polinomio x 4 1 è irriducibile in Z 11 [x] e in Z 13 [x]. Esercizio 30. Si determini il numero di polinomi di terzo grado irriducibili in Z p [x] con p primo. *Esercizio 31. Si determini il numero dei quadrati nel campo Z p. *Esercizio 32. Si mostri che ogni ideale (non nullo) dell anello degli interi di Gauss Z[ı] contiene un infinità di interi positivi. Esercizio 33. Si effettui la divisione con resto di 3 + 2ı per 2 ı in Z[ı]. Esercizio 34. Si effettui la divisione con resto del polinomio f(x) per g(x) in Q[x] quando: 1. f(x) = x 4 + 3x 2 + 2x + 2 e g(x) = x 2 + x + 1; 2. f(x) = x 3 + x 2 + 2x + 3 e g(x) = x 3; 3. f(x) = 5x 5 + 4x 4 2x 2 e g(x) = 5x 4 1. Esercizio 35. Si determini il M.C.D. dei polinomi f(x) e g(x) in Q[x] e lo si esprima come combinazione lineare a coefficienti in Q[x] di f(x) e g(x) quando: 1. f(x) = x 5 + x 4 x 3 3x + 2 e g(x) = x 3 + 2x 2 x 2; 2. f(x) = 6x 5 + 7x 4 5x 3 + 2x 2 x + 1 e g(x) = 6x 4 5x 3 19x 2 13x 5; 3. f(x) = x 3 + 6x x + 6 e g(x) = x 2 4; 4. f(x) = x 3 + x 10 e g(x) = x 2 x + 10; 5. f(x) = 3x 3 12x 2 e g(x) = 2x 2. Esercizio 36. Si consideri il polinomio f(x) = 3x 2 + 4x + 3 Z m [x]: 1. si stabilisca se f(x) è irriducibile quando m è 2, 3 o 7; 2. si determinino le eventuali radici di f(x) quando m = 5 e si spieghi perché la fattorizzazione f(x) = (3x + 2)(x + 4) = (4x + 1)(2x + 3) in Z 5 [x] non contrasta con il fatto che Z 5 [x] è un anello a fattorizzazione unica. Esercizio 37. Si consideri il polinomio f(x) = x Z 7 [x] e l ideale I = x ; si dimostri che f(x) è irriducibile in Z 7 [x] e si determini l inverso degli elementi 3 + I, (1 + x) + I e (3 + 4x) + I in Z 7 [x]/i. Esercizio 38. Sia F un campo e f(x) = x 3 3 F [x]. Se ϕ f : F F è la funzione polinomiale individuata da f(x), si dica se ϕ f è iniettiva o suriettiva quando F è Q, C, Z 3, Z 7 o Z 5. 4

5 Esercizio 39. Si determini il M.C.D. dei polinomi f(x) = x 5 + x 3 + x e g(x) = x 4 + 2x 3 + 2x in Z 3 [x] e lo si esprima come combinazione lineare a coefficienti in Z 3 [x] di f(x) e g(x). Esercizio 40. Si determini il M.C.D. dei polinomi f(x) = x 5 3ıx 3 2ıx 2 6 e g(x) = x 2 2ı in C[x] e lo si esprima come combinazione lineare a coefficienti in C[x] di f(x) e g(x). Esercizio 41. Si determini il M.C.D. tra 1. x = 5 8ı e y = 2 + 3ı, 2. x = ı e y = 23 2ı, 3. x = 7 ı e y = 2 + 4ı, 4. x = ı e 1 + 3ı, 5. x = 10 e 1 + 7ı in Z[ı] e lo si esprima come combinazione lineare a coefficienti in Z[ı] di x e y. Esercizio 42. Sia F un campo; si determini un generatore per l ideale x, x 2. Esercizio 43. Si determini un generatore per l ideale x 2 1, x 3 1 Q[x]. Esercizio 44. Sia p N un numero primo; si determinino i valori di p affinché esistano a(x), b(x) Z p [x] tali che a(x)f(x) + b(x)g(x) = 1 quando 1. f(x) = 2 3x x 2 2x 3 + x 4 e g(x) = (x 2 1)(x 2)(x 3); 2. f(x) = x 4 x 3 25x 2 20x 8 e g(x) = x 3 + 5x 2. *Esercizio 45. Sia A un dominio di integrità; mostrare che un polinomio di primo grado non è in generale irriducibile in A[x] e che un polinomio irriducibile in generale non genera un ideale massimale. Mostrare inoltre che un polinomio riducibile di A[x] può non essere decomposto nel prodotto di due polinomi di grado maggiore o uguale ad uno. Esercizio 46. Sia I Z 4 [x] l ideale generato dal polinomio x 3 +x+1; si dimostri che I non è massimale. Esercizio 47. Si dica se i seguenti elementi del campo R sono algebrici sopra il sottocampo Q e in caso affermativo si determini il polinomio minimo: 1. 3; ; ; ; Esercizio 48. Si consideri il polinomio f(x) = x 4 1 Z p [x] con p primo. Si determinino i valori di p per i quali f(x) è divisibile per x 2 4 e quelli per i quali 3 è una radice di f(x). Si decomponga f(x) in prodotto di polinomi irriducibili quando p = 13. 5

6 Esercizio 49. Si consideri il polinomio f(x) = 10x 3 + 7x 2 + 2x 1 Z p [x] con p primo. Si decomponga f(x) in fattori irriducibili quando p è uguale a 2, 3 o 5. Posto I = f(x) si dica in quali dei tre casi considerati Z p [x]/i è un campo e, in caso affermativo, se è un campo di spezzamento per f(x). Esercizio 50. Si consideri il polinomio f(x) = 12x x x + 2 Q[x]. Sapendo che f(x) ha una radice con molteplicità due, lo si decomponga in fattori irriducibili e si determini il suo campo di spezzamento. Esercizio 51. Determinare il campo di spezzamento del polinomio x 3 2 Q[x]. Esercizio 52. Si consideri il polinomio f(x) = p(x)q(x) Z 3 [x], dove p(x) = x 3 x + 1 e q(x) = x 3 + x 2 x + 1, e sia Z 3 (α) l ampliamento di Z 3 mediante l aggiunzione di una radice α di q(x). Si verifichi che Z 3 (α) è il campo di spezzamento di f(x) e si decomponga f(x) come prodotto di fattori lineari in Z 3 (α). Si determini inoltre la cardinalità di Z 3 (α). Esercizio 53. Si mostri che R[x]/ x 4 +1 non è un campo mentre che Q[x]/ x lo è. Esercizio 54. Sia I = x 2 +1 Z n ; si determinino gli interi n, con 1 < n < 11, tali che Z n e Z n [x]/i siano entrambi campi. Esercizio 55. Si considerino i polinomi p(x) = x 4 + x e q(x) = x 4 + x in Z 2 [x] e siano H e K i campi di spezzamento di p(x) e q(x) rispettivamente. Si decomponga p(x) in H e q(x) in K come prodotto di fattori lineari e si dica se H e K sono isomorfi. Esercizio 56. Si dica se i campi indicati sono di spezzamento per i seguenti polinomi: 1. Q( 7) per x 2 + 3; 2. Q( 2) per x 2 + 1; 3. Q( 2) per x 3 + 8x 2. Esercizio 57. Sia Q(α) l estensione semplice di Q ottenuta mediante l aggiunzione di una radice α del polinomio x 5 + 2x + 2. Si esprimano allora in Q(α) gli elementi (α 3 + 2)(α 3 + 3α), α 4 (α 4 + 3α 2 + 7α + 5) e α 1. Esercizio 58. Sia Q(α) l estensione semplice di Q ottenuta mediante l aggiunzione di una radice α del polinomio x 3 6x 2 + 9x + 3. Si esprimano allora in Q(α) gli elementi α 4, α 5, 3α 5 α e (α + 1) 1. Esercizio 59. Tenendo presente che il polinomio x 2 +2x+2 è irriducibile in Z 3, si scriva la tavola di Cayley del campo Z 3 (α), dove α è una radice del polinomio x 2 + 2x + 2. Esercizio 60. Dopo aver elencato i polinomi irriducibili di grado 2 e 3 in Z 2, si costruisca un campo di ordine 4 e uno di ordine 8. Esercizio 61. Si determini il campo di spezzamento del polinomio x 8 1 Q[x]. 6

7 Esercizio 62. Si determini il campo di spezzamento del polinomio x 9 x 2 Z 3 [x]. Esercizio 63. Si determini il campo di spezzamento del polinomio (x 2 +1)(2x 2 + x + 1) Z 3 [x]. Esercizio 64. Si determinino i valori di a Z 7 per cui l anello Z 7 [x]/ x 2 +3x+ a sia un campo. 7

Prova scritta di Algebra 7 luglio 2016

Prova scritta di Algebra 7 luglio 2016 Prova scritta di Algebra 7 luglio 2016 1. Si consideri la mappa φ : Z Z/18Z la mappa definita da x [7x + 3] 18. a) Si determinino le immagini tramite φ degli interi 0 e 1 e si dica se φ è un omomorfismo

Dettagli

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9 Prova scritta di Algebra 9 settembre 2016 1. Si risolva il seguente sistema di congruenze lineari x 5 mod 7 11x 1 mod 13 x 3 mod 9 Si determini la sua minima soluzione positiva. 2. In S 9 sia α = (4, 9)(9,

Dettagli

Prova scritta di Algebra 4 Luglio Si risolva il seguente sistema di congruenze lineari x 2 mod 3 2x 1 mod 5 x 3 mod 2

Prova scritta di Algebra 4 Luglio Si risolva il seguente sistema di congruenze lineari x 2 mod 3 2x 1 mod 5 x 3 mod 2 Prova scritta di Algebra 4 Luglio 013 1. Si risolva il seguente sistema di congruenze lineari x mod 3 x 1 mod 5 x 3 mod. In S 9 sia α (1, 3(3, 5, 6(5, 3(4,, 7(, 1, 4, 7(8, 9 a Si scriva α come prodotto

Dettagli

Esercizi di Algebra 2, C.S. in Matematica, a.a

Esercizi di Algebra 2, C.S. in Matematica, a.a 26 Esercizi di Algebra 2, C.S. in Matematica, a.a.2008-09. Parte V. Anelli Nota. Salvo contrario avviso il termine anello sta per anello commutativo con identità. Es. 154. Provare che per ogni intero n

Dettagli

Prova scritta di Algebra 9 giugno Si risolva il seguente sistema di congruenze lineari x 4 mod 7 11x 2 mod 15 x 3 mod 8

Prova scritta di Algebra 9 giugno Si risolva il seguente sistema di congruenze lineari x 4 mod 7 11x 2 mod 15 x 3 mod 8 Prova scritta di Algebra 9 giugno 2016 1. Si risolva il seguente sistema di congruenze lineari x 4 mod 7 11x 2 mod 15 x 3 mod 8 2. In S 10 sia α = (7, 10(2, 1, 6, 8, 5, 7(6, 2, 8(5, 9(9, 5, 4(1, 9. a Si

Dettagli

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni (1) Verificare che l anello quoziente Z 5 [x]/(x 3 2) possiede divisori dello zero, e determinare tutti i suoi ideali non banali. Soluzione: Il polinomio

Dettagli

ESERCIZI DI ALGEBRA 2

ESERCIZI DI ALGEBRA 2 ESERCIZI DI ALGEBRA 2 Esercizi del 29/09/2016 (anelli e sottoanelli) (1) Determinare gli elementi invertibili di Z[1/n]. (2) Determinare i sottoanelli si Z e di Z n, n > 0. (3) Determinare i sottoanelli

Dettagli

Esercizi per il Corso di Algebra

Esercizi per il Corso di Algebra Foglio 1 14 ottobre 2008 1. Si verifichi che l insieme EndG di tutti gli endomorfismi di un gruppo abeliano G forma un anello rispetto alla somma e alla composizione di applicazioni. 2. Sia I un insieme

Dettagli

Aritmetica 2009/10 Compitino 1/12/2009. (a) Contare gli elementi nilpotenti di A. (b) Contare gli elementi zero-divisori di A.

Aritmetica 2009/10 Compitino 1/12/2009. (a) Contare gli elementi nilpotenti di A. (b) Contare gli elementi zero-divisori di A. Aritmetica 2009/10 Compitino 1/12/2009 1. Sia A = Z2[x]/(x 5 + x 4 + 1). (a) Contare gli elementi nilpotenti di A. (b) Contare gli elementi zero-divisori di A. Possibile risoluzione: Il polinomio f(x)

Dettagli

POLINOMI. (p+q)(x) = p(x)+q(x) (p q)(x) = p(x) q(x) x K

POLINOMI. (p+q)(x) = p(x)+q(x) (p q)(x) = p(x) q(x) x K POLINOMI 1. Funzioni polinomiali e polinomi Sono noti campi infiniti (es. il campo dei complessi C, quello dei reali R, quello dei razionali Q) e campi finiti (es. Z p la classe dei resti modp con p numero

Dettagli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica Discreta 1 / 29 index

Dettagli

Esercizi e soluzioni relativi al Capitolo 10

Esercizi e soluzioni relativi al Capitolo 10 Esercizi e soluzioni relativi al Capitolo 1 Esercizio 1.1 Sia (Mat 2 2 (R), +, ) l anello delle matrici quadrate di ordine 2 a coefficienti reali. [ Gli ] elementi unitari sono tutte e sole le matrici

Dettagli

ANELLI EUCLIDEI E ANELLI A IDEALI PRINCIPALI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI EUCLIDEI E ANELLI A IDEALI PRINCIPALI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI EUCLIDEI E ANELLI A IDEALI PRINCIPALI N.B.: il simbolo contrassegna gli esercizi relativamente più complessi. 1 Sia A un anello commutativo unitario. Dimostrare che A è un campo A ha

Dettagli

Altri esercizi assegnati negli esoneri degli scorsi anni

Altri esercizi assegnati negli esoneri degli scorsi anni Altri esercizi assegnati negli esoneri degli scorsi anni Esercizi sul principio di induzione 1. Utilizzando il principio di induzione si dimostri che, per ogni numero naturale positivo n, risulta: Esercizi

Dettagli

Settimana 1 Insiemi e funzioni

Settimana 1 Insiemi e funzioni ESERCIZI DI ALGEBRA I Canali A-Di & Dl-Pa A.A. 2011-12 Settimana 1 Insiemi e funzioni Esercizio 1. Siano R, S, T insiemi. Si dimostri che 1. R S T R T (R \ S); 2. R T = R \ (S \ T ) (R \ S) \ T. Esercizio

Dettagli

Università degli studi di Trieste Corso di Studi in Matematica. Algebra 2 (9 cfu) docente: prof. Alessandro Logar anno accademico:

Università degli studi di Trieste Corso di Studi in Matematica. Algebra 2 (9 cfu) docente: prof. Alessandro Logar anno accademico: 1 Richiami/premesse Università degli studi di Trieste Corso di Studi in Matematica Algebra 2 (9 cfu) docente: prof. Alessandro Logar anno accademico: 2013-2014 Richiami su gruppi, anelli, campi; omomorfismi,

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2017/2018 Docente: Alberto Canonaco Richiami su insiemi e funzioni: composizione di funzioni e associatività della composizione; immagine attraverso una funzione di un sottoinsieme

Dettagli

1 o COMPITO DI ARITMETICA 13 novembre Determinare tutti i numeri naturali n che soddisfano contemporaneamente le seguenti

1 o COMPITO DI ARITMETICA 13 novembre Determinare tutti i numeri naturali n che soddisfano contemporaneamente le seguenti 1 o COMPITO DI ARITMETICA 13 novembre 2001 1. Dimostrare che, per ogni numero intero n 0, 7 3n 1 è divisibile per 3 n+1. 2. Determinare tutti i numeri naturali n che soddisfano contemporaneamente le seguenti

Dettagli

DIARIO DELLE LEZIONI DI ALGEBRA I Canale Dl-Pa A.A

DIARIO DELLE LEZIONI DI ALGEBRA I Canale Dl-Pa A.A DIARIO DELLE LEZIONI DI ALGEBRA I Canale Dl-Pa A.A. 2011-12 Lunedì 5 Marzo Introduzione alla teoria degli insiemi: nozioni e notazioni fondamentali. Criterio di uguaglianza tra insiemi. Unione, intersezione

Dettagli

Esercizi per il Corso di Algebra

Esercizi per il Corso di Algebra Foglio 1 13 ottobre 2009 1. Sia n N, n > 1. (a) Si determini l insieme Z/nZ degli elementi invertibili dell anello Z/nZ. (b) Si deduca da (a) che l anello Z/nZ è un campo se e solo se n è un numero primo.

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione

Dettagli

Nome. Esercizio 2. Risolvere il seguente sistema di congruenze lineari:

Nome. Esercizio 2. Risolvere il seguente sistema di congruenze lineari: Università degli Studi Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2006/2007 AL1 - Algebra 1, fondamenti Seconda prova di valutazione intermedia 11 Gennaio 2006 Cognome Nome Numero di matricola

Dettagli

DIARIO DELLE LEZIONI DI ALGEBRA I Canale I-Z A.A

DIARIO DELLE LEZIONI DI ALGEBRA I Canale I-Z A.A DIARIO DELLE LEZIONI DI ALGEBRA I Canale I-Z A.A. 2013-14 Giovedì 6 Marzo Introduzione alla teoria degli insiemi: nozioni e notazioni fondamentali. Criterio di uguaglianza tra insiemi. Unione, intersezione

Dettagli

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso NOTA - Negli esercizi che seguono verranno adottate le seguenti notazioni: il simbolo Z

Dettagli

COMPITO DI ALGEBRA 29 maggio ax 1 (mod 81) a x 1 (mod 81) a b a, b, c, 0 F 0 c

COMPITO DI ALGEBRA 29 maggio ax 1 (mod 81) a x 1 (mod 81) a b a, b, c, 0 F 0 c 29 maggio 1995 1) Determinare per quali valori del parametro a il sistema è risolubile. ax 1 (mod 81) a x 1 (mod 81) 2) Sia G il gruppo moltiplicativo G = ( ) a b a, b, c, 0 F 0 c 5, ac 0} (i) Determinare

Dettagli

Prova scritta di Matematica Discreta del 15/2/2005

Prova scritta di Matematica Discreta del 15/2/2005 Prova scritta di Matematica Discreta del 15/2/2005 1. a. Quante parole di 6 lettere si possono formare con un alfabeto contenente 25 lettere? b. Quante se sono proibite le doppie (ossia lettere uguali

Dettagli

Svolgimento di Algebra I - 22 Marzo Nell insieme delle frazioni F := { a

Svolgimento di Algebra I - 22 Marzo Nell insieme delle frazioni F := { a Svolgimento di Algebra I - 22 Marzo 212 1. Nell insieme delle frazioni F := { a b a, b Z, b } si consideri la relazione definita ponendo: a b a ab = ba. b i Si dimostri che è una relazione di equivalenza

Dettagli

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE AL110 - Algebra 1 - A.A. 2015/2016 Valutazione in itinere - II Prova (Gennaio 2016) Matricola (O ALTRO IDENTIFICATIVO) Cognome:...................................... Nome:......................................

Dettagli

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 Esercizio 1. Usando l algoritmo euclideo delle divisioni successive, calcolare massimo comune divisore e identità di Bézout per le seguenti coppie

Dettagli

(a, b) (x, y) = (ax, by). la compatibilità fra le due operazioni è data dalla compatibilità delle operazioni di R e R.

(a, b) (x, y) = (ax, by). la compatibilità fra le due operazioni è data dalla compatibilità delle operazioni di R e R. Università degli studi di Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2004/2005 AL2 - Algebra 2, gruppi anelli e campi Soluzioni 26 Novembre 2004 1 Anelli e Ideali 1. Dati due anelli R e R,

Dettagli

ALGEBRA 1 Secondo esame scritto soluzioni 18 Luglio x 15 mod 21 44x 20 mod 12 6x mod 15

ALGEBRA 1 Secondo esame scritto soluzioni 18 Luglio x 15 mod 21 44x 20 mod 12 6x mod 15 ALGEBRA 1 Secondo esame scritto soluzioni 18 Luglio 2011 (1) Risolvere il seguente sistema di congruenze lineari: 3x 15 mod 21 44x 20 mod 12 6x 6 1000 mod 15 Soluzione: Richiedere la validità della congruenza

Dettagli

ALGEBRA 1 PB-Z X. 25 V 2012

ALGEBRA 1 PB-Z X. 25 V 2012 ALGEBRA 1 PB-Z X. 25 V 2012 Esercizio 1. Sia A un dominio d integrità unitario e a ideali principali. Si mostri che, per un ideale di A, esser massimale è equivalente a esser primo ( 1 ). Soluzione. La

Dettagli

(ii) Provare che C n è isomorfo a Z n. Dedurre che si tratta di un grupo ciclico e dire quali e quanti sono i suoi generatori.

(ii) Provare che C n è isomorfo a Z n. Dedurre che si tratta di un grupo ciclico e dire quali e quanti sono i suoi generatori. Università degli studi Roma Tre Corso di laurea in Matematica A.A. 2010-2011 Istituzioni di Algebra Superiore 12 Ottobre 2010 - Esercitazione n.3 Antonio Cigliola Esercizio 1. Sia V uno Z p -spazio vettoriale

Dettagli

ALGEBRA 1 Primo esame scritto 4 Luglio 2011 soluzioni

ALGEBRA 1 Primo esame scritto 4 Luglio 2011 soluzioni ALGEBRA 1 Primo esame scritto 4 Luglio 2011 soluzioni (1) Si trovino tutte le soluzioni intere del sistema di congruenze lineari x 4 mod 5 2x 5 mod 7 3x 12345 2448 mod 9 Soluzione: L inverso di 2 modulo

Dettagli

AL210 - Appunti integrativi - 6

AL210 - Appunti integrativi - 6 L210 - ppunti integrativi - 6 Prof. Stefania Gabelli - a.a. 2016-2017 Divisibilità in un dominio Per definire in un anello commutativo unitario una buona teoria della divisibilità, è conveniente assumere

Dettagli

DIARIO DELLE LEZIONI DI ALGEBRA I Canale M-Z A.A

DIARIO DELLE LEZIONI DI ALGEBRA I Canale M-Z A.A DIARIO DELLE LEZIONI DI ALGEBRA I Canale M-Z A.A. 2015-16 Martedì 1 Marzo Presentazione del Corso. Introduzione alla teoria degli insiemi: nozioni e notazioni fondamentali. Criterio di uguaglianza tra

Dettagli

Gruppi, anelli, campi e polinomi: le prime definizioni.

Gruppi, anelli, campi e polinomi: le prime definizioni. Gruppi, anelli, campi e polinomi: le prime definizioni. Ilaria Del Corso 1 GRUPPI Definizione 1.1. Sia G un insieme, G e sia un operazione su G. Si dice che (G, ) è un gruppo se 1. è associativa, ossia

Dettagli

Esercizi di Algebra commutativa e omologica

Esercizi di Algebra commutativa e omologica Esercizi di Algebra commutativa e omologica Esercizio 1. Sia A un anello non nullo. Dimostrare che A è un campo se e solo se ogni omomorfismo di A in un anello non nullo B è iniettivo. Esercizio 2. Sia

Dettagli

ESAME DI ALGEBRA 3, 24/02/2014

ESAME DI ALGEBRA 3, 24/02/2014 ESAME DI ALGEBRA 3, 24/02/204 Esercizio. Si consideri il polinomio f X := X 4 8X + 2 Q [X]. Si mostri che f X Q [X] è irriducibile. 2 Si determini il gruppo di Galois del campo di spezzamento di f X su

Dettagli

Esercizi di Algebra II

Esercizi di Algebra II Esercizi di Algebra II 16 Dicembre 2016 # 11 Esercizio 1. Sia E := Q(i, 4 5). Determinare il grado su Q dei seguenti campi: 1) E 1 := E Q( 7 5); 2) E 2 := E Q( 6 5); Soluzione. La difficoltà che incontriamo

Dettagli

ALGEBRA 1 ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI 1. GIOVEDÌ 10 MARZO 2011

ALGEBRA 1 ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI 1. GIOVEDÌ 10 MARZO 2011 ALGEBRA 1 ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI Informazioni sul corso. Panoramica sul programma 1. GIOVEDÌ 10 MARZO 2011 2. LUNEDÌ 14 MARZO 2011 Teoria ingenua degli insiemi. Insiemi ed elementi.

Dettagli

Aritmetica 2009/10 Compitino 3/11/ x 16 mod 23 3x 2 mod 5

Aritmetica 2009/10 Compitino 3/11/ x 16 mod 23 3x 2 mod 5 Aritmetica 2009/10 Compitino 3/11/2009 1. Trovare le soluzioni intere del sistema 4 x 16 mod 23 3x 2 mod 5 Esempio risoluzione: Cerchiamo di riportarci ad un sistema di congruenze lineari. Calcoliamo l

Dettagli

AL110 Algebra 1 A.A. 2012/2013

AL110 Algebra 1 A.A. 2012/2013 AL110, I Semestre, Crediti 10 AL110 Algebra 1 A.A. 2012/2013 Prof. Florida Girolami 1. Insiemi e applicazioni Nozione intuitiva di insieme. Operazioni tra insiemi (unione, intersezione, differenza, complementare)

Dettagli

Algebra 2. Programma Roma, novembre 2009

Algebra 2. Programma Roma, novembre 2009 Algebra 2. Programma 2009 2010. Roma, novembre 2009 1. Anelli, ideali, moduli. In questo corso gli anelli possiedono sempre un elemento 1. Gli omomorfismi di anelli mandano sempre 1 in 1. In particolare,

Dettagli

2 Anelli e Anelli di polinomi

2 Anelli e Anelli di polinomi Universita degli studi di Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2003/2004 AL2 - Algebra 2, gruppi anelli e campi Esercizi 12 Dicembre 2004 1 Anelli e Ideali 1. Dati due anelli R e R, introdurre

Dettagli

SOLUZIONI DELLA SECONDA PROVA IN ITINERE DEL CORSO AL GENNAIO (1) (3 punti) Si consideri il sottoinsieme dei numeri complessi

SOLUZIONI DELLA SECONDA PROVA IN ITINERE DEL CORSO AL GENNAIO (1) (3 punti) Si consideri il sottoinsieme dei numeri complessi SOLUZIONI DELLA SECONDA PROVA IN ITINERE DEL CORSO AL210 15 GENNAIO 2019 (0.1) (1) (3 punti) Si consideri il sottoinsieme dei numeri complessi Q( 3) := {a + b 3 : a, b Q} C Dimostrare che Q( 3) è un campo.

Dettagli

Esercizi di Geometria - Foglio 1 Corso di Laurea in Fisica 24 Settembre 2003

Esercizi di Geometria - Foglio 1 Corso di Laurea in Fisica 24 Settembre 2003 Esercizio 1.1 Esercizi di Geometria - Foglio 1 Corso di Laurea in Fisica 24 Settembre 2003 1. Teoria elementare degli insiemi Descrivere in modo esplicito i seguenti insiemi: (i) L = {x x e una lettera

Dettagli

COMPITO DI STRUTTURE ALGEBRICHE 17 gennaio Sia G un gruppo e K un suo sottogruppo caratteristico. Dimostrare che:

COMPITO DI STRUTTURE ALGEBRICHE 17 gennaio Sia G un gruppo e K un suo sottogruppo caratteristico. Dimostrare che: 17 gennaio 2003 1. Siano σ = (1 2 3), τ = (1 3 4) S 4. (i) Determinare un elemento α S 4 tale che ασα 1 = τ; (ii) determinare il sottogruppo di S 4 generato da σ e τ; (iii) determinare il centralizzatore

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione C

II Esonero di Matematica Discreta - a.a. 06/07. Versione C II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione C a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5612 e la scrittura

Dettagli

Università degli studi di Verona Corso di laurea in Informatica Prova scritta di Algebra 3 settembre 2002

Università degli studi di Verona Corso di laurea in Informatica Prova scritta di Algebra 3 settembre 2002 Prova scritta di Algebra settembre 2002 1) Si consideri il sottoinsieme del gruppo Q \{0} dei numeri razionali non nulli rispetto alla moltiplicazione: { m X = n } m 0, n Si dimostri che X è un sottosemigruppo;

Dettagli

Università Cattolica del Sacro Cuore. Facoltà di Scienze Matematiche, Fisiche e Naturali

Università Cattolica del Sacro Cuore. Facoltà di Scienze Matematiche, Fisiche e Naturali Università Cattolica del Sacro Cuore Sede di Brescia Facoltà di Scienze Matematiche, Fisiche e Naturali CORSO DI ISTITUZIONI DI ALGEBRA SUPERIORE I prof. Clara Franchi Esercizi svolti raccolti da Elena

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione B

II Esonero di Matematica Discreta - a.a. 06/07. Versione B II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura

Dettagli

Corso introduttivo pluridisciplinare Polinomi

Corso introduttivo pluridisciplinare Polinomi Corso introduttivo pluridisciplinare Polinomi anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Corso introduttivo pluridisciplinare 1 / 25 Polinomi in una

Dettagli

Prova scritta di Approfondimenti di Algebra. 10 Gennaio 2008

Prova scritta di Approfondimenti di Algebra. 10 Gennaio 2008 10 Gennaio 2008 1. Nell anello Mat 3 (Q): (a) si determini la forma normale di A = (b) si trovi B tale che rango(b 2 ) < rango(b). 1 1 5 0 1 0 2 2 4 ; 3. Considerando M := Z 24 Z 15 Z 30 come Z-modulo,

Dettagli

Definizione di anello

Definizione di anello Definizione di anello Definizione Sia A un insieme dotato di due leggi di composizione interne + e. Si dice che la struttura algebrica (A, +, ) è un anello se: Definizione di anello Definizione Sia A un

Dettagli

ALGEBRA (A-L) ( )

ALGEBRA (A-L) ( ) ALGEBRA (A-L) (2014-15) SCHEDA 3 Strutture algebriche 1.STRUTTURE ALGEBRICHE Sia (M, ) un monoide con unità 1 M e sia a M. Le iterazioni della operazione. sono definite da: a 0 = 1 M, a n+1 =a a n. 1.1.Dimostrare

Dettagli

CODICI CICLICI. TEORIA DEI CODICI CORSO DI GRAFI E COMBINATORIA A.A Prof.ssa Bambina Larato - Politecnico di Bari

CODICI CICLICI. TEORIA DEI CODICI CORSO DI GRAFI E COMBINATORIA A.A Prof.ssa Bambina Larato - Politecnico di Bari CODICI CICLICI TEORIA DEI CODICI CORSO DI GRAFI E COMBINATORIA A.A. 2011-2012 Prof.ssa Bambina Larato - larato@poliba.it Politecnico di Bari CODICI CICLICI Qualche richiamo Sia F=GF(q) e sia F[x] l insieme

Dettagli

Esercizi Algebra dicembre 2016

Esercizi Algebra dicembre 2016 Esercizi Algebra 2 20 dicembre 2016 Sia a un elemento di un anello R. Consideriamo R = R[x]/(ax 1). Denotiamo con ϕ la mappa data componendo R R[x] con la proiezione R[x] R. Provare che Ker(ϕ) := {b R

Dettagli

Indice analitico. B Base, 43 Bezout identità di, 15 per polinomi, 39 Binomio teorema del di Newton, 14, 35 ingenuo, 18, 45

Indice analitico. B Base, 43 Bezout identità di, 15 per polinomi, 39 Binomio teorema del di Newton, 14, 35 ingenuo, 18, 45 Indice analitico A Abeliano gruppo, 24 Algebrico(a) elemento, 46 estensione, 46 Algoritmo di Euclide, 15 di Euclide per polinomi, 39 Anello(i), 33 commutativo, 33 con unità, 33 di polinomi, 36 generato,

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2011/12 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2011/12 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2011/12 DOCENTE: ANDREA CARANTI Lezione 1. mercoledí 14 settembre 2011 (2 ore) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero

Dettagli

Indice analitico. A Abelianizzato, 9 Abeliano(i) B Banale azione, 9 ideale, 22 sottogruppo, 1 Bezout identità di, 28 Burnside formula di, 11

Indice analitico. A Abelianizzato, 9 Abeliano(i) B Banale azione, 9 ideale, 22 sottogruppo, 1 Bezout identità di, 28 Burnside formula di, 11 Indice analitico A Abelianizzato, 9 Abeliano(i) gruppo, 1 teorema di struttura dei gruppi finiti, 18 Algebrico(a) chiusura, 38 elemento, 37 Alterno gruppo, 17 Anello(i) commutativo, 22 noetheriano, 31

Dettagli

Esercizi 1 Spazi vettoriali. { (x, y, z) R 3 (x, y, z) (2, 2, 2) } ;

Esercizi 1 Spazi vettoriali. { (x, y, z) R 3 (x, y, z) (2, 2, 2) } ; Esercizi 1 Spazi vettoriali Esercizio. Si dica quali dei seguenti sottoinsiemi di R 3 sono sottospazi vettoriali su R: { (x y z R 3 x y z Z } ; { (x y z R 3 x y z Q } ; { (x y z R 3 (x y z (2 2 2 } ; {

Dettagli

1 Polinomio minimo e ampliamenti

1 Polinomio minimo e ampliamenti Università degli studi di Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2004/2005 AL2 - Algebra 2, gruppi anelli e campi Soluzioni 10 dicembre 2004 1 Polinomio minimo e ampliamenti 1. Determinare

Dettagli

ALGEBRA 2 - prof. Fabio Gavarini

ALGEBRA 2 - prof. Fabio Gavarini Corso di Laurea in Matematica - a.a. 2007/8 programma di ALGEBRA 2 - prof. Fabio Gavarini N.B.: premesso che tutto il programma svolto è - a suo modo - importante, nondimeno tra i vari argomenti c è una

Dettagli

Esame di Matematica Discreta Laurea Triennale in Informatica e Comunicazione Digitale Sede di Taranto 28/9/2005

Esame di Matematica Discreta Laurea Triennale in Informatica e Comunicazione Digitale Sede di Taranto 28/9/2005 Sede di Taranto 28/9/2005 1. Dati gli insiemi A = {1, 2, 3, 4, 5} e B = {a, b, c}, determinare tutte le applicazioni surgettive f : A B tali che f(2) = f(3) = a f(x) a per x {2, 3}. 2. Risolvere il sistema

Dettagli

GEOMETRIA 1 Corso di Laurea in Fisica

GEOMETRIA 1 Corso di Laurea in Fisica ) Verificare che il polinomio GEOMETRIA Corso di Laurea in Fisica Esercizi di preparazione al compitino 27/28 2z 3 + ( 2i)z 2 (8 + 7i)iz 9 3i ammette 3 + i come radice e determinare le altre radici del

Dettagli

Anno Accademico 2017/2018

Anno Accademico 2017/2018 Mod. 136/1 ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Anno Accademico 2017/2018 Scuola di Scienze Matematiche, Fisiche e Naturali Corsi di Laurea o di Diploma Laurea Magistrale in Matematica - Curriculum

Dettagli

ESERCIZI DI ALGEBRA N.B.: il simbolo contrassegna gli esercizi più complessi. 1 Anelli (esempi)

ESERCIZI DI ALGEBRA N.B.: il simbolo contrassegna gli esercizi più complessi. 1 Anelli (esempi) ESERCIZI DI ALGEBRA 2 10-10-2005 N.B.: il simbolo contrassegna gli esercizi più complessi. 1 Anelli esempi 1.1 Siano A 1,..., A n degli anelli. Nell insieme prodotto cartesiano A 1 A n, si considerino

Dettagli

MATEMATICA DISCRETA E LOGICA MATEMATICA

MATEMATICA DISCRETA E LOGICA MATEMATICA Cognome Nome Matricola MATEMATICA DISCRETA E LOGICA MATEMATICA Docenti: C. Delizia, M. Tota Terzo Appello 11 febbraio 2010 IMPORTANTE: indicare l esame che si intende sostenere e svolgere solo gli esercizi

Dettagli

Matematica Discreta e Algebra Lineare (per Informatica)

Matematica Discreta e Algebra Lineare (per Informatica) Matematica Discreta e Algebra Lineare (per Informatica) Docente: Alessandro Berarducci Anno accademico 2016-2017, versione 14 Marzo 2017 Tipiche domande d esame La seguente lista di domande non intende

Dettagli

Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE

Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE Università degli Studi di Verona Corso di Laurea in Matematica Applicata * * * Prof. Lidia Angeleri Anno accademico 2009-2010 Indice

Dettagli

Aritmetica

Aritmetica Aritmetica 2017-2018 Esercizi 1 02.10.2017 1.1 Induzione Sia r un numero reale tale che r + 1/r è un intero. Allora per ogni intero n 1 si ha che r n + 1/r n è intero. Dimostrare che i numeri di Fibonacci

Dettagli

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Esercizio 1. Sia f l endomorfismo di R 4 definito nel modo seguente: f(x, y, z, w) = (w,

Dettagli

mcd(a, b) = r 1 a + r 2 b,

mcd(a, b) = r 1 a + r 2 b, ESERCIZI SU CAMPO DEI QUOZIENTI, UFD, PID, DOMINI EUCLIDEI ESERCIZIO 1 Sia R un dominio integrale con campo dei quozienti Q(R). Dimostrare che se T è un dominio tale che R T Q(R), allora Q(R) è isomorfo

Dettagli

TEST DI VERIFICA DI ALGEBRA Novembre 2007 generalità su gruppi e anelli Testo con soluzioni...

TEST DI VERIFICA DI ALGEBRA Novembre 2007 generalità su gruppi e anelli Testo con soluzioni... TEST DI VERIFICA DI ALGEBRA 2 13 Novembre 2007 generalità su gruppi e anelli Testo con soluzioni....................................................................... N.B.: il simbolo contrassegna gli

Dettagli

Appunti di Aritmetica. Carmine Frascella

Appunti di Aritmetica. Carmine Frascella Appunti di Aritmetica Carmine Frascella 27 Settembre 2014 C Indice 5 Nomenclatura di base 7 Relazione d ordine, coerenza con 7 somma e prodotto. Principio del 7 buon ordinamento dei naturali e 7 principio

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2009/10 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2009/10 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2009/10 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 14 settembre 2009 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

Esercizio 2. Calcolare il campo fissato dall automorfismo di Q(e) che manda

Esercizio 2. Calcolare il campo fissato dall automorfismo di Q(e) che manda Università degli studi Roma Tre Corso di laurea in Matematica A.A. 2010-2011 Istituzioni di Algebra Superiore 14 Dicembre 2010 - Esercitazione n.7 Antonio Cigliola Esercizio 1. Calcolare il campo fissato

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2014/15 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2014/15 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2014/15 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 22 settembre 2014 (2 ore) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 142857,

Dettagli

DIARIO DEL CORSO DI ALGEBRA A A.A. 2015/16 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A A.A. 2015/16 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A A.A. 2015/16 DOCENTE: ANDREA CARANTI Lezione 1. martedí 16 febbraio 2015 (2 ore) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero

Dettagli

CORSO DI MATEMATICA DISCRETA I (ALGEBRA) Prof. Paolo Papi ESERCIZI

CORSO DI MATEMATICA DISCRETA I (ALGEBRA) Prof. Paolo Papi ESERCIZI CORSO DI MATEMATICA DISCRETA I (ALGEBRA) Prof. Paolo Papi ESERCIZI ). Siano A, B, C insiemi. Provare che (A B) C = A (B C) A (B C) =(A B) (A C) C(A B) =C(A) C(B). 2). Definiamo la differenza simmetrica

Dettagli

Metodi Matematici per la Comunicazione Digitale - 19 Giugno 2017

Metodi Matematici per la Comunicazione Digitale - 19 Giugno 2017 Metodi Matematici per la Comunicazione Digitale - 9 Giugno 7 Esercizio. Determinare il valore del parametro reale h in modo che il polinomio sia divisibile per il polinomio p h (x) = x 3 x 5x + 4 + h q(x)

Dettagli

Corso di Algebra 1 - a.a Prova scritta del

Corso di Algebra 1 - a.a Prova scritta del Corso di Algebra 1 - a.a. 2016-2017 Prova scritta del 23.1.2017 1. Sia G il gruppo S 3 D 4. (a) Per quali x D 4 il sottogruppo H x di G generato da ((1, 2, 3), x) ha ordine 6? (b) Dimostrare che esiste

Dettagli

COMPITO DI ALGEBRA TRENTO, 13 GENNAIO 2016

COMPITO DI ALGEBRA TRENTO, 13 GENNAIO 2016 COMPITO DI ALGEBRA TRENTO, 13 GENNAIO 2016 Istruzioni: (1) Questo compito consiste di sei facciate e ventidue esercizi. (2) Risolvete tutti gli esercizi seguenti. (3) Giustificate, possibilmente in modo

Dettagli

Laboratorio teorico-pratico per la preparazione alle gare di matematica

Laboratorio teorico-pratico per la preparazione alle gare di matematica Laboratorio teorico-pratico per la preparazione alle gare di matematica Ercole Suppa Liceo Scientifico A. Einstein, Teramo e-mail: ercolesuppa@gmail.com Teramo, 3 dicembre 2014 USR Abruzzo - PLS 2014-2015,

Dettagli

Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi

Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi Introduzione S S S S Le strutture algebriche sono date da insiemi con leggi di composizione binarie (operazioni) ed assiomi (proprietà) Una legge di composizione binaria è una funzione : I J K, una legge

Dettagli

Polinomi. 2 febbraio Docente: Francesca Benanti. L Anello dei Polinomi. Divisibilità in K[x] Scomposizione di... Prodotti Notevoli.

Polinomi. 2 febbraio Docente: Francesca Benanti. L Anello dei Polinomi. Divisibilità in K[x] Scomposizione di... Prodotti Notevoli. Polinomi Docente: Francesca Benanti 2 febbraio 2008 Page 1 of 25 1. L Anello dei Polinomi Lo studio dei polinomi in una indeterminata a coefficienti in un campo è posto immediatamente dopo lo studio degli

Dettagli

Polinomi. Docente: Francesca Benanti. 16 Febbraio 2007

Polinomi. Docente: Francesca Benanti. 16 Febbraio 2007 Polinomi Docente: Francesca Benanti 16 Febbraio 2007 1 L Anello dei Polinomi Lo studio dei polinomi in una indeterminata a coefficienti in un campo è posto immediatamente dopo lo studio degli interi poichè

Dettagli

Matematica Discreta e Logica Matematica ESERCIZI

Matematica Discreta e Logica Matematica ESERCIZI Matematica Discreta e Logica Matematica ESERCIZI Proff. F. Bottacin e C. Delizia Esercizio 1. Scrivere la tavola di verità della seguente formula ben formata e determinare se essa è una tautologia: A ((A

Dettagli

Capitolo 6: Campi di spezzamento:

Capitolo 6: Campi di spezzamento: Capitolo 6: Campi di spezzamento: Idea: Studiare i polinomi a coefficienti in un campo. Definizione (Algebrico e trascendente): Dati campi, un elemento si dice algebrico su se Dati campi, un elemento si

Dettagli

Capitolo 4: Teoria degli anelli:

Capitolo 4: Teoria degli anelli: Capitolo 4: Teoria degli anelli: Definizione (Anello): È un insieme munito di due operazioni che indicheremo con in modo che: 1- è un gruppo abeliano rispetto a 2- è un monoide associativo rispetto al

Dettagli

REGISTRO DELLE LEZIONI a

REGISTRO DELLE LEZIONI a UNIVERSITÀ DEGLI STUDI DI GENOVA Dipartimento di Matematica Corso di laurea in Matematica e Corso di Laurea in SMID REGISTRO DELLE LEZIONI a dell' INSEGNAMENTO o MODULO UFFICIALE Nome: Algebra 1 codice:

Dettagli

Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE

Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE Università degli Studi di Verona Corso di Laurea in Matematica Applicata * * * Prof. Lidia Angeleri Anno accademico 2011/12 Indice

Dettagli

Il teorema di Eakin-Nagata per gli anelli noetheriani

Il teorema di Eakin-Nagata per gli anelli noetheriani Il teorema di Eakin-Nagata per gli anelli noetheriani Dispense per i corsi di Algebra Commutativa a.a. 2015/2016 Stefania Gabelli Dipartimento di Matematica, Università degli Studi Roma Tre 1 Gli anelli

Dettagli

Lezione 15. Omomorfismi di anelli e loro proprietà.

Lezione 15. Omomorfismi di anelli e loro proprietà. Lezione 15 Prerequisiti: Lezioni 3, 9, 14 Rierimenti ai testi: [FdG] Sezione 54; [H] Sezioni 33-34; [PC] Sezione 44 Ricordiamo la seguente Omomorismi di anelli e loro proprietà Deinizione 151 Dati due

Dettagli

1 Estensioni di Campi

1 Estensioni di Campi 1 Estensioni di Campi Siano K, F campi. F si dice estensione di K se F K. Definizione 1.1. Un elemento α F si dice algebrico su K se f(x) K[x] \ {0} tale che f(α) = 0. α F si dice trascendente su K se

Dettagli

ESERCIZI DI ALGEBRA GRUPPI E ANELLI (3) N.B.: il simbolo contrassegna gli esercizi (relativamente) più complessi.

ESERCIZI DI ALGEBRA GRUPPI E ANELLI (3) N.B.: il simbolo contrassegna gli esercizi (relativamente) più complessi. ESERCIZI DI ALGEBRA GRUPPI E ANELLI 3 NB: il simbolo contrassegna gli esercizi relativamente più complessi 1 Dato un anello A e il corrispondente per n N + fissato anello di matrici quadrate Mat n A, consideriamo

Dettagli

ALGEBRA C. MALVENUTO

ALGEBRA C. MALVENUTO ALGEBRA PRIMO ESONERO CANALE A-L 18 NOVEMBRE 011 C. MALVENUTO Esercizio 1. (8 punti Sia H la famiglia di tutti i sottogruppi del gruppo additivo Z 0 delle classi resto modulo 0. 1. Elencare tutti gli elementi

Dettagli